Skip to main content

Map-based approaches for periodic structures

  • Chapter
  • 2021 Accesses

Part of the book series: CISM Courses and Lectures ((CISM,volume 540))

Abstract

In this chapter the dynamic behavior of periodic structures is dealt with by means of maps. Continuous and discrete models of both linear and nonlinear mechanical systems are considered. The first part of the chapter is devoted to linear problems; general multi-coupled periodic systems are presented and they are dealt with by means of linear maps, namely the transfer matrices of single units. An exhaustive description of the free wave propagation patterns is given on the invariants’. space where propagation domains with qualitatively different character are identified. The problem of minimizing transmitted vibrations through finitely long periodic structures as well as computational issues arising in the wave vector approach are also addressed. The second part of the chapter concerns nonlinear periodic systems, the dynamic analysis of which hinges on nonlinear maps conceived according to two different approaches. At first, a perturbation method is applied to the transfer matrix of a chain of continuous nonlinear beams. Afterwards, nonlinear maps are derived from the governing difference equations of a chain of nonlinear oscillators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • G. Sen Gupta. Natural flexural waves and the normal modes of periodicallysupported beams and plates, J. of Sound and Vibration,13:89–101, 1970.

    Article  Google Scholar 

  • M.G. Faulkner and D.P. Hong. Free vibrations of mono-coupled periodic system, J. of Sound and Vibration, 99:29–42, 1985.

    Article  Google Scholar 

  • D.J. Mead. Wave propagation and natural modes in periodic systems: I mono-coupled systems, J. of Sound and Vibration, 40:1–18, 1975.

    Article  MATH  Google Scholar 

  • D.J. Mead. Wave propagation and natural modes in periodic systems: II bicoupled systems, with and without damping, J. of Sound and Vibration, 40:19–39, 1975.

    Article  MATH  Google Scholar 

  • J. Signorelli and A.H. von Flotow. Wave propagation, power flow, and resonance in a truss beam, J. of Sound and Vibration, 126:127–144, 1988.

    Article  Google Scholar 

  • Y. Yong and Y.K. Lin. Propagation of decaying waves in periodic and piecewise periodic structures of finite length, J. of Sound and Vibration, 129:99–118, 1989.

    Article  Google Scholar 

  • D.J. Mead. Free wave propagation in periodically supported infinite beams, J. of Sound and Vibration, 11:181–197, 1970.

    Article  Google Scholar 

  • D. Bouzit and C. Pierre. Wave localization and conversion phenomena in multi-coupled multi-span beams, Chaos, Solitons and Fractals, 11:1575–1596, 2000.

    Article  MATH  Google Scholar 

  • D.J. Mead. A new method of analyzing wave propagation in periodic structures; applications to periodic Timoshenko beams and stiffened plates, J. of Sound and Vibration, 104: 9–27, 1986.

    Article  MATH  Google Scholar 

  • A.S. Bansal. Free waves in periodically disordered systems: natural and bounding frequencies of unsymmetric systems and normal mode localization, J. of Sound and Vibration, 207:365–382, 1997.

    Article  Google Scholar 

  • G.H. Koo and Y.S. Park, Vibration reduction by using periodic supports in a piping system, J. of Sound and Vibration, 210:53–68, 1998.

    Article  Google Scholar 

  • J. Guckenheimer and P.J. Holmes. Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  • W.X. Zhong and F.W. Williams. Wave problems for repetitive structures and symplectic mathematics, Proc. Instn Mech. Engrs, Part C, 206:371–379, 1992.

    Google Scholar 

  • W.X. Zhong and F.W. Williams. Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix, Computers & Structures, 49:749–750, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  • E.C. Pestel and F.A. Leckie. Matrix Methods in Elastomechanics. New York: McGraw-Hill, 1963.

    Google Scholar 

  • R.S. Langley, N.S. Bardell, and P.M. Loasby. The optimal design of nearperiodic structures to minimize vibration transmission and stress levels. J. of Sound and Vibration, 207:627–646, 1997.

    Article  Google Scholar 

  • D. Richards and D.J. Pines. Passive reduction of gear mesh vibration using a periodic drive shaft. 42nd AIAA SDM Conference, Seattle WA, 2001.

    Google Scholar 

  • A. Baz. Active control of periodic structures. J. of Vibration and Acoustics, 123:472–479, 2001.

    Article  Google Scholar 

  • A.H. von Flotow. Disturbance propagation in structural networks. J. of Sound and Vibration, 106:433–450, 1986.

    Article  Google Scholar 

  • G.Q. Cai and Y.K. Lin. Wave propagation and scattering in structural networks. J. of Engrg. Mechanics, 117:1555–1574, 1991.

    Article  Google Scholar 

  • A. Luongo. Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dynamics, 25:133–156, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Yong and Y.K. Lin. Dynamic response analysis of truss-type structural networks: a wave propagation approach. J. of Sound and Vibration, 156:27–45, 1992.

    Article  MATH  Google Scholar 

  • W.J. Chen and C. Pierre. Exact linear dynamics of periodic and disordered truss beams: localization of normal modes and harmonic waves. Proc. of 32nd AIAA/ASME/ASCE/AHS/ASC Struct, Struct Dyn, and Mat Conf, Baltimore MD, April 1991.

    Google Scholar 

  • S.V. Sorokin and O.A. Ershova. Plane wave propagation and frequency band gaps in periodic plates and cylindrical shells with and without heavy fluid loading. Journal of Sound and Vibration, 278:501–526, 2004.

    Article  Google Scholar 

  • F. Romeo and A. Luongo. Invariant representation of propagation properties for bi-coupled periodic structures, J. of Sound and Vibration, 257:869–886, 2002.

    Article  Google Scholar 

  • F. Romeo and A. Luongo. Vibration reduction in piecewise bi-coupled periodic structures. J. of Sound and Vibration, 268:601–615, 2003.

    Article  Google Scholar 

  • A. Luongo and F. Romeo. Real wave vectors for dynamic analysis of periodic structures. J. of Sound and Vibration, 279:309–325, 2005.

    Article  Google Scholar 

  • F. Romeo and A. Luongo. Wave propagation in three-coupled periodic structures. J. of Sound and Vibration, 301:635–648, 2007.

    Article  Google Scholar 

  • A.F. Vakakis, M.E. King, Nonlinear wave transmission in a mono-coupled elastic periodic system, J. of Acoust. Soc. Am., 98:1534–1546, 1995.

    Article  Google Scholar 

  • M.A. Davies and F.C. Moon. Transition from soliton to chaotic motion following sudden excitation of a nonlinear structure, J. of Applied Mechanics, 63:445–449, 1996.

    Article  Google Scholar 

  • A. Luongo. A transfer matrix perturbation approach to the buckling analysis of nonlinear periodic structures, 10 th ASCE Conference, Boulder, Colorado, 505–508, 1995.

    Google Scholar 

  • A. Luongo and F. Romeo. A transfer-matrix perturbation approach to the dynamics of chains of nonlinear sliding beams, J. of Vibration and Acoustics, vol. 128, pp. 190–196, 2006.

    Article  Google Scholar 

  • A. Luongo, G. Rega, F. Vestroni. On nonlinear dynamics of planar shear indeformable beams, J. of Applied Mechanics, 53:619–624, 1986.

    Article  MATH  Google Scholar 

  • Y. Wan and C.M. Soukoulis. One-dimensional nonlinear Schrödinger equation: A nonlinear dynamical approach. Physical Review A, 41:800–809, 1990.

    Article  MathSciNet  Google Scholar 

  • D. Hennig and G.P. Tsironis. Wave transmission in nonlinear lattices, Physics Reports, 307:333–432, 1999.

    Article  MathSciNet  Google Scholar 

  • L.I. Manevitch. The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables, Nonlinear Dynamics, 25:95–109, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • L.I. Manevitch, O.V. Gendelman and A.V. Savin. Nonlinear normal modes and chaotic motions in oscillatory chains, IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics (Eds. G. Rega, F. Vestroni), Springer, 59–68, 2005.

    Google Scholar 

  • K.D. Umberger, C. Grebogi, E. Ott and B. Afeyan. Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators, Physical Review A, 39:4835–4842, 1989.

    Article  MathSciNet  Google Scholar 

  • L. Brillouin. Wave propagation in periodic structures, New York: Dover, 1953.

    MATH  Google Scholar 

  • G. Chakraborty, A.K. Mallik. Dynamics of a weakly non-linear periodic chain, Int. J. of Non-linear Mechanics, 36, 375–389, 2001.

    Article  MATH  Google Scholar 

  • J. Pouget. Non-linear lattice models: complex dynamics, pattern formation and aspects of chaos, Philosophical Magazine, 85:4067–4094, 2005.

    Article  Google Scholar 

  • F. Romeo, G. Rega. Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach, Chaos Solitons & Fractals, 27:606–617, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • F. Romeo and G. Rega. Propagation properties of bi-coupled nonlinear oscillatory chains: analytical prediction and numerical validation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:1983–1998, 2008.

    Article  MathSciNet  Google Scholar 

  • M.K. Sayadi, J. Pouget. Soliton dynamics in microstructured lattice model, J. Phys. A, 24:2151–2172, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Romeo, F. (2012). Map-based approaches for periodic structures. In: Romeo, F., Ruzzene, M. (eds) Wave Propagation in Linear and Nonlinear Periodic Media. CISM Courses and Lectures, vol 540. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1309-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1309-7_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1308-0

  • Online ISBN: 978-3-7091-1309-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics