Advertisement

Combined Methods in Nondeterministic Mechanics

  • Michael Oberguggenberger
Part of the CISM Courses and Lectures book series (CISM, volume 539)

Abstract

The goal of the lectures on Combined Methods is to discuss various (mathematical and conceptual) approaches that have been put forth as tools for modeling uncertainty in engineering, among them probability, interval arithmetic, random sets, fuzzy sets, sets of probability measures, and previsions. After recalling the definitions, we stress their interpretations (semantics), axioms, interrelations as well as numerical procedures and demonstrate how the concepts are applied in practice. As an accompanying example we use the dimensioning of an elastically bedded beam. Further applications of combined methods in aerospace engineering, to vibrations of belltowers, in queueing theory, and to tuned massed dampers will be sketched.

Keywords

Fuzzy Number Combine Method Triangular Fuzzy Number Limit State Function Imprecise Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    H. Adeli and B. Möller, editors, Special Issue: Fuzzy Modeling. Computer Aided Civil and Infrastructure Engineering 14(2), 1999.Google Scholar
  2. [2]
    D. A. Alvarez. On the calculation of the bounds of probability of events using infinite random sets. International Journal of Approximate Reasoning, 43:241–267, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D. A. Alvarez. Nonspecificity for infinite random sets of indexable type. Fuzzy Sets and Systems, 159:289–306, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    D. A. Alvarez. Reduction of uncertainty using sensitivity analysis methods for infinite random sets of indexable type. International Journal of Approximate Reasoning, 50:750–762, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley, New York, 1974.zbMATHGoogle Scholar
  6. [6]
    T. Augustin and R. Hable. On the impact of robust statistics on imprecise probability models: a review. Structural Safety, 32:358–365, 2010.CrossRefGoogle Scholar
  7. [7]
    G. Auvinet and J. L. González. Three-dimensional reliability analysis of earth slopes. Computers and Geotechnics 26:247–261, 2000.CrossRefGoogle Scholar
  8. [8]
    E. O. Ayorinide and G. B. Warburton. Minimizing structural vibrations with absorbers. Earthquake Engineering and Structural Dynamics 8:219–236, 1980.CrossRefGoogle Scholar
  9. [9]
    B. M. Ayyub, editor, Uncertainty Modelling and Analysis in Civil Engineering. CRC Press, Boca Raton, 1998.Google Scholar
  10. [10]
    G. W. Baecher and J. T. Christian. Reliability and Statistics in Geotechnical Engineering. John Wiley & Sons Ltd, Chichester, 2003.Google Scholar
  11. [11]
    H. Bandemer. Mathematics of Uncertainty. Ideas, methods, application problems. Studies in Fuzziness and Soft Computing, vol. 189. Springer-Verlag, Berlin, 2006.zbMATHGoogle Scholar
  12. [12]
    H. Bandemer and S. Gottwald. Einführung in Fuzzy-Methoden. 4. Auflage, Akademie Verlag, Berlin, 1993.zbMATHGoogle Scholar
  13. [13]
    H. Bandemer and W. Näther. Fuzzy Data Analysis. Kluwer Academic Publishers, Dordrecht, 1992.zbMATHCrossRefGoogle Scholar
  14. [14]
    A. Bárdoss and, L. Duckstein. Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems. CRC Press, Boca Raton, 1995.Google Scholar
  15. [15]
    T. Bedford and R. Cooke. Probabilistic Risk Analysis. Cambridge University Press, Cambridge, 2001.zbMATHGoogle Scholar
  16. [16]
    Y. Ben-Haim. Information-gap decision theory. Decisions under severe uncertainty. Series on Decision and Risk. Academic Press Inc., San Diego, CA, 2001.zbMATHGoogle Scholar
  17. [17]
    Y. Ben-Haim and I. Elishakoff. Convex models of uncertainty in applied mechanics. Studies in applied mechanics vol. 25, Elsevier, Amsterdam, 1990.zbMATHGoogle Scholar
  18. [18]
    A. Bernardini. Qualitative and quantitative measures in seismic damage assessment and forecasting of masonry buildings. In: A. Bernardini, editor, Seismic Damage to Masonry Buildings. A. A. Balkema, Rotterdam, 1999, pages 169–177.Google Scholar
  19. [19]
    A. Bernardini, S. Lagomarsino, A. Mannella, A. Martinelli, L. Milano, and S. Parodi. Forecasting seismic damage scenarios of residential buildings from rough inventories: a case-study in the Abruzzo Region (Italy). Journal of Risk and Reliability, 224(4):279–296, 2010.Google Scholar
  20. [20]
    A. Bernardini and F. Tonon. Bounding Uncertainty in Civil Engineering. Theoretical Background. Springer-Verlag, Berlin, 2010.CrossRefGoogle Scholar
  21. [21]
    C. Bertoluzza, M. Á. Gil and D. A. Ralescu, editors, Statistical Modeling, Analysis and Management of Fuzzy Data. Physica-Verlag, Heidelberg, 2002.zbMATHGoogle Scholar
  22. [22]
    D. Blockley and I. Ferraris. Managing the quality of a project. In Academia Nacional de Ingeniería, editor, Seguridad en Ingeniería. Editorial Dunken, Buenos Aires, 2000, pages 69–89.Google Scholar
  23. [23]
    V. V. Bolotin. Statistical Methods in Structural Mechanics. Holden-Day Inc., San Francisco, 1969.zbMATHGoogle Scholar
  24. [24]
    A. Bonarini and G. Bontempi. A qualitative simulation approach for fuzzy dynamical models. ACM Transactions on Modeling and Computer Simulation 4:285–313, 1994.zbMATHCrossRefGoogle Scholar
  25. [25]
    E. Bösinger. Serienuntersuchungen zum Vergleich verschiedenener Rahmenscherger äte. Institut für Bodenmechanik und Felsmechanik, Universit ät Karlsruhe, 1996.Google Scholar
  26. [26]
    C. Bucher. Computational Analysis of Randomness in Structural Mechanics, volume 3 of Structures and Infrastructures. CRC Press/Balkema, Leiden, 2009.CrossRefGoogle Scholar
  27. [27]
    J. J. Buckley. Solving fuzzy equations. Fuzzy Sets and Systems, 50:1–14, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    J. J. Buckley, E. Eslami, T. Feuring. Fuzzy Mathematics in Economics and Engineering. Physica-Verlag, Heidelberg, 2002.zbMATHCrossRefGoogle Scholar
  29. [29]
    G. Choquet. Theory of capacities. Annales de l’Institut Fourier 5:131–295, 1953/54.MathSciNetCrossRefGoogle Scholar
  30. [30]
    C. Christopoulos and A. Filitrault. Principles of Passive Supplemental Damping and Seismic Isolation. IUSS Press, Pavia, 2006.Google Scholar
  31. [31]
    G. de Cooman. On modeling possibilistic uncertainty in two-state reliability theory. Fuzzy Sets and Systems, 83(2):215–238, 1996.MathSciNetCrossRefGoogle Scholar
  32. [32]
    G. de Cooman, T. Fine, T. Seidenfeld, editors, ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001.Google Scholar
  33. [33]
    B. de Finetti. Teoria delle probabilità: sintesi introduttiva con appendice critica. Volumi primo e secondo. Nuova Biblioteca Scientifica Einaudi, 25* et 25**. Giulio Einaudi Editore, Torino, 1970. English translation: Theory of probability: a critical introductory treatment. Vol. 1 and Vol. 2. John Wiley & Sons, London, 1974/1975.Google Scholar
  34. [34]
    A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38:325–339, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    D. Denneberg. Non-additive Measure and Integral. Kluwer Acadademic Publishers, Dordrecht, 1994.zbMATHCrossRefGoogle Scholar
  36. [36]
    P. Diamond and P. Kloeden. Metric Spaces of Fuzzy Sets. World Scientific, Singapore, 1994.zbMATHCrossRefGoogle Scholar
  37. [37]
    R. Diedrich. Entscheidungen bei Ungewißheit. Physica-Verlag, Heidelberg, 1999.CrossRefGoogle Scholar
  38. [38]
    O. Ditlevsen, N. J. Tarp-Johansen and H. Denver. Bayesian soil assessments combining prior with posterior censored samples. Computers and Geotechnics 26:187–198, 2000.CrossRefGoogle Scholar
  39. [39]
    D. Dubois and H. Prade. Towards fuzzy differential calculus, part 3: differentiation. Fuzzy Sets and Systems 8:223–233, 1982.CrossRefGoogle Scholar
  40. [40]
    D. Dubois and H. Prade. Possibility theory. An approach to computerized processing of uncertainty. Plenum Press, New York, 1988.zbMATHCrossRefGoogle Scholar
  41. [41]
    D. Dubois, H. Prade and R. Sabbadin. Decision-theoretic foundations of qualitative possibility theory. European Jornal of Operational Res. 128:459–478, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    D. Dubois, H. Prade and S. Sandri. On possibility/probability transformations. In: R. Lowen, M. Roubens, editors, Fuzzy Logic: State of the Art. Kluwer Academic Publishers, Dordrecht, 1993, pages 103–112.CrossRefGoogle Scholar
  43. [43]
    H. H. Einstein. Quantifying uncertain engineering geologic information. Felsbau, 19(5):72–84, 2001.Google Scholar
  44. [44]
    F. Eisenführ and M. Weber. Rationales Entscheiden. 3. Auflage, Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
  45. [45]
    I. Elishakoff, editor, Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization, volume 388 of CISM Courses and Lectures. Springer-Verlag, Wien/New York, 1999.Google Scholar
  46. [46]
    I. Elishakoff. Are probabilistic and anti-optimization approaches compatible? In I. Elishakoff, editor, Whys and Hows in Uncertainty Modelling. Springer-Verlag, Wien/New York, 1999, pages 263–355.Google Scholar
  47. [47]
    I. Elishakoff and M. Ohsaki. Optimization and Anti-Optimization of Structures Under Uncertainty. Imperial College Press, London, 2010.zbMATHCrossRefGoogle Scholar
  48. [48]
    European Committee for Standardization. EN 1990:2002. Eurocode — Basis of Structural Design. CEN, Brussels, 2002.Google Scholar
  49. [49]
    W. Fellin, H. Lessmann, M. Oberguggenberger and R. Vieider. Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005.CrossRefGoogle Scholar
  50. [50]
    W. Fellin and A. Ostermann. Parameter sensitivity in finite element analysis with constitutive models of the rate type. International Journal for Numerical and Analytical Methods in Geomechanics 30:91–112, 2006.zbMATHCrossRefGoogle Scholar
  51. [51]
    S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing probability boxes and Dempster-Shafer structures. Technical Report SAND2002-4015, Sandia National Laboratories, 2003.Google Scholar
  52. [52]
    S. Ferson and W. T. Tucker. Sensitivity analysis using probability bounding. Reliability Engineering and System Safety, 91:1435–1442, 2006.CrossRefGoogle Scholar
  53. [53]
    T. Fetz. Sets of joint probability measures generated by weighted marginal focal sets. In: G. de Cooman, T. Fine, T. Seidenfeld, editors, ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001, pages 171–178.Google Scholar
  54. [54]
    T. Fetz. Multi-parameter models: rules and computational methods for combining uncertainties. In: W. Fellin, H. Lessmann, M. Oberguggenberger and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005, pages 73–99.CrossRefGoogle Scholar
  55. [55]
    T. Fetz. Modelling uncertainties in limit state functions. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA’11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theory and Applications. Studia Verlag, Innsbruck, 2011, pages 179–188.Google Scholar
  56. [56]
    T. Fetz. Multivariate Models and Variability Intervals: A Local Random Set Approach. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 19(5):799–823, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    T. Fetz. Modelling uncertainties in limit state functions. International Journal of Approximate Reasoning 53(1):1–23, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    T. Fetz, J. Jäger, D. Köll, G. Krenn, M. Oberguggenberger and H. Lessmann. Fuzzy models in geotechnical engineering and construction management. Computer-Aided Civil & Infrastructure Engineering, 14(2):93–106, 1999.CrossRefGoogle Scholar
  59. [59]
    T. Fetz and M. Oberguggenberger. Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering and System Safety, 85:73–87, 2004.CrossRefGoogle Scholar
  60. [60]
    T. Fetz and M. Oberguggenberger. Multivariate models of uncertainty: A local random set approach. Structural Safety, 32:417–424, 2010.CrossRefGoogle Scholar
  61. [61]
    T. Fetz, M. Oberguggenberger and S. Pittschmann. Applications of possibility and evidence theory in civil engineereing. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8:295–309, 2000.MathSciNetzbMATHGoogle Scholar
  62. [62]
    T. Fetz and F. Tonon. Probability bounds for series systems with variables constrained by sets of probability measures. International Journal of Reliability and Safety, 2:309–339, 2008.CrossRefGoogle Scholar
  63. [63]
    T. L. Fine. Theories of Probability. An Examination of Foundations. Academic Press, New York, 1973.zbMATHGoogle Scholar
  64. [64]
    A. N. Freudenthal. Safety and the probability of structural failure. Transactions ASCE, 121:1337–1397, 1956.Google Scholar
  65. [65]
    M. Fuchs. Clouds, p-boxes, fuzzy sets, and other uncertainty representations in higher dimensions. Acta Cybernetica, 19:61–92, 2009.MathSciNetzbMATHGoogle Scholar
  66. [66]
    A. B. Gelman, J. S. Carlin, H. S. Stern and D. B. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton, 1997.Google Scholar
  67. [67]
    R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach. Springer-Verlag, New York, 1991.zbMATHCrossRefGoogle Scholar
  68. [68]
    I. I. Gikhman and A. V. Skorokhod. Stochastische Differentialgleichungen. Akademie-Verlag, Berlin, 1971.zbMATHGoogle Scholar
  69. [69]
    I. R. Goodman and H. T. Nguyen. Fuzziness and randomness. In C. Bertoluzza, M. Á. Gil, and D. A. Ralescu, editors, Statistical Modeling Analysis and Management of Fuzzy Data. Physica-Verlag, Heidelberg, 2002, pages 3–21.CrossRefGoogle Scholar
  70. [70]
    J. Goutsias, R. P. S. Mahler and H. T. Nguyen, editors, Random Sets. Theory and Applications. Springer-Verlag, New York, 1997.zbMATHGoogle Scholar
  71. [71]
    K. Haldar and R. K. Reddy. A random-fuzzy analysis of existing structures. Fuzzy Sets and Systems, 48:201–210, 1992.CrossRefGoogle Scholar
  72. [72]
    J. Hall. Uncertainty-based sensitivity indices for imprecise probability distributions. Reliability Engineering & System Safety, 91:1443–1451, 2006.CrossRefGoogle Scholar
  73. [73]
    J. Hall, D. I. Blockley, and J. P. Davis. Uncertain inference using interval probability theory. International Journal of Approximate Reasoning, 19:247–264, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    J. Hall and J. Lawry. Imprecise probabilities of engineering system failure from random and fuzzy set reliability analysis. In G. de Cooman, T. L. Fine, and T. Seidenfeld, editors, ISIPTA’01: Proceedings of the Second International Symposium on Imprecise Probability: Theories and Applications. Shaker Publishing BV, Maastricht, 2001, pages 195–204.Google Scholar
  75. [75]
    J. Hall, E. Rubio, and M. Anderson. Random sets of probability measures in slope hydrology and stability analysis. Journal of Applied Mathematics and Mechanics, 84(10–11):710–720, 2004.zbMATHGoogle Scholar
  76. [76]
    P. R. Halmos. Measure Theory. Van Nostrand, New York, 1950.zbMATHGoogle Scholar
  77. [77]
    J. Hanisch and W. Struck. Charakteristischer Wert einer Boden-oder Materialeigenschaft aus Stichprobenergebnissen und zusätzlicher Information. Bautechnik 10:338–348, 1985.Google Scholar
  78. [78]
    M. Hanss. Applied Fuzzy Arithmetic. An Introduction with Engineering Applications. Springer-Verlag, Berlin, 2005.zbMATHGoogle Scholar
  79. [79]
    J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty and sensitivity analysis. Technical Report SAND99-2240, Sandia National Laboratories, Albuquerque, 2000.CrossRefGoogle Scholar
  80. [80]
    J. C. Helton and F. J. Davis. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Technical Report SAND2001-0417, Sandia National Laboratories, Albuquerque, 2002.CrossRefGoogle Scholar
  81. [81]
    J. C. Helton, J. D. Johnson, W. L. Oberkampf, and C. J. Sallaberry. Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering and System Safety, 91:1414–1434, 2006.CrossRefGoogle Scholar
  82. [82]
    J. C. Helton, J. D. Johnson, C. J. Sallaberry, and C. B. Storlie. Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering & System Safety, 91:1175–1209, 2006.CrossRefGoogle Scholar
  83. [83]
    R. Heuer and C. Adam. Passive control of structural elements considering nonlinear response. In: R. Flesch, H. Irschik and M. Krommer, editors, Proceedings of the Third European Conference on Structural Control (3ECSC), July 12–15, 2004, Vienna University of Technology. Schriftenreihe der TU-Wien, Wien, 2005, pages 191–194.Google Scholar
  84. [84]
    P. J. Huber. Robust Statistics. John Wiley & Sons, New York, 1981.zbMATHCrossRefGoogle Scholar
  85. [85]
    R. L. Iman and W. J. Conover. The use of the rank transformation in regression. Technometrics, 21:499–509, 1979.CrossRefGoogle Scholar
  86. [86]
    R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics Simulation and Computation, 11:311–334, 1982.zbMATHCrossRefGoogle Scholar
  87. [87]
    R. L. Iman, M. J. Shortencarier and J. D. Johnson. A FORTRAN 77 program and user’s guide for the calculation of partial correlation and standardized regression coefficients. Technical Report SAND85-0044, Sandia National Laboratories, Albuquerque, 1985.Google Scholar
  88. [88]
    J.-Y. Jaffray. Linear utility theory for belief functions. Operations Research Letters 8:107–112, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    E. J. Jung and J. H. Kim. On set-valued stochastic integrals. Stochastic Analysis and Applications. 21:401–418, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    O. Kaleva. Fuzzy differential equations. Fuzzy Sets and Systems 24:301–307, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    O. Kaleva. The Cauchy problem for fuzzy differential equations. Fuzzy Sets and Systems 35:389–396, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    A. Kandel. Fuzzy Mathematical Techniques with Applications. Addison-Wesley, Reading, 1986.zbMATHGoogle Scholar
  93. [93]
    I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, New York, 2005.Google Scholar
  94. [94]
    L. Kleinrock. Queueing Systems, vol. I: Theory. John Wiley, New York, 1975.zbMATHGoogle Scholar
  95. [95]
    O. Klingmüller and U. Bourgund. Sicherheit und Risiko im Konstruktiven Ingenieurbau. Verlag Vieweg, Braunschweig, 1992.CrossRefGoogle Scholar
  96. [96]
    G. Klir and M. Wierman. Uncertainty-Based Information: Elements of Generalized Information Theory. Physica-Verlag, Heidelberg, 1998.zbMATHGoogle Scholar
  97. [97]
    P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin, 1992.zbMATHCrossRefGoogle Scholar
  98. [98]
    A. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin, 1933.CrossRefGoogle Scholar
  99. [99]
    V. Kreinovich. Random sets unify, explain, and aid known uncertainty methods in expert systems. In: J. Goutsias, R. P. S. Mahler and H. T. Nguyen, editors, Random Sets. Theory and Applications. Springer-Verlag, New York, 1997, pages 321–345.Google Scholar
  100. [100]
    E. Kriegler, H. Held. Global mean temperature projections for the 21st century using random sets. In: J.-M. Bernard, T. Seidenfeld and M. Zaffalon, editors, ISIPTA’03. Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications. Proceedings in Informatics 18, Carleton Scientific, Kitchener, Ontario, 2003, pages 345–360.Google Scholar
  101. [101]
    W. Kruskal. Relative importance by averaging over orderings. The American Statistician 41:6–10, 1987.zbMATHGoogle Scholar
  102. [102]
    G. Kühn. Der maschinelle Erdbau. Teubner-Verlag, Stuttgart, 1984.CrossRefGoogle Scholar
  103. [103]
    R. Langley. Unified approach to probabilistic and possibilistic analysis of uncertain systems. Journal of Engineering Mechanics 126(11):1163–1172, 2000.CrossRefGoogle Scholar
  104. [104]
    H. Lehar, G. Niederwanger, and G. Hofstetter. FE ultimate load analysis of pile-supported pipelines — tackling uncertainty in a real design problem. In W. Fellin, H. Lessmann, M. Oberguggenberger, and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005, pages 129–163.CrossRefGoogle Scholar
  105. [105]
    H. Lessmann, J. Mühlögger and M. Oberguggenberger. Netzplantechnik mit unscharfen Methoden. Bauingenieur 69:469–478, 1994.Google Scholar
  106. [106]
    H. Lessmann and R. Vieider. The implications of geotechnical model uncertainty for construction management. In: W. Fellin, H. Lessmann, M. Oberguggenberger and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005, pages 165–182.CrossRefGoogle Scholar
  107. [107]
    J. Li and S. Li. Itô type set-valued stochastic differential equations. Journal of Uncertain Systems 3:52–63, 2009.Google Scholar
  108. [108]
    R.-J. Li and E. S. Lee. Analysis of fuzzy queues. Computers & Mathematics with Applications 17:1143–1147, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    S. Li and A. Ren. Representation theorems, set-valued and fuzzy setvalued Itô integral. Fuzzy Sets and Systems 158:949–962, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  110. [110]
    B. S. L. P. de Lima and N. F. F. Ebecken. A comparison of models for uncertainty analysis by the finite element method. Finite Elements in Analysis and Design 34:211–232, 2000.zbMATHCrossRefGoogle Scholar
  111. [111]
    M. Loève. Probability Theory, vol. II. 4th edition, Springer-Verlag, New York, 1978.Google Scholar
  112. [112]
    H. F. Martz and R. A. Waller. Bayesian Reliability Analysis. John Wiley & Sons Ltd., Chichester, 1982.zbMATHGoogle Scholar
  113. [113]
    M. A. Meyer and J. M. Booker. Eliciting and Analyzing Expert Judgement. Society for Industrial and Applied Mathematics, Philadelphia PA, 2001.zbMATHCrossRefGoogle Scholar
  114. [114]
    M. P. Mignolet and C. Soize. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 197(45–48):3951–3963, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  115. [115]
    E. Miranda, I. Couso and P. Gil. Extreme points of credal sets generated by 2-alternating capacities. International Journal of Approximate Reasoning 33:95–115, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  116. [116]
    M. Modarres. Risk Analysis in Engineering. Techniques, Tools, and Trends. Taylor & Francis, Boca Raton, 2006.Google Scholar
  117. [117]
    D. Moens and D. Vandepitte. A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 194:1527–1555, 2005.zbMATHCrossRefGoogle Scholar
  118. [118]
    I. Molchanov. Theory of Random Sets. Springer-Verlag, Berlin, 2005.zbMATHGoogle Scholar
  119. [119]
    B. Möller. Fuzzy-Modellierung in der Baustatik. Bauingenieur, 72(5):75–84, 1997.Google Scholar
  120. [120]
    B. Möller and M. Beer. Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Springer-Verlag, Berlin, 2004.zbMATHCrossRefGoogle Scholar
  121. [121]
    B. Möller, M. Beer, W. Graf, and A. Hoffmann. Possibility theory based safety assessment. Computer-Aided Civil & Infrastructure Engineering, 14(2):81–91, 1999.CrossRefGoogle Scholar
  122. [122]
    P.-A. Monney. A Mathematical Theory for Statistical Evidence. Physica-Verlag, Heidelberg, 2003.zbMATHCrossRefGoogle Scholar
  123. [123]
    D. C. Montgomery, E. A. Peck and G. G. Vining: Introduction to Linear Regression Analysis. 3rd edition, John Wiley & Sons, New York, 2001.zbMATHGoogle Scholar
  124. [124]
    R. L. Muhanna and R. L. Mullen. Formulation of fuzzy finite-element methods for solid mechanics problems. Computer-Aided Civil & Infrastructure Engineering, 14(2):107–117, 1999.CrossRefGoogle Scholar
  125. [125]
    R. L. Muhanna, H. Zhang and R. L. Mullen. Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliable Computing, 13(2):173–194, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  126. [126]
    R. Nau. Extensions of the Subjective Expected Utility Model. In: W. Edwards, R. Miles Jr. and D. von Winterfeldt, editors, Advances in Decision Analysis: From Foundations to Applications, Cambridge University Press, Cambridge, 2007, pages 253–278.CrossRefGoogle Scholar
  127. [127]
    R. B. Nelsen. An introduction to copulas. 2nd edition. Springer Series in Statistics. Springer, New York, 2006.zbMATHGoogle Scholar
  128. [128]
    A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  129. [129]
    A. Neumaier. Fuzzy modeling in terms of surprise. Fuzzy Sets and Systems 135:21–38, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  130. [130]
    A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing, 10:249–272, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  131. [131]
    H. T. Nguyen, T. Wang. Belief functions and random sets. In: J. Goutsias, R. P. S. Mahler, H. T. Nguyen, editors, Random Sets. Theory and Applications. Springer-Verlag, New York, 1997, pages 243–255.Google Scholar
  132. [132]
    H. T. Nguyen. An Introduction to Random Sets. Chapman & Hall, Boca Raton, 2006.zbMATHCrossRefGoogle Scholar
  133. [133]
    G. Niederwanger. Über die Horizontalkraft schwingender Glocken mit horizontal verschiebbarem Auflager. Projektbericht, Universität Innsbruck, Innsbruck, 1991.Google Scholar
  134. [134]
    E. Nikolaidis, D. M. Ghiocel and S. Singhal, editors, Engineering Design Reliability Handbook, CRC Press, Boca Raton, 2005.zbMATHGoogle Scholar
  135. [135]
    M. Oberguggenberger. Fuzzy data in geotechnical models. In: D. Kolymbas, editor, Advanced Mathematical and Computational Geomechanics. Springer, Berlin, 2003, pages 301–315.CrossRefGoogle Scholar
  136. [136]
    M. Oberguggenberger. Fuzzy and weak solutions to differential equations. Proceedings of the Tenth International Conference IPMU 2004, Perugia. Editrice Università La Sapienza, Rome, 2004, pages 517–524.Google Scholar
  137. [137]
    M. Oberguggenberger. The mathematics of uncertainty: models, methods and interpretations. In: W. Fellin, H. Lessmann, M. Oberguggenberger and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005, pages 51–72.CrossRefGoogle Scholar
  138. [138]
    M. Oberguggenberger. Queueing models with fuzzy data in construction management. In: W. Fellin, H. Lessmann, M. Oberguggenberger and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005, pages 197–210.CrossRefGoogle Scholar
  139. [140]
    M. Oberguggenberger and W. Fellin. From probability to fuzzy sets: the struggle for meaning in geotechnical risk assessment. In R. Pöttler, H. Klapperich, and H. F. Schweiger, editors, Probabilistics in Geotechnics: Technical and Economic Risk Estimation, pages 29–38. Verlag Glückauf, Essen, 2002.Google Scholar
  140. [141]
    M. Oberguggenberger and W. Fellin. Assessing the sensitivity of failure probabilities: a random set approach. In: G. Augusti, G. I. Schuëller and M. Ciampoli, editors, Safety and Reliability of Engineering Systems and Structures, ICOSSAR 2005 — Rome. Millpress, Rotterdam, 2005, pages 1755–1760.Google Scholar
  141. [142]
    M. Oberguggenberger and W. Fellin. The fuzziness of failure probabilities. In W. Fellin, H. Lessmann, M. Oberguggenberger, and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering, pages 33–49. Springer-Verlag, Berlin, 2005.CrossRefGoogle Scholar
  142. [143]
    M. Oberguggenberger and W. Fellin. Reliability bounds through random sets: nonparametric methods and geotechnical applications. Computers & Structures, 86:1093–1101, 2008.CrossRefGoogle Scholar
  143. [144]
    M. Oberguggenberger, J. King and B. Schmelzer. Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. International Journal of Approximate Reasoning, 50(4):680–693, 2009.CrossRefGoogle Scholar
  144. [145]
    M. Oberguggenberger and S. Pittschmann. Differential equations with fuzzy parameters. Mathematical and Computer Modelling of Dynamical Systems, 5:181–202, 1999.zbMATHCrossRefGoogle Scholar
  145. [146]
    M. Oberguggenberger and F. Russo. Fuzzy, probabilistic and stochastic modelling of an elastically bedded beam. In: G. de Cooman, T. Fine and T. Seidenfeld, editors, ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001, pages 293–300.Google Scholar
  146. [147]
    M. Oberguggenberger, G. I. Schuëller and K. Marti, editors, Special Issue: Fuzzy Sets, Imprecise Probability and Stochastics in Engineering. Journal of Applied Mathematics and Mechanics 84 (10–11), 2004.Google Scholar
  147. [148]
    W. L. Oberkampf and J. C. Helton. Investigation of Evidence Theory for engineering applications. Technical Report AIAA 2001-1569, American Institute of Aeronautics and Astronautics, Reston VA, 2002.Google Scholar
  148. [149]
    W. L. Oberkampf, J. C. Helton and K. Sentz. Mathematical Representation of Uncertainty. Technical Report AIAA 2001-1645, American Institute of Aeronautics and Astronautics, Reston VA, Non-Deterministic Approaches Forum, Seattle WA, 2001.Google Scholar
  149. [150]
    A. O’Hagan. Eliciting expert beliefs in substantial practical applications. The Statistician 47:21–35, 1998.Google Scholar
  150. [151]
    öNORM B4435-2. Erd-und Grundbau, Flächengründungen, EUROCODE-nahe Berechnung der Tragfähigkeit. Österreichisches Normungsinstitut, Wien, 1999.Google Scholar
  151. [152]
    A. Ostermann. Sensitivity analysis. In: W. Fellin, H. Lessmann, M. Oberguggenberger and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin, 2005, pages 101–114.CrossRefGoogle Scholar
  152. [153]
    K. N. Otto, A. D. Lewis, and E. K. Antonsson. Membership induced on manifolds by vector fields and flows. Fuzzy Sets and Systems 70:15–29, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  153. [154]
    K. Ovaere, G. Deschrijver and E. E. Kerre. Application of fuzzy decision making to the fuzzy finite element method. Fuzzy Information and Engineering, 11:27–36, 2009.CrossRefGoogle Scholar
  154. [155]
    R. Palm and D. Driankov. Fuzzy inputs. Fuzzy Sets and Systems 70:315–335, 1995.MathSciNetCrossRefGoogle Scholar
  155. [156]
    G. M. Peschl. Reliability Analyses in Geotechnics with the Random Set Finite Element Method, volume 25 of Mitteilungshefte Gruppe Geotechnik Graz. Technische Universität Graz, 2005.Google Scholar
  156. [157]
    K. Popper. The propensity interpretation of probability. British Journal for the Philosophy of Science 10:25–42, 1959.CrossRefGoogle Scholar
  157. [158]
    K. Popper. Logik der Forschung. 10. Auflage, J. C. B. Mohr (Paul Siebeck), Tübingen, 1994.Google Scholar
  158. [159]
    F. Pukelsheim. The Three Sigma Rule. The American Statistician 48:88–91, 1994.MathSciNetGoogle Scholar
  159. [160]
    M. L. Puri and D. Ralescu. Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications 91:552–558, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  160. [161]
    R. Rackwitz. Reviewing probabilistic soils modelling. Computers and Geotechnics, 26:199–223, 2000.CrossRefGoogle Scholar
  161. [162]
    T. J. Ross. Fuzzy Logic with engineering applications. 2nd edition. Wiley India, New Delhi, 2008.Google Scholar
  162. [163]
    T. J. Ross, J. M. Booker. and W. J. Parkinson, editors, Fuzzy Logic and Probability Applications. Bridging the Gap, Philadelphia, PA/Alexandria, VA, 2002. Society for Industrial and Applied Mathematics/ Americal Statistical Association.Google Scholar
  163. [164]
    E. Rubio, J. Hall and M. G. Anderson. Uncertainty analysis in a slope hydrology and stability model using probabilistic and imprecise information. Computers and Geotechnics, 31:529–536, 2004.CrossRefGoogle Scholar
  164. [165]
    A. Saltelli and I. M. Sobol. About the use of rank transformation in sensitivity analysis of model output. Reliability Engineering & System Safety, 50:225–239, 1995.CrossRefGoogle Scholar
  165. [166]
    A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola. Global sensitivity analysis. The Primer. John Wiley & Sons Ltd., Chichester, 2008.zbMATHGoogle Scholar
  166. [167]
    L. J. Savage. The Foundations of Statistics. Wiley, New York, 1954.zbMATHGoogle Scholar
  167. [168]
    C. A. Schenk and G. I. Schuëller. Uncertainty Assessment of large Finite Element Systems, volume 24 of Lecture Notes in Applied and Computational Mechanics. Springer, Berlin, 2005.zbMATHGoogle Scholar
  168. [169]
    B. Schmelzer. On solutions of stochastic differential equations with parameters modelled by random sets. In: T. Augustin, F. P. A. Coolen, S. Moral and M. C. M. Troffaes, editors, ISIPTA’09, Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications. SIPTA, Durham, 2009, pages 367–376.Google Scholar
  169. [170]
    B. Schmelzer. On solutions to stochastic differential equations with parameters modeled by random sets. International Journal of Approximate Reasoning, 51:1159–1171, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  170. [170]
    B. Schmelzer. On solutions to stochastic differential equations with parameters modeled by random sets. International Journal of Approximate imate Reasoning, 51:1159–1171, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  171. [171]
    B. Schmelzer, M. Oberguggenberger and C. Adam. Efficiency of tuned mass dampers with uncertain parameters on the performance of structures under stochastic excitation. Journal of Risk and Reliability, 224(4):297–308, 2010.Google Scholar
  172. [172]
    H. R. Schneider. Definition and determination of characteristic soil properties. In: Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, ICSMFE 14, Hamburg 1997. A.A. Balkema, Rotterdam, 1999, Vol. 4, pages 2271–2274.Google Scholar
  173. [173]
    G. I. Schuëller. On the treatment of uncertainties in structural mechanics and analysis. Computers & Structures, 85:235–243, 2007.CrossRefGoogle Scholar
  174. [174]
    G. I. Schuëller and H. J. Pradlwarter. Uncertainty analysis of complex structural systems. International Journal for Numerical Methods in Engineering, 80(6–7):881–913, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  175. [175]
    G. I. Schuëller, H. J. Pradlwarter and P. S. Koutsourelakis. A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics, 19:463–474, 2004.CrossRefGoogle Scholar
  176. [176]
    H. F. Schweiger and G. M. Peschl. Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32:422–435, 2005.CrossRefGoogle Scholar
  177. [177]
    H. F. Schweiger, G. M. Peschl, and R. Pöttler. Application of the random set finite element method for analysing tunnel excavation. Georisk, 1:43–56, 2007.Google Scholar
  178. [178]
    S. Seikkala. On the fuzzy initial value problem. Fuzzy Sets and Systems 24:319–330, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  179. [179]
    R. Seising, editor, Fuzzy Theorie und Stochastik. Vieweg, Braunschweig, 1999.Google Scholar
  180. [180]
    G. L. S. Shackle. Decision — order and time in human affairs. Cambridge University Press, Cambridge, 1969.Google Scholar
  181. [181]
    G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton NJ, 1976.zbMATHGoogle Scholar
  182. [182]
    J. Shao and D.-S. Tu. The Jackknife and Bootstrap. Springer Verlag, New York, 1995.zbMATHCrossRefGoogle Scholar
  183. [183]
    I. M. Sobol. Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling & Computational Experiment, 1:407–414, 1993.MathSciNetzbMATHGoogle Scholar
  184. [184]
    C. Soize. A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics. Journal of Sound and Vibration, 288(3):623–652, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  185. [185]
    C. Soize. Random matrix theory for modeling uncertainties in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 194(12–16):1333–1366, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  186. [186]
    T. T. Soong. Active Structural Control: The Theory and Practice. Longman Scientific and Technical Series, New York, 1990.Google Scholar
  187. [187]
    I. Takewakia and Y. Ben-Haim. Info-gap robust design with load and model uncertainties. Journal of Sound and Vibration 288:551–570, 2005.CrossRefGoogle Scholar
  188. [188]
    F. Tonon. On the use of random set theory to bracket the results of Monte Carlo simulations. Reliable Computing 10:107–137, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  189. [189]
    F. Tonon. Using random set theory to propagate epistemic uncertainty through a mechanical system. Reliability Engineering and System Safety, 85:169–181, 2004.CrossRefGoogle Scholar
  190. [190]
    F. Tonon, A. Bernardini and I. Elishakoff. Hybrid Analysis of uncertainty: probability, fuzziness and anti-optimization Chaos, Solitons and Fractals 12:1403–1414, 2001.zbMATHCrossRefGoogle Scholar
  191. [191]
    F. Tonon, A. Bernardini, and A. Mammino. Determination of parameters range in rock engineering by means of random set theory. Reliability Engineering and System Safety, 70:241–261, 2000.CrossRefGoogle Scholar
  192. [192]
    F. Tonon, A. Bernardini, and A. Mammino. Reliability analysis of rock mass response by means of random set theory. Reliability Engineering and System Safety, 70:263–282, 2000.CrossRefGoogle Scholar
  193. [193]
    F. Tonon and C. L. Pettit. Toward a definition and understanding of correlation for variables constrained by random relations. In G. Augusti, G. I. Schuëller, and M. Ciampoli, editors, Safety and Reliability of Engineering Systems and Structures, ICOSSAR 2005 — Rome. Millpress, Rotterdam, 2005, pages 1741–1745.Google Scholar
  194. [194]
    L. V. Utkin. An uncertainty model of structural reliability with imprecise parameters of probability distributions. Journal of Applied Mathematics and Mechanics 84(10–11):688–699, 2004.MathSciNetzbMATHGoogle Scholar
  195. [195]
    L. V. Utkin and F. P. A. Coolen. Imprecise reliability: an introductory overview. In G. Levitin, editor, Computational Intelligence in Reliability Engineering, Volume 2: New Metaheuristics, Neural and Fuzzy Techniques in Reliability, Springer-Verlag, Berlin, 2007, pages 261–306.Google Scholar
  196. [196]
    L. V. Utkin and I. O. Kozine. Computing the reliability of complex systems. In G. de Cooman, T. L. Fine, and T. Seidenfeld, editors, ISIPTA’01: Proceedings of the Second International Symposium on Imprecise Probability: Theories and Applications. Shaker Publishing BV, Maastricht, 2001, pages 324–331.Google Scholar
  197. [197]
    L. V. Utkin and I. O. Kozine. Stress-strength reliability models under incomplete information. International Journal of General Systems, 31(6):549–568, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  198. [198]
    R. Viertl. Einführung in die Stochastik. Mit Elementen der Bayes-Statistik und der Analyse unscharfer Information. 3. Auflage, Springer-Verlag, Wien, 2003.Google Scholar
  199. [199]
    P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London, 1991.zbMATHGoogle Scholar
  200. [200]
    P. Walley. Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning 24:125–148, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  201. [201]
    Z. Wang and G. J. Klir. Fuzzy Measure Theory. Plenum Press, New York, 1992.zbMATHCrossRefGoogle Scholar
  202. [202]
    Z. Wang and G. J. Klir. Generalized Measure Theory. IFSR International Series on Systems Science and Engineering, vol. 25. Springer, New York, 2009.Google Scholar
  203. [203]
    K. Weichselberger. Elementare Grundbegriffe einer allgemeinen Wahrscheinlichkeitsrechnung I. Physica-Verlag, Heidelberg, 2001.CrossRefGoogle Scholar
  204. [204]
    O. Wolkenhauer. Data Engineering. Fuzzy Mathematics in Systems Theory and Data Analysis. John Wiley & Sons, New York, 2001.Google Scholar
  205. [205]
    L. A. Zadeh. Fuzzy sets. Information and Control 8:338–353, 1965.MathSciNetzbMATHCrossRefGoogle Scholar
  206. [206]
    L. A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning, Part 1 — 3. Information Sci. 8:199–250, 8:301-357; 9:43-80, 1975.MathSciNetzbMATHCrossRefGoogle Scholar
  207. [207]
    L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1:3–28, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  208. [208]
    H. Zhang, R. L. Mullen and R. L. Muhanna. Finite element structural analysis using imprecise probabilities based on p-box representation. In M. Beer, R. L. Muhanna and R. L. Mullen, editors, 4th International Workshop on Reliable Engineering Computing (REC 2010). Robust Design-Coping with Hazards, Risk and Uncertainty. Research Publishing Services, Singapore, 2010, pages 211–225.Google Scholar
  209. [209]
    H.-J. Zimmermann. Fuzzy Sets, Decision Making, and Expert Systems. Kluwer Academic Publishers, Boston, 1987.CrossRefGoogle Scholar
  210. [210]
    H.-J. Zimmermann. Fuzzy Set Theory — and Its Applications. 2nd edition, Kluwer Academic Publishers, Boston, 1991.zbMATHCrossRefGoogle Scholar

Copyright information

© CISM, Udine 2012

Authors and Affiliations

  • Michael Oberguggenberger
    • 1
  1. 1.Institute of Basic Sciences in Civil EngineeringUniversity of InnsbruckInnsbruckAustria

Personalised recommendations