Advertisement

Optimization Techniques for Multiple Centrality Computations

  • Christian von der WethEmail author
  • Klemens Böhm
  • Christian Hütter
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN, volume 6)

Abstract

A broad range of data has a graph structure, such as the Web link structure, online social networks, or online communities whose members rate each other (reputation systems) or rate items (recommender systems). In these contexts, a common task is to identify important vertices in the graph, e.g., influential users in a social network or trustworthy users in a reputation system, by means of centrality measures. In such scenarios, several centrality computations take place at the same time, as we will explain. With centrality computation being expensive, performance is crucial. While optimization techniques for single centrality computations exist, little attention so far has gone into the computation of several centrality measures in combination. In this paper, we investigate how to efficiently compute several centrality measures at a time. We propose two new optimization techniques and demonstrate their usefulness both theoretically as well as experimentally on synthetic and on real-world data sets.

References

  1. 1.
    Abbassi, Z., Mirrokni, V.S.: A recommender system based on local random walks and spectral methods. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, WebKDD/SNA-KDD ’07. ACM, New York (2007)Google Scholar
  2. 2.
    Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance computing. ACM Comput. Surv. 26 (1994)Google Scholar
  3. 3.
    Blainey, B., Barton, C., Amaral, J.: Removing impediments to loop fusion through code transformations. In: Languages and Compilers for Parallel Computing, Springer, Berlin/Heidelberg (2002)Google Scholar
  4. 4.
    Bowen, B., Kocura, P.: Implementing conceptual graphs in a RDBMS. In: Proceedings on Conceptual Graphs for Knowledge Representation. Springer, London (1993)Google Scholar
  5. 5.
    Cho, J., Schonfeld, U.: RankMass crawler: a crawler with high personalized PageRank coverage guarantee. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB ’07. VLDB Endowment (2007)Google Scholar
  6. 6.
    Cummings, J.N.: NetVis module: Dynamic visualization of social networks. Available online at http://www.netvis.org (2001–2012)
  7. 7.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  8. 8.
    Delaviz, R., Andrade, N., Pouwelse, J.: Improving accuracy and coverage in an internet-deployed reputation mechanism. In: Peer-to-Peer Computing. IEEE, New York (2010)Google Scholar
  9. 9.
    Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. Newsl. 7, 3–12 (2005)CrossRefGoogle Scholar
  10. 10.
    Golub, G.H., van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences), 3rd edn. Johns Hopkins University Press, Baltimore (1996)Google Scholar
  11. 11.
    Gross, J., Yellen, J.: Graph Theory and its Applications. CRC, Boca Raton (1999)zbMATHGoogle Scholar
  12. 12.
    Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with TrustRank. In: Proceedings of the 13th International Conference on Very Large Data Bases, VLDB ’04. VLDB Endowment (2004)Google Scholar
  13. 13.
    Hütter, C., Hartmann, B.O., Böhm, K., Heistermann, T., Kohlmeyer, K.S., Reckling, R., Reiche, M., Parra, D.S.: SONAR: towards user-centric social network analysis and visualization. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT ’10. IEEE Computer Society, New York (2010)Google Scholar
  14. 14.
    Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03. ACM, New York (2003)Google Scholar
  15. 15.
    Kamvar, S.D., et al.: The eigen trust algorithm for reputation management in P2P networks. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03. ACM, New York (2003)Google Scholar
  16. 16.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lee, C.P., Golub, G.H., Zenios, S.A.: A fast two-stage algorithm for computing PageRank and its extensions. Tech. rep., Stanford University (2004)Google Scholar
  18. 18.
    Ng, A.Y., Zheng, A.X., Jordan, M.I.: Link analysis, eigenvectors and stability. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Tech. rep., Stanford (1998)Google Scholar
  20. 20.
    Parreira, J.X., et al.: Efficient and decentralized PageRank approximation in a P2P web search network. In: Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06. VLDB Endowment (2006)Google Scholar
  21. 21.
    Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems: facilitating trust in internet interactions. Commun. ACM 43, 45–48 (2000). ACMGoogle Scholar
  22. 22.
    Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Proceedings of the International Semantic Web Conference, ISWC’03. Springer, Berlin/ Heidelberg (2003)Google Scholar
  23. 23.
    Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In: Proceedings of the 1st International Joint Conference on Autonomous Agent and Multi-Agent Systems, AAMAS ’02. ACM, New York (2002)Google Scholar
  24. 24.
    Sierra, C., Debenham, J.: Information-based reputation. In: 1st International Conference on Reputation Theory and Technology, ICORE ’09. New York (2009)Google Scholar
  25. 25.
    Stephens, S., Rung, J. Lopez, X.: Graph data representation in oracle database 10g: case studies in life sciences. IEEE Data Eng. Bull. 27, 61–66 (2004)Google Scholar
  26. 26.
    von der Weth, C., Böhm, K.: A unifying framework for behavior-based trust models. In: Proceedings of the International Conference on Cooperative Information Systems, CoopIS ’06. Springer, Berlin/Heidelberg (2006)Google Scholar
  27. 27.
    von der Weth, C., Böhm, K.: Towards an objective assessment of centrality measures in reputation systems. In: Proceedings of the 9th IEEE International Conference on E-Commerce Technology and The 4th IEEE International Conference on Enterprise Computing, E-Commerce and E-Services, CEC/EEE ’07. IEEE Computer Society, New York (2007)Google Scholar
  28. 28.
    von der Weth, C., Böhm, K., Hütter, C.: Optimizing multiple centrality computations for reputation systems. In: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’10. IEEE Computer Society, New York (2010)Google Scholar
  29. 29.
    Wang, Y., DeWitt, D.: Computing PageRank in a distributed internet search system. In: Proceedings of the 30th International Conference on Very Large Data Bases, VLDB ’04. VLDB Endowment (2004)Google Scholar
  30. 30.
    Wassermann, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge/New York (1994)CrossRefGoogle Scholar
  31. 31.
    Wicks, J., Greenwald, A.: More efficient parallel computation of PageRank. In: Proceedings of the 30th International Conference on Research and Development in Information Retrieval, SIGIR ’07. ACM, New York (2007)Google Scholar
  32. 32.
    Xiong, L., Liu, L.: PeerTrust: supporting reputation-based trust for peer-to-peer electronic communities. IEEE Trans. Knowl. Data Eng. 16(7), 843–857 (2004)CrossRefGoogle Scholar
  33. 33.
    Yamamoto, A., Asahara, D., Itao, T., Tanaka, S., Suda, T.: Distributed PageRank: a distributed reputation model for open peer-to-peer networks. In: Proceedings of the 2004 Symposium on Applications and the Internet-Workshops, SAINT-W ’04. IEEE Computer Society (2004)Google Scholar
  34. 34.
    Zhang, H., Goel, A., Govindan, R., Mason, K., Roy, B.V.: Improving eigenvector-based reputation systems against collusions. In: Workshop on Algorithms and Models for the Web Graph. Springer, New York (2004)Google Scholar
  35. 35.
    Zhang, L., Zhang, K., Li, C.: A topical PageRank based algorithm for recommender systems. In: Proceedings of the 31st International Conference on Research and Development in Information Retrieval, SIGIR ’08. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Christian von der Weth
    • 1
    Email author
  • Klemens Böhm
    • 2
  • Christian Hütter
    • 2
  1. 1.Digital Enterprise Research Institute (DERI), National University of Ireland, Galway (NUIG)GalwayIreland
  2. 2.Institute for Program Structures and Data OrganizationKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations