An Adaptive Framework for Discovery and Mining of User Profiles from Social Web-Based Interest Communities

  • Nima DokoohakiEmail author
  • Mihhail Matskin
Part of the Lecture Notes in Social Networks book series (LNSN, volume 6)


Within this paper we introduce an adaptive framework for semi- to fully-automatic discovery, acquisition and mining of topic style interest profiles from openly accessible social web communities. To do such, we build an adaptive taxonomy search tree from target domain (domain towards which we are gathering and processing profiles for), starting with generic concepts at root moving down to specific-level instances at leaves, then we utilize one of proposed Quest schemes to read the concept labels from the tree and crawl the source social network repositories for profiles containing matching and related topics. Using machine learning techniques, cached profiles are then mined in two consecutive steps, utilizing a clusterer and a classifier in order to assign and predict correct profiles to their corresponding clustered corpus, which are retrieved later on by an ontology-based recommender to suggest and recommend the community members with the items of their similar interest. Focusing on increasingly important digital cultural heritage context, using a set of profiles acquired from an openly accessible social network, we test the accuracy and adaptivity of framework. We will show that a tradeoff between schemes proposed can lead to adaptive discovery of highly relevant profiles.


  1. 1.
    LiveJournal (2010)., last accessed 2010
  2. 2.
    Ghosh, R., Dekhil, M.: Discovering user profiles. In: Proceedings of WWW 2009, pp. 1233–1234. ACM, New York (2009)Google Scholar
  3. 3.
    Teevan, J., Dumais, S., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 456. ACM, New York (2005)Google Scholar
  4. 4.
    Liu, H., Maes, P., Davenport, G.: Unraveling the taste fabric of social networks, Int. J. Semant. Web Inf. Syst. 2, 42–71 (2006)CrossRefGoogle Scholar
  5. 5.
    Pretschner, A., Gauch, S.: Ontology based personalized search. In: Proceedings, 11th IEEE International Conference on Tools with Artificial Intelligence, pp. 391–398 (1999).
  6. 6.
    Trajkova, J., Gauch, S.: Improving ontology-based user profiles. Proc. RIAO 4, 380–389 (2004)Google Scholar
  7. 7.
    Dokoohaki, N., Matskin, M.: Personalizing human interaction through hybrid ontological profiling: cultural heritage case study (2008).
  8. 8.
    Cantador, I., Szomszor, M., Alani, H., Fernández, M., Castells, P.: Enriching ontological user profiles with tagging history for multi-domain recommendations. In: 1st International Workshop on Collective Semantics: Collective Intelligence & the Semantic Web (CISWeb 2008). CEUR-WS (2008).
  9. 9.
    Razmerita, L., Angehrn, A., Maedche, A.: Ontology-Based User Modeling for Knowledge Management Systems. Lecture Notes in Computer Science, pp. 213–217. Springer, Berlin/New York (2003)Google Scholar
  10. 10.
    Felden, C., Linden, M.: Ontology-based user profiling. Business Information Systems, 314–327. doi:10.1007/978-3-540-72035-5_24Google Scholar
  11. 11.
    Sieg, A., Mobasher, B., Burke, R.: Ontological user profiles for representing context in web search. In: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops, pp. 91–94. IEEE, Los Alamitos (2007)Google Scholar
  12. 12.
    Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.: Semantic modelling of user interests based on cross-folksonomy analysis. In: International Semantic Web Conference, pp. 632–648. Springer, Berlin/New York (2008)Google Scholar
  13. 13.
    Gauch, S., Chaffee, J., Pretschner, A.: Ontology-based user profiles for search and browsing. Web Intell. Agent Syst. 1, 219–234 (2003)Google Scholar
  14. 14.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002). doi:10.1145/505282.505283CrossRefGoogle Scholar
  15. 15.
    Cooley, R., Mobasher, B., Srivastava, J.: Web mining: information and pattern discovery on the world wide web. In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-97), vol. 1, pp. 558–567. IEEE, Los Alamitos (1997)Google Scholar
  16. 16.
    Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization, ACM Trans. Internet Technol. 3, 1–27 (2003)CrossRefGoogle Scholar
  17. 17.
    Mobasher, B.: Data mining for web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. Lecture Notes in Computer Science, pp. 90–135. Springer, Berlin/Heidelberg (2007). doi:10.1007/978-3-540-72079-9_3Google Scholar
  18. 18.
    Mobasher, B.: A web personalization engine based on user transaction clustering. In: Proceedings of the 9th Workshop on Information Technologies and Systems (WITS’99), Charlotte (1999)Google Scholar
  19. 19.
    O’Connor, M., Herlocker, J.: Clustering items for collaborative filtering. In: The Proceedings of SIGIR-2001 Workshop on Recommender Systems, New Orleans. ACM, New York (2001)Google Scholar
  20. 20.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: discovery and applications of usage patterns from web data, ACM SIGKDD Explor. Newsl. 1, 23 (2000)CrossRefGoogle Scholar
  21. 21.
    Middleton, S.E., Shadbolt, N.R. De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22, 54–88 (2004)CrossRefGoogle Scholar
  22. 22.
    Pazzani, M., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. Lecture Notes in Computer Science, pp. 325–341. Springer, Berlin/Heidelberg (2007)Google Scholar
  23. 23.
    Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering (1999).
  24. 24.
    Soltysiak, S.J., Crabtree, I.B.: Automatic learning of user profiles: towards the personalisation of agent services. BT Technol. J. 16, 110–117 (1998)CrossRefGoogle Scholar
  25. 25.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification of interesting web sites. Mach. Learn. 27, 313–331 (1997)CrossRefGoogle Scholar
  26. 26.
    Wulf, V., Reichling, T.: Expert recommender systems in practice. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems CHI 09, p. 59. ACM, New York (2009)Google Scholar
  27. 27.
    Wallach, H.M.: Topic modeling: beyond bag-of-words, Language 977–984 (2006)Google Scholar
  28. 28.
    Banerjee, N., Chakraborty, D., Dasgupta, K., Mittal, S., Joshi, A., Nagar, S., Rai, A., Madan, S.: User interests in social media sites: an exploration with micro-blogs. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, pp. 1823–1826. ACM, New York (2009)Google Scholar
  29. 29.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1–47 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recommendation. In: Proceedings of the Third ACM Conference on Recommender Systems RecSys 09, vol. 61. ACM, New York (2009)Google Scholar
  31. 31.
    Jensen, D., Neville, J.: Data mining in social networks. In: National Academy of Sciences Workshop on Dynamic Social Network Modeling and Analysis. National Academies Press (2002)Google Scholar
  32. 32.
    Liu, H., Maes, P.: Interestmap: Harvesting social network profiles for recommendations. In: Beyond Personalisation (2004).
  33. 33.
    Dokoohaki, N., Matskin, M.: Quest: an adaptive framework for user profile acquisition from social communities of interest. In: International Conference on Advances in Social Network Analysis and Mining, pp. 360–364. IEEE, Los Alamitos (2010)Google Scholar
  34. 34.
    Novak, B.: A survey of focused web crawling algorithms. In: Proceedings of SIKDD, pp. 55–58. ACM, New York (2004)Google Scholar
  35. 35.
    Ester, M., Grob, M., Kriegel, H.P.: Focused web crawling: a generic framework for specifying the user interest and for adaptive crawling strategies. In: Proceedings of 27th International Conference on Very Large Data Bases, pp. 321–329. Morgan Kaufmann, Orlando (2001)Google Scholar
  36. 36.
    Chakrabarti, S., Van Den Berg, M., Dom, B.: Focused crawling: a new approach to topic-specific Web resource discovery. Comput. Netw. 31, 1623–1640 (1999)CrossRefGoogle Scholar
  37. 37.
    Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)zbMATHGoogle Scholar
  38. 38.
    Baharudin, B., Lee, L.H., Khan, K.: A review of machine learning algorithms for text-documents classification. J. Adv. Inf. Technol. 1, 4–20 (2010)Google Scholar
  39. 39.
    Ruotsalo, T.: Methods and Applications for Ontology-Based Recommender Systems (2010).
  40. 40.
    Krestel, R., Fankhauser, P.: Tag recommendation using probabilistic topic models. In: Eisterlehner, F., Hotho, A., Jäschke, R. (eds.) ECML PKDD Discovery Challenge 2009 (DC09), vol. 497, p. 131. CEUR-WS (2009).
  41. 41.
    Ruotsalo, T., Mäkelä, E., Kauppinen, T., Hyvönen, E., Haav, K., Rantala, V., Frosterus, M., Dokoohaki, N., Matskin, M.: Smartmuseum: personalized context-aware access to digital cultural heritage (2009).
  42. 42.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  43. 43.
    Marwick, A.: LiveJournal Users, New York (2008)Google Scholar
  44. 44.
    Porter, M.: The porter stemming algorithm (2001).
  45. 45.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)CrossRefGoogle Scholar
  46. 46.
    John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Francisco (1995)Google Scholar
  47. 47.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)Google Scholar
  48. 48.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  49. 49.
    Wei, X., Croft, W.B.: LDA-based document models for ad-hoc retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR 06, vol. 54, p. 178. ACM, New York (2006)Google Scholar
  50. 50.
    Krestel, R., Chen, L.: The art of tagging: measuring the quality of tags. In: Domingue, J., Anutariya, C. (eds.) Proceedings of the 3rd Asian Semantic Web Conference, pp. 257–271. Springer, Berlin/Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Software and Computer Systems (SCS), School of Information and Telecommunication Technology (ICT)Royal Institute of Technology (KTH)StockholmSweden
  2. 2.Computer and Information Science (IDI)Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations