Advertisement

The Spanish “Indignados” Movement: Time Dynamics, Geographical Distribution, and Recruitment Mechanisms

  • Javier Borge-HolthoeferEmail author
  • Sandra González-Bailón
  • Alejandro Rivero
  • Yamir Moreno
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Online social networks have an enormous impact on opinions and cultural trends. Also, these platforms have been revealed as a fundamental organizing mechanism in country-wide social movements. Recent events in the Middle East and North Africa (the wave of protests in the Arab world), across Europe (in the form of anti-cuts demonstrations or riots) and in the United States have generated much discussion on how digital media is connected to the diffusion of protests. In this chapter, we investigate, from a complex network perspective, the mechanisms driving the emergence, development and stabilization of the “Indignados” movement in Spain, analyzing data from the period between April 25 and May 26, 2011. Using 70 keywords related to the movement, we analyze 581,749 Twitter messages coming from 87,569 users. The online trace of the 15M protests provides a unique opportunity to tackle central issues in the social network literature like recruitment patterns or information cascades. These findings shed light on the connection between online networks and social movements and offer an empirical test to elusive sociological questions about collective action.

Keywords

Collective Action Network Position Online Network Information Cascade Core User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

J.B-H is partially supported by the Spanish MICINN through project FIS200801240. S.G-B. is partially supported by the Spanish MICINN projects CSO2009-09890 and CSD2010-00034. Y. M. is supported by the Spanish MICINN through projects FIS2008-01240 and FIS2009-13364-C02-01 and by the Government of Aragon (DGA) through the grant No. PI038/08.

References

  1. Adamic L, Glance N (2005) The political blogosphere and the 2004 us election: divided they blog. In: Proceedings of the 3rd international workshop on link discovery. ACM, pp 36–43Google Scholar
  2. Albert R, Barabási A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97CrossRefzbMATHGoogle Scholar
  3. Albert R, Jeong A, Barabási A (2000) Error and attack tolerance of complex networks. Nature 406:378–382CrossRefGoogle Scholar
  4. Alvarez-Hamelin J, Dall Asta L, Barrat A, Vespignani A (2006) Large scale networks fingerprinting and visualization using the k-core decomposition. Adv Neural Inf Process Syst 18:41Google Scholar
  5. Alvarez-Hamelin J, Dall’Asta L, Barrat A, Vespignani A (2008) k-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Netw Heterogeneous Media 3(2):371–393CrossRefzbMATHMathSciNetGoogle Scholar
  6. Arenas A, Danon L, Díaz-Guilera A, Gleiser PM, Guimerà R (2004) Community analysis in social networks. Eur Phys J B 38:373–380CrossRefGoogle Scholar
  7. Bakshy E, Hofman J, Mason W, Watts D (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 65–74Google Scholar
  8. Barabási A (2005) The origin of bursts and heavy tails in human dynamics. Nature 435(7063):1251Google Scholar
  9. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509CrossRefMathSciNetGoogle Scholar
  10. Blondel V, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech P10008Google Scholar
  11. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308CrossRefMathSciNetGoogle Scholar
  12. Borge-Holthoefer J, Moreno Y (2012) Absence of influential spreaders in rumor dynamics. Phys Rev E 85:026116CrossRefGoogle Scholar
  13. Borge-Holthoefer J, Rivero A, García I, Cauhé E, Ferrer A, Ferrer D, Francos D, Íñiguez D, Pérez M, Ruiz G et al (2011) Structural and dynamical patterns on online social networks: the Spanish May 15th movement as a case study. PLoS One 6(8):e23883CrossRefGoogle Scholar
  14. Borge-Holthoefer J, Rivero A, Moreno Y (2012) Locating privileged spreaders on an online social network. Phys Rev E 85:066123CrossRefGoogle Scholar
  15. Cohen R, Erez K, ben Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85(21):4626–4628CrossRefGoogle Scholar
  16. Conover M, Ratkiewicz J, Francisco M, Gonçalves B, Flammini A, Menczer F (2011) Political polarization on twitter. In: Proceedings of the 5th international conference on weblogs and social mediaGoogle Scholar
  17. Dorogovtsev S, Goltsev A, Mendes J (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275–1335CrossRefGoogle Scholar
  18. Dunbar R (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 22(6):469–493CrossRefMathSciNetGoogle Scholar
  19. Dunbar R (1993) Coevolution of neocortical size, group size and language in humans. Behav Brain Sci 16(4):681–693CrossRefGoogle Scholar
  20. Edler D, Rosvall M. The map generator software package. http://www.mapequation.org
  21. Erdös P, Rényi A (1959) On random graphs. Publ Math (Debrecen) 6:290–297zbMATHMathSciNetGoogle Scholar
  22. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174CrossRefMathSciNetGoogle Scholar
  23. Freeman L (1977) A set of measures of centrality based upon betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  24. Gonçalves B, Perra N, Vespignani A (2011) Modeling users’ activity on twitter networks: validation of Dunbar’s number. PLoS One 6(8):e22656CrossRefGoogle Scholar
  25. Gonzalez-Bailón S, Borge-Holthoefer J, Rivero A, Moreno Y (2011) The dynamics of protest recruitment through an online network. Sci Rep 1:197Google Scholar
  26. Granovetter M (1973) The strength of weak ties. Am J Sociol 78:1360–1380CrossRefGoogle Scholar
  27. Kitsak M, Gallos L, Havlin S, Liljeros F, Muchnik L, Stanley H, Makse H (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRefGoogle Scholar
  28. Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on World Wide Web. ACM, pp 591–600Google Scholar
  29. Lozano S, Arenas A, Sánchez A (2008) Community connectivity and heterogeneity: clues and insights on cooperation on social networks. J Econ Interac Coord 3(2):183–199CrossRefGoogle Scholar
  30. Milgram S (1967) The small world problem. Psychol Today 2:60–67Google Scholar
  31. Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B 26(4):521–529Google Scholar
  32. Moreno Y, Nekovee M, Vespignani A (2004) Efficiency and reliability of epidemic data dissemination in complex networks. Phys Rev E 69(5):055101CrossRefGoogle Scholar
  33. Newman M (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701CrossRefGoogle Scholar
  34. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefzbMATHMathSciNetGoogle Scholar
  35. Onnela J, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási A (2007) Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci 104(18):7332CrossRefGoogle Scholar
  36. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200–3203CrossRefGoogle Scholar
  37. Pons P, Latapy M (2005) Computing communities in large networks using random walks. Lect Notes Comput Sci 3733:284CrossRefGoogle Scholar
  38. Rapoport A (1953) Spread of information through a population with socio-structural bias: I. Assumption of transitivity. Bull Math Biophys 15:523–533CrossRefMathSciNetGoogle Scholar
  39. Ratkiewicz J, Fortunato S, Flammini A, Menczer F, Vespignani A (2010) Characterizing and modeling the dynamics of online popularity. Phys Rev Lett 105(15):158701CrossRefGoogle Scholar
  40. Rosvall M, Bergstrom C (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118CrossRefGoogle Scholar
  41. Rybski D, Buldyrev S, Havlin S, Liljeros F, Makse H (2009) Scaling laws of human interaction activity. Proc Natl Acad Sci 106(31):12640–12645CrossRefGoogle Scholar
  42. Sun E, Rosenn I, Marlow C, Lento T (2009) Gesundheit! Modeling contagion through facebook news feed. In: Proceedings of the ICWSM 9Google Scholar
  43. Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32(4):425–443CrossRefGoogle Scholar
  44. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Javier Borge-Holthoefer
    • 1
    • 2
    Email author
  • Sandra González-Bailón
    • 3
  • Alejandro Rivero
    • 1
  • Yamir Moreno
    • 1
    • 4
  1. 1.Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
  2. 2.Qatar Computing Research InstituteDohaQatar
  3. 3.Annenberg School for CommunicationUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Theoretical Physics, Faculty of SciencesUniversidad de ZaragozaZaragozaSpain

Personalised recommendations