Extraction of Spatio-Temporal Data for Social Networks

Chapter
Part of the Lecture Notes in Social Networks book series (LNSN, volume 6)

Abstract

It is often possible to understand group change over time through examining social network data in a spatial and temporal context. Providing that context via text analysis requires identifying locations and associating them with people. Our GeoRef algorithm too automatically does this person-to-place mapping. It involves the identification of location, and uses syntactic proximity of words in the text to link location to person’s name. We describe an application using the algorithm based upon data from the Sudan Tribune divided into three periods in 2006 for the Darfur crisis. Contributions of this paper are (1) techniques to mine for location from text (2) techniques to mine for social network edges (associations between location and person), (3) spatio-temporal maps made from mined data, and (4) social network analysis based on mined data.

References

  1. 1.
    Chen, Y.-D., Tseng, C., King, C.-C., Wu, T.-S., Chen H.: Incorporating geographical contacts into social network analysis for contact tracing in epidemiology: a study on Taiwan SARS data. In: Zeng, D., et al. (eds.) Intelligence and Security Informatics: Biosurveillance, New Brunswick. LNCS, vol. 4506, pp. 23–36. Springer, Berlin/New York (2007)CrossRefGoogle Scholar
  2. 2.
    Ashish, N., Eguchi, R., Hegde, R., Cuyck, C., Kalashnikov, D., Mehrotra, S., Smyth, P., Venkatasubramanian, N.: Situational awareness technologies for disaster response. In: Chen, H., Reid, E., Sinai, J., Silke, A., Ganor, B. (eds.) Terrorism Informatics: Knowledge Management and Data Mining for Homeland Security. Springer, New York (2008)Google Scholar
  3. 3.
    Skillicorn, D.: Knowledge Discovery for Counterterrorism and Law Enforcement. CRC, Boca Raton (2009)Google Scholar
  4. 4.
    Giuliano, C., Lavelli, A., Romano, L.: Relation extraction and the influence of automatic named-entity recognition. ACM Trans. Speech Lang. Process. 5(1), 2:1–2:26 (2007)Google Scholar
  5. 5.
    Hassell, J., Aleman-Meza, B., Arpinar, I.B.: Ontology-driven automatic entity disambiguation in unstructured text. In: Cruz, I.F., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 44–57. Springer, Berlin Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gey, F., Larson, R., Sanderson, M. Joho, H., Clough, P., Petrasi, V.: GeoCLEF: the CLEF 2005 cross-language geographic information retrieval track overview. In: Peters, C., et al. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 908–919. Springer, Berlin Heidelberg (2006)Google Scholar
  7. 7.
    Danowski, J.A., Cepela, N.T.: Automatic mapping of social networks of actors from text corpora: time series analysis. In: Memon, N., Alhajj, R. (eds.) International Conference on Advances in Social Network Analysis and Mining, 2009. ASONAM ’09, Athens, 20–22 July 2009, pp. 137–142. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  8. 8.
    ORA (Organizational Risk Analysis software), v. 2.0.8. Center for Computational Analysis of Social and Organizational Systems (CASOS), Institute for Software Research, Carnegie Mellon University. Copyright Kathleen Carley, 2001–2010. http://www.casos.cs.cmu.edu/projects/ora/
  9. 9.
    Borgatti, S.P., Carley, K.M., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Soc. Netw. 28(2), 124–136 (2006)CrossRefGoogle Scholar
  10. 10.
    Carley, K.M.: Coding choices for textual analysis: a comparison of content analysis and map analysis. In: Marsden, P. (ed.) Sociological Methodology, vol. 23, pp. 75–126. Blackwell, Oxford (1993)Google Scholar
  11. 11.
    Carley, K.M.: Network text analysis: the network position of concepts. In: Roberts, C. (ed.) Text Analysis for the Social Sciences: Methods for Drawing Statistical Inferences from Texts and Transcripts, pp. 79–100. Lawrence Erlbaum Associates, Hillsdale (1997)Google Scholar
  12. 12.
    Leidner, J.L.: Toponym resolution in text: annotation, evaluation and applications of spatial grounding of place names. Unpublished doctoral dissertation, University of Edinburgh. Retrieved January 8, 2008 from http://hdl.handle.net/1842/1849 (2007)
  13. 13.
    Kozareva, Z.: Bootstrapping named entity recognition with automatically generated gazetteer lists. In: Proceedings of the Eleventh Conference of the European Chapter of the Association for Computational Linguistics, pp. 15–21. Association for Computational Linguistics, Morristown (2006)Google Scholar
  14. 14.
    Popescu, A., Grefenstette, G.: Spatiotemporal mapping of Wikipedia concepts. JCDL ’10, Gold Coast, 21–25 June 2010, pp. 129–138. Association for Computing Machinery, New York (2010)Google Scholar
  15. 15.
    Purves, R., Clough, P, Joho, J.: Identifying imprecise regions for geographic information retrieval using the web. In: Proceedings of the GIS Research UK 13th Annual Conference, pp. 313–318 (2005). Retrieved April 11, 2010 from \url{http://www.dcs.gla.ac.uk/$\sim}$hideo/pub/gisuk05/gisuk05.pdfGoogle Scholar
  16. 16.
    Twaroch, F.A., Jones, C.B., Abdelmoty, A.I.: Acquisition of vernacular place names from web sources. In: King, I., Baeza-Yates, R. (eds.) Weaving Services and People on the World Wide Web, pp. 195–214. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, C., Wang, J., Xie, X., Ma, W.-Y.: Mining geographic knowledge using location aware topic model. In: Proceedings of the 4th ACM workshop on Geographic Information Retrieval GIR’07, Lisbon, 9 Nov 2006, pp. 65–70. Association for Computing Machinery (2006)Google Scholar
  18. 18.
    Roddick, J.F., Lees, B.G.: Spatio-temporal data mining paradigms and methodologies. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn. pp. 27–44. CRC, New York (2009)CrossRefGoogle Scholar
  19. 19.
    Buttenfield, B., Gahegan, M., Miller, H. Yuan, M.: Geospatial data mining and knowledge discovery. Retrieved April 7, 2010 from http://www.ucgis.org/priorities/research/research_white/2000\%20Papers/emerging/gkd.pdf (2001)Google Scholar
  20. 20.
    Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: SIGIR’04, Sheffield, 25–29 July 2004, pp. 273–280. Association for Computing Machinery, New York (2004)Google Scholar
  21. 21.
    Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Discovering verb relations in corpora: distributional versus non-distributional approaches. In: Ali, A., Dapoigny, R. (eds.) IEA/AIE 2006. LNAI, vol. 4031, pp. 1042–1052. Springer, Berlin Heidelberg (2006)Google Scholar
  22. 22.
    Xu, X., Mete, M., Yuruk, N.: Mining concept associations for knowledge discovery in large textual databases. In: Proceedings of the 2005 ACM Symposium on Applied Computing SAC’05, 13–17 March 2005, Santa Fe, pp. 549–550. Association for Computing Machinery (2005)Google Scholar
  23. 23.
    Roongpiboonsopit, D., Karimi, H.A.: Quality assessment of online street and rooftop geocoding services. Cartogr. Geogr. Inf. Sci. 37(4), 301–318 (2010)CrossRefGoogle Scholar
  24. 24.
    Carley, K.M., Reminga, J., Storrick, J. Columbus, D.: ORA user’s guide 2010. Carnegie Mellon University, School of Computer Science, Institute for Software Research, Technical Report, CMU-ISR-10-120. Retrieved October 14, 2010 from http://www.casos.cs.cmu.edu/publications/papers/CMU-ISR-10-120.pdfTopic
  25. 25.
    Manning, C.D., Raghavan, P., Schütz, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Judith Gelernter
    • 1
  • Dong Cao
    • 1
  • Kathleen M. Carley
    • 1
  1. 1.School of Computer ScienceCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations