Advertisement

Endosymbiosis pp 233-290 | Cite as

Tertiary Plastid Endosymbioses in Dinoflagellates

  • Przemysław Gagat
  • Andrzej Bodył
  • Paweł MackiewiczEmail author
  • John W. Stiller
Chapter

Abstract

Dinoflagellates are a peculiar group of protists with a surprising and varied history of plastid acquisition. They employ a variety of trophic strategies including photoautotrophy, heterotrophy, and mixotrophy, with multiple modes of food ingestion identified. This collection of features apparently preadapted dinoflagellates for acquisition of a bewildering array of photosynthetic bodies ranging from “stolen” plastids (or kleptoplastids) through permanent endosymbionts to true plastids, acquired in various primary, secondary, and tertiary endosymbioses. In this chapter, we focus on tertiary plastid endosymbioses (that is, uptake of an alga with a complex, secondary plastid), and especially on three that show distinct levels of host–endosymbiont integration. These endosymbiotic consortia are represented by (1) cryptophyte-derived kleptoplastids in Dinophysis species, (2) diatom endosymbionts in genera known as “dinotoms” (e.g., Kryptoperidinium and Durinskia), and (3) haptophyte-derived plastids in Karenia, Karlodinium, and Takayama. We discuss details of the structures, evolutionary origins, and processes involved in these varied endosymbioses, including feeding mechanisms, endosymbiotic gene transfer, and how nucleus-encoded proteins are targeted to each of these photosynthetic entities. Available data support previous predictions that all these photosynthetic bodies evolved via replacements of the peridinin plastid found in most photosynthetic dinoflagellates.

Keywords

Plastid Genome Transit Peptide Envelope Membrane Plastid Protein Intergenic Transcribe Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Dr. P.J. Hansen for helpful comments. We also would like to thank Prof. W. Löffelhardt for inviting us to write this chapter and for his patience during its preparation. This work was supported by grant UMO-2011/01/N/NZ8/00150 to P. Gagat and P. Mackiewicz and Wrocław University grant 1069/S/KBEE/2012 to A. Bodył.

References

  1. Adolf JE, Stoecker DK, Harding LW (2006) The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). J Plankton Res 28:737–751Google Scholar
  2. Agrawal S, Striepen B (2010) More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 161:672–687PubMedGoogle Scholar
  3. Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88PubMedGoogle Scholar
  4. Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155:65–78PubMedGoogle Scholar
  5. Bachvaroff TR, Puerta MVS, Delwiche CF (2005) Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22:1772–1782PubMedGoogle Scholar
  6. Bachvaroff TR, Sanchez-Puerta MV, Delwiche CF (2006) Rate variation as a function of gene origin in plastid-derived genes of peridinin-containing dinoflagellates. J Mol Evol 62:42–52PubMedGoogle Scholar
  7. Bachvaroff TR, Adolf JE, Squier AH, Harvey HR, Place AR (2008) Characterization and quantification of karlotoxins by liquid chromatography-mass spectrometry. Harmful Algae 7:473–484Google Scholar
  8. Bachvaroff TR, Handy SM, Place AR, Delwiche CF (2011) Alveolate phylogeny inferred using concatenated ribosomal proteins. J Eukaryot Microbiol 58:223–233PubMedGoogle Scholar
  9. Baker AC (2003) Flexibility and specifity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689Google Scholar
  10. Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández-Tejedor M (2006) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193Google Scholar
  11. Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299:861PubMedGoogle Scholar
  12. Bernhard JM, Buck KR, Barry JP (2001) Monterey Bay cold-seep biota: assemblages, abundance, and ultrastructure of living foraminifera. Deep-Sea Res I Oceanogr Res Pap 48:2233–2249Google Scholar
  13. Bjørnland T, Haxo FT, Liaaen-Jensen S (2003) Carotenoids of the Florida red tide dinoflagellate: Karenia brevis. Biochem Syst Ecol 31:1147–1162Google Scholar
  14. Bodył A (1999) How have apicomplexan plastids evolved? A hypothesis. In: From symbiosis to eukaryotism. Proceedings of the international congress on endocytobiology, symbiosis and biomedicine, endocytobiology VII, 5–9 Apr 1998, Freiburg im Breisgau. University of Freiburg, University of Geneva, pp 327–340Google Scholar
  15. Bodył A, Moszczyński K (2006) Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur J Phycol 41:435–448Google Scholar
  16. Bodył A, Stiller JW, Mackiewicz P (2009a) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121PubMedGoogle Scholar
  17. Bodył A, Mackiewicz P, Stiller JW (2009b) Early steps in plastid evolution: current ideas and controversies. Bioessays 31:1219–1232PubMedGoogle Scholar
  18. Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14:156–178Google Scholar
  19. Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856PubMedGoogle Scholar
  20. Cavalier-Smith T (1993a) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994PubMedGoogle Scholar
  21. Cavalier-Smith T (1993b) The origin, losses and gains of chloroplasts. In: Lewin RA (ed) Origins of plastids: symbiogenesis, prochlorophytes, and the orgins of chloroplasts. Chapman and Hall, New York, pp 291–349Google Scholar
  22. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366PubMedGoogle Scholar
  23. Cavalier-Smith T (2006) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci 273:1943–1952PubMedGoogle Scholar
  24. Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Eukaryot Microbiol 32:376–379Google Scholar
  25. Chesnick JM, Cox ER (1989) Fertilization and zygote development in the binucleate dinoflagellate Peridinium balticum (Pyrrhophyta). Am J Bot 76:1060–1072Google Scholar
  26. Chesnick JM, Morden CW, Schmieg AM (1996) Identity of the endosymbiont of Peridinium foliaceum (Pyrrhophyta): analysis of the rbcLS operon. J Phycol 32:850–857Google Scholar
  27. Chesnick JM, Kooistra WHCF, Wellbrock U, Medlin LK (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol 44:314–320PubMedGoogle Scholar
  28. Correira MJ, Lee JJ (2002a) How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis 32:27–37Google Scholar
  29. Correira MJ, Lee JJ (2002b) Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis 32:15–26Google Scholar
  30. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65PubMedGoogle Scholar
  31. Dang Y, Green BR (2009) Long transcripts from dinoflagellate chloroplast minicircles suggest ‘rolling circle’ transcription. J Biol Chem 285:5196–5203PubMedGoogle Scholar
  32. Danne JC, Gornik SG, Waller RF (2012) An assessment of vertical inheritance versus endosymbiont transfer of nucleus-encoded genes for mitochondrial proteins following tertiary endosymbiosis in Karlodinium micrum. Protist 163:76–90PubMedGoogle Scholar
  33. Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317Google Scholar
  34. de Salas MF, Bolch CJS, Botes L, Nash G, Wright SW, Hallegraeff GM (2003) Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J Phycol 39:1233–1246Google Scholar
  35. Delwiche CF (2007) The origin and evolution of dinoflagellates. In: Falkowski PGK, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier Academic, Beijing, pp 191–205Google Scholar
  36. Dodge JD (1983) Dinoflagellates: investigation and phylogenetic speculation. Br Phycol J 18:335–356Google Scholar
  37. Dodge JD (1984) The functional and phylogenetic significance of dinoflagellate eyespots. Biosystems 16:259–267Google Scholar
  38. Dodge JD, Crawford RM (1969) Observations on the fine structure of the eyespot and associated organelles in the dinoflagellate Glenodinium foliaceum. J Cell Sci 5:479–493PubMedGoogle Scholar
  39. Dorrell RG, Howe CJ (2012) Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. Proc Natl Acad Sci USA 109:18879–18884PubMedGoogle Scholar
  40. Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5:2079–2091PubMedGoogle Scholar
  41. Eriksen NT, Hayes KC, Lewitus AJ (2002) Growth responses of the mixotrophic dinoflagellates, Cryptoperidiniopsis sp. and Pfiesteria piscicida, to light under prey-saturated conditions. Harmful Algae 1:191–203Google Scholar
  42. Escalera L, Reguera B, Takishita K, Yoshimatsu S, Koike K, Koike K (2011) Cyanobacterial endosymbionts in the benthic dinoflagellate Sinophysis canaliculata (Dinophysiales, Dinophyceae). Protist 162:304–314PubMedGoogle Scholar
  43. Eschbach S, Speth V, Hansmann P, Sitte P (1990) Freeze-fracture study of the single membrane between host cell and endocytobiont in the dinoflagellates Glenodinium foliaceum and Peridinium balticum. J Phycol 26:324–328Google Scholar
  44. Espelund M, Minge MA, Gabrielsen TM, Nederbragt AJ, Shalchian-Tabrizi K, Otis C, Turmel M, Lemieux C, Jakobsen KS (2012) Genome fragmentation is not confined to the peridinin plastid in dinoflagellates. PLoS One 7:e38809PubMedGoogle Scholar
  45. Esteban GF, Fenchel T, Finlay BJ (2010) Mixotrophy in ciliates. Protist 161:621–641PubMedGoogle Scholar
  46. Farmer MA, Roberts KR (1990) Organelle loss in the endosymbiont of Gymnodinium acidotum (Dinophyceae). Protoplasma 153:178–185Google Scholar
  47. Farnelid H, Tarangkoon W, Hansen G, Hansen P, Riemann L (2010) Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Microb Ecol 61:105–117Google Scholar
  48. Fehling J, Stoecker D, Baldauf S (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, New York, pp 76–107Google Scholar
  49. Fensome R, Taylor F, Norris G, Sarjeant W, Warton D, Williams G (1993) A classification of living and fossil dinoflagellates. In: Micropaleontology, Special Publication no. 7. American Museum of Natural History, New York, pp 1–351Google Scholar
  50. Fields SD, Rhodes RG (1991) Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). J Phycol 27:525–529Google Scholar
  51. Figueroa RI, Bravo I, Fraga S, Garcés E, Llaveria G (2009) The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei. Protist 160:285–300PubMedGoogle Scholar
  52. Foster RA, Carpenter EJ, Bergman B (2006a) Unicellular cyanobionts in open ocean dinoflagellates, radiolarians, and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase. J Phycol 42:453–463Google Scholar
  53. Foster RA, Collier JL, Carpenter EJ (2006b) Reverse transcription PCR amplification of cyanobacterial symbiont 16S rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells. J Phycol 42:243–250Google Scholar
  54. Gabrielsen TM, Minge MA, Espelund M, Tooming-Klunderud A, Patil V, Nederbragt AJ, Otis C, Turmel M, Shalchian-Tabrizi K, Lemieux C, Jakobsen KS (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:e19132PubMedGoogle Scholar
  55. Gaines G, Taylor FJR (1985) Form and function of the dinoflagellate transverse flagellum. J Protozool 32:290–296Google Scholar
  56. Garate-Lizarraga I, Muneton-Gomez MD (2008) Bloom of Peridinium quinquecorne Abe, in La Ensenada de La Paz, Gulf of California (July 2003). Acta Bot Mex 83:33–47Google Scholar
  57. Garcia-Cuetos L, Moestrup Ø, Hansen PJ, Daugbjerg N (2010) The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae 9:25–38Google Scholar
  58. Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45PubMedGoogle Scholar
  59. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9571PubMedGoogle Scholar
  60. Gómez F (2012a) A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Syst Biodivers 10:267–275Google Scholar
  61. Gómez F (2012b) A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata). CICIMAR Oceánides 27:65–140Google Scholar
  62. Gómez F, López-García P, Nowaczyk A, Moreira D (2009) The crustacean parasites Ellobiopsis Caullery, 1910 and Thalassomyces Niezabitowski, 1913 form a monophyletic divergent clade within the Alveolata. Syst Parasitol 74:65–74PubMedGoogle Scholar
  63. Gómez F, López-García P, Moreira D (2011) Molecular phylogeny of Dinophysoid dinoflagellates: the systematic position of Oxyphysis oxytoxoides and the Dinophysis hastata group (Dinophysales, Dinophyceae). J Phycol 47:393–406Google Scholar
  64. Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422PubMedGoogle Scholar
  65. Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44PubMedGoogle Scholar
  66. Green BJ, Fox TC, Rumpho ME (2005) Stability of isolated algal chloroplasts that participate in a unique mollusc/kleptoplast association. Symbiosis 40:31–40Google Scholar
  67. Groisillier A, Massana R, Valentin KU, Vaulot D, Guillou L (2006) Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquat Microb Ecol 42:277–291Google Scholar
  68. Grosche C, Hempel F, Bolte K, Abram L, Maier UG, Zauner S (2013) Protein import into complex plastids: current findings and perspectives. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 215–232Google Scholar
  69. Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530PubMedGoogle Scholar
  70. Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580Google Scholar
  71. Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365PubMedGoogle Scholar
  72. Gustafson DE, Stoecker DK, Johnson MD, Van Heukelem WF, Sneider K (2000) Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049–1052PubMedGoogle Scholar
  73. Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448Google Scholar
  74. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004a) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534PubMedGoogle Scholar
  75. Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004b) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14:213–218PubMedGoogle Scholar
  76. Hallegraeff GM, Lucas IAN (1988) The marine dinoflagellate genus Dinophysis (Dinophyceae): photosynthetic, neritic and non-photosynthetic, oceanic species. Phycologia 27:25–42Google Scholar
  77. Hansen PJ (2011) The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J Eukaryot Microbiol 58:203–214PubMedGoogle Scholar
  78. Hansen PJ, Calado AJ (1999) Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J Eukaryot Microbiol 46:382–389Google Scholar
  79. Hansen G, Daugbjerg N, Henriksen P (2000a) Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (=Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. J Phycol 36:394–410Google Scholar
  80. Hansen G, Moestrup Ø, Roberts KR (2000b) Light and electron microscopical observations on the type species of Gymnodinium, G. fuscum (Dinophyceae). Phycologia 39:365–376Google Scholar
  81. Hansen PJ, Miranda L, Azanza R (2004) Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Mar Ecol Prog Ser 275:79–87Google Scholar
  82. Häuber M, Müller S, Speth V, Maier U (1994) How to evolve a complex plastid? – A hypothesis. Bot Acta 107:383–386Google Scholar
  83. Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Mol Microbiol 76:793–801PubMedGoogle Scholar
  84. Hewes CD, Mitchell BG, Moisan TA, Vernet M, Reid FMH (1998) The phycobilin signatures of chloroplasts from three dinoflagellate species: a microanalytical study of Dinophysis caudata, D. fortii, and D. acuminata (Dinophysiales, Dinophyceae). J Phycol 34:945–951Google Scholar
  85. Hirakawa Y, Gile GH, Ota S, Keeling PJ, Ishida K-I (2010) Characterization of periplastidal compartment-targeting signals in chlorarachniophytes. Mol Biol Evol 27:1538–1545PubMedGoogle Scholar
  86. Hirakawa Y, Burki F, Keeling PJ (2011) Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga. Mol Microbiol 80:1439–1449PubMedGoogle Scholar
  87. Hoppenrath M, Leander BS (2010) Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. PLoS One 5:e13220PubMedGoogle Scholar
  88. Horiguchi T (2004) Origin and evolution of dinoflagellates with a diatom endosymbiont. In: Proceedings of international symposium on “dawn of a new natural history – integration of geoscience and biodiversity studies”, neo-science of natural history: integration of geoscience and biodiversity studies, 5–6 Mar 2004, Sapporo. Hokkaido University, Hokkaido, pp 53–59Google Scholar
  89. Horiguchi T (2006) Algae and their chloroplasts with particular reference to the dinoflagellates. Paleontol Res 10:299–309Google Scholar
  90. Horiguchi T, Pienaar RN (1992) Amphidinium latum Lebour (Dinophyceae), a sand-dwelling dinoflagellate feeding on cryptomonads. Jpn J Phycol 40:353–363Google Scholar
  91. Horiguchi T, Pienaar RN (1994a) Ultrastructure of a new marine sand-dwelling dinoflagellate, Gymnodinium quadrilobatum sp. nov. (Dinophyceae) with special reference to its endosymbiotic alga. Eur J Phycol 29:237–245Google Scholar
  92. Horiguchi T, Pienaar RN (1994b) Ultrastructure and ontogeny of a new type of eyespot in dinoflagellates. Protoplasma 179:142–150Google Scholar
  93. Horiguchi T, Takano Y (2006) Serial replacement of a diatom endosymbiont in the marine dinoflagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). Phycol Res 54:193–200Google Scholar
  94. Howe CJ, Nisbet RE, Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:1035–1045PubMedGoogle Scholar
  95. Imanian B, Keeling PJ (2007) The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evol Biol 7:172PubMedGoogle Scholar
  96. Imanian B, Pombert JF, Keeling PJ (2010) The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One 5:e10711PubMedGoogle Scholar
  97. Imanian B, Pombert JF, Dorrell RG, Burki F, Keeling PJ (2012) Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLoS One 7:e43763PubMedGoogle Scholar
  98. Inaba T, Schnell DJ (2008) Protein trafficking to plastids: one theme, many variations. Biochem J 413:15–28PubMedGoogle Scholar
  99. Inagaki Y, Roger AJ (2006) Phylogenetic estimation under codon models can be biased by codon usage heterogeneity. Mol Phylogenet Evol 40:428–434PubMedGoogle Scholar
  100. Inagaki Y, Dacks JB, Doolittle WF, Watanabe KI, Ohama T (2000) Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis. Int J Syst Evol Microbiol 50:2075–2081PubMedGoogle Scholar
  101. Inagaki Y, Simpson AG, Dacks JB, Roger AJ (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593PubMedGoogle Scholar
  102. Ishida K, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99:9294–9299PubMedGoogle Scholar
  103. Jacobson DM, Andersen RA (1994) The discovery of mixotrophy in photosynthetic species of Dinophysis (Dinophyceae): light and electron microscopical observations of food vacuoles in Dinophysis acuminata, D. norvegica and two heterotrophic dinophysoid dinoflagellates. Phycologia 33:97–110Google Scholar
  104. Jakobsen H, Hansen P, Larsen J (2000) Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar Ecol Prog Ser 201:121–128Google Scholar
  105. Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954PubMedGoogle Scholar
  106. Janson S (2004) Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia. Environ Microbiol 6:1102–1106PubMedGoogle Scholar
  107. Janson S, Granéli E (2003) Genetic analysis of the psbA gene from single cells indicates a cryptomonad origin of the plastid in Dinophysis (Dinophyceae). Phycologia 42:473–477Google Scholar
  108. Jeffrey SW, Vesk M (1976) Further evidence for a membrane-bound endosymbiont within the dinoflagellate Peridinium foliaceum. J Phycol 12:450–455Google Scholar
  109. Jensen MH, Daugbjerg N (2009) Molecular phylogeny of selected species of the order Dinophysiales (Dinophyceae) – testing the hypothesis of a dinophysioid radiation. J Phycol 45:1136–1152Google Scholar
  110. Jeong HJ, Du Yoo Y, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91Google Scholar
  111. Johnson MD (2011a) The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth Res 107:117–132PubMedGoogle Scholar
  112. Johnson MD (2011b) Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations. J Eukaryot Microbiol 58:185–195PubMedGoogle Scholar
  113. Johnson PW, Donaghay PL, Small EB, Sieburth JM (1995) Ultrastructure and ecology of Perispira ovum (Ciliophora: Litostomatea): an aerobic, planktonic ciliate that sequesters the chloroplasts, mitochondria, and paramylon of Euglena proxima in a micro-oxic habitat. J Eukaryot Microbiol 42:323–335Google Scholar
  114. Johnson MD, Tengs T, Oldach D, Stoecker DK (2006) Sequestration, performance, and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J Phycol 42:1235–1246Google Scholar
  115. Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428PubMedGoogle Scholar
  116. Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8PubMedGoogle Scholar
  117. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748PubMedGoogle Scholar
  118. Kempton JW, Wolny J, Tengs T, Rizzo P, Morris R, Tunnell J, Scott P, Steidinger K, Hymel SN, Lewitus AJ (2002) Kryptoperidinium foliaceum blooms in South Carolina: a multi-analytical approach to identification. Harmful Algae 1:383–392Google Scholar
  119. Kim E, Archibald J (2010) Plastid evolution: gene transfer and the maintenance of ‘stolen’ organelles. BMC Biol 8:73PubMedGoogle Scholar
  120. Kim M, Nam SW, Shin W, Coats DW, Park MG (2012) Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J Phycol 48:569–579Google Scholar
  121. Kite GC, Dodge JD (1985) Structural organization of plastid DNA in two anomalously pigmented dinoflagellates. J Phycol 21:50–56Google Scholar
  122. Kite G, Dodge J (1988) Cell and chloroplast ultrastructure in Gyrodinium aureolum and Gymnodinium galatheanum. Two marine dinoflagellates containing an unusual carotenoid. Sarsia 73:131–138Google Scholar
  123. Kite GC, Rothschild LJ, Dodge JD (1988) Nuclear and plastid DNAs from the binucleate dinoflagellates Glenodinium (Peridinium) foliaceum and Peridinium balticum. Biosystems 21:151–163PubMedGoogle Scholar
  124. Koike K, Takishita K (2008) Anucleated cryptophyte vestiges in the gonyaulacalean dinoflagellates Amylax buxus and Amylax triacantha (Dinophyceae). Phycol Res 56:301–311Google Scholar
  125. Koike K, Koike K, Takagi M, Ogata T, Ishimaru T (2000) Evidence of phagotrophy in Dinophysis fortii (Dinophysiales, Dinophyceae), a dinoflagellate that causes diarrhetic shellfish poisoning (DSP). Phycol Res 48:121–124Google Scholar
  126. Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M, Koike K, Ogata T (2005) A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist 156:225–237PubMedGoogle Scholar
  127. Kreimer G (1999) Reflective properties of different eyespot types in dinoflagellates. Protist 150:311–323PubMedGoogle Scholar
  128. Kwok AC, Wong JT (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691PubMedGoogle Scholar
  129. Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913PubMedGoogle Scholar
  130. Larsen J (1988) An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27:366–377Google Scholar
  131. Laval-Peuto M, Febvre M (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichina). Biosystems 19:137–158PubMedGoogle Scholar
  132. Leander BS, Keeling PJ (2003) Morphostasis in alveolate evolution. Trends Ecol Evol 18:395–402Google Scholar
  133. Lee JJ, Correia M (2005) Endosymbiotic diatoms from previously unsampled habitats. Symbiosis 38:251–260Google Scholar
  134. Lee JJ, Erez J, McEnery ME, Lagziel A, Xenophontos X (1986) Experiments on persistence of endosymbiotic diatoms in the larger foraminifer: Amphistegina lessonii. Symbiosis 1:211–226Google Scholar
  135. Lewitus AJ, Glasgow HB, Burkholder JM (1999) Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J Phycol 35:303–312Google Scholar
  136. Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162:551–569PubMedGoogle Scholar
  137. Lin S, Zhang H, Spencer D, Norman J, Gray M (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739PubMedGoogle Scholar
  138. Lin S, Zhang H, Gray MW (2008) RNA editing in dinoflagellates and its implications for the evolutionary history of the editing machinery. In: Smith H (ed) RNA and DNA editing: molecular mechanisms and their integration into biological systems. Wiley, Hoboken, NJ, pp 280–309Google Scholar
  139. Linares M, Carter D, Gould SB (2013) Chromera et al: Novel photosynthetic alveolates and apicomplexan relatives. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 183–196Google Scholar
  140. Lobban C, Schefter M, Simpson A, Pochon X, Pawlowski J, Foissner W (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 141:207–208Google Scholar
  141. Lobban C, Modeo L, Verni F, Rosati G (2005) Euplotes uncinatus (Ciliophora, Hypotrichia), a new species with zooxanthellae. Mar Biol 147:1055–1061Google Scholar
  142. Lowe CD, Keeling PJ, Martin LE, Slamovits CH, Watts PC, Montagnes DJ (2011) Who is Oxyrrhis marina? Morphological and phylogenetic studies on an unusual dinoflagellate. J Plankton Res 33:555–567Google Scholar
  143. Löffelhardt W (2013) The single primary endosymbiotic event leading to the Archaeplastida. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 39–52Google Scholar
  144. Lucas IAN (1991) Symbionts of the tropical Dinophysiales (Dinophyceae). Ophelia 33:213–224Google Scholar
  145. Lucas IAN, Vesk M (1990) The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 26:345–357Google Scholar
  146. Marasigan AN, Sato S, Fukuyo Y, Kodama M (2001) Accumulation of a high level of diarrhetic shellfish toxins in the green mussel Perna viridis during a bloom of Dinophysis caudata and Dinophysis miles in Sapian Bay, Panay Island, the Philippines. Fish Sci 67:994–996Google Scholar
  147. McEwan ML, Keeling PJ (2004) HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum. J Eukaryot Microbiol 51:651–659PubMedGoogle Scholar
  148. McFadden GI (2011) The apicoplast. Protoplasma 248:641–650PubMedGoogle Scholar
  149. Meyer-Harms B, Pollehne F (1998) Alloxanthin in Dinophysis norvegica (Dinophysiales, Dinophyceae) from the baltic sea. J Phycol 34:280–285Google Scholar
  150. Minge MA, Shalchian-Tabrizi K, Torresen OK, Takishita K, Probert I, Inagaki Y, Klaveness D, Jakobsen KS (2010) A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 10:191PubMedGoogle Scholar
  151. Minnhagen S, Janson S (2006) Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiol Ecol 57:47–54PubMedGoogle Scholar
  152. Minnhagen S, Carvalho WF, Salomon PS, Janson S (2008) Chloroplast DNA content in Dinophysis (Dinophyceae) from different cell cycle stages is consistent with kleptoplasty. Environ Microbiol 10:2411–2417PubMedGoogle Scholar
  153. Moestrup Ø, Daugbjerg N (2007) On dinoflagellate phylogeny and classification. In: Brodie J, Lewis J (eds) Unraveling the algae: the past, present, and future of algal systematics. CRC, New York, pp 215–230Google Scholar
  154. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963PubMedGoogle Scholar
  155. Moreira D, López-Garcıa P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38PubMedGoogle Scholar
  156. Morris RL, Fuller CB, Rizzo PJ (1993) Nuclear basic proteins from the binucleate dinoflagellate Peridinium foliaceum (Pyrrophyta). J Phycol 29:342–347Google Scholar
  157. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 75–87Google Scholar
  158. Nagai S, Nitshitani G, Tomaru Y, Sakiyama S (2008) Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplast. J Phycol 44:909–922Google Scholar
  159. Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116:2867–2874PubMedGoogle Scholar
  160. Nielsen L, Krock B, Hansen P (2012) Effects of light and food availability on toxin production, growth and photosynthesis in Dinophysis acuminata. Mar Ecol Prog Ser 471:37–50Google Scholar
  161. Nishitani G, Miyamura K, Imai I (2003) Trying to cultivation of Dinophysis caudata (Dinophyceae) and the appearance of small cells. Plankton Biol Ecol 50:31–36Google Scholar
  162. Nishitani G, Nagai S, Sakiyama S, Kamiyama T (2008a) Successful cultivation of the toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton Benthos Res 3:78–85Google Scholar
  163. Nishitani G, Nagai S, Takano Y, Sakiyama S, Baba K, Kamiyama T (2008b) Growth characteristics and phylogenetic analysis of the marine dinoflagellate Dinophysis infundibulus (Dinophyceae). Aquat Microb Ecol 52:209–221Google Scholar
  164. Nishitani G, Nagai S, Baba K, Kiyokawa S, Kosaka Y, Miyamura K, Nishikawa T, Sakurada K, Shinada A, Kamiyama T (2010) High-level congruence of Myrionecta rubra prey and Dinophysis species plastid identities as revealed by genetic analyses of isolates from Japanese coastal waters. Appl Environ Microbiol 76:2791–2798PubMedGoogle Scholar
  165. Nishitani G, Nagai S, Hayakawa S, Kosaka Y, Sakurada K, Kamiyama T, Gojobori T (2012) Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Appl Environ Microbiol 78:813–821PubMedGoogle Scholar
  166. Nosenko T, Lidie KL, Van Dolah FM, Lindquist E, Cheng JF, Bhattacharya D (2006) Chimeric plastid proteome in the Florida “red tide” dinoflagellate Karenia brevis. Mol Biol Evol 23:2026–2038PubMedGoogle Scholar
  167. Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712PubMedGoogle Scholar
  168. Oakley BR, Taylor FJR (1978) Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia. Biosystems 10:361–369PubMedGoogle Scholar
  169. Orr RJS, Murray SA, Stüken A, Rhodes L, Jakobsen KS (2012) When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates. PLoS One 7:e50004PubMedGoogle Scholar
  170. Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439PubMedGoogle Scholar
  171. Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40PubMedGoogle Scholar
  172. Park MG, Kim S, Kim HS, Myung G, Kang YG, Yih W (2006) First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol 45:w101–106Google Scholar
  173. Park MG, Park JS, Kim M, Yih W (2008) Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J Phycol 44:1154–1163Google Scholar
  174. Park MG, Kim M, Kim S, Yih W (2010) Does Dinophysis caudata (Dinophyceae) have permanent plastids? J Phycol 46:236–242Google Scholar
  175. Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 29:1048–1058PubMedGoogle Scholar
  176. Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024PubMedGoogle Scholar
  177. Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357:1373–1382PubMedGoogle Scholar
  178. Pienaar RN, Sakai H, Horiguchi T (2007) Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa. J Plant Res 120:247–258PubMedGoogle Scholar
  179. Pozdnyakov I, Skarlato S (2012) Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108–115Google Scholar
  180. Qiu D, Huang L, Liu S, Lin S (2011) Nuclear, mitochondrial and plastid gene phylogenies of Dinophysis miles (Dinophyceae): evidence of variable types of chloroplasts. PLoS One 6:e29398PubMedGoogle Scholar
  181. Reguera B, Velo-Suárez L, Raine R, Park MG (2012) Harmful Dinophysis species: a review. Harmful Algae 14:87–106Google Scholar
  182. Reinbothe S, Quigley F, Springer A, Schemenewitz A, Reinbothe C (2004) The outer plastid envelope protein Oep16: role as precursor translocase in import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 101:2203–2208PubMedGoogle Scholar
  183. Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16PubMedGoogle Scholar
  184. Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D (2011) The making of a photosynthetic animal. J Exp Biol 214:303–311PubMedGoogle Scholar
  185. Saldarriaga JF, McEwan ML, Fast NM, Taylor FJ, Keeling PJ (2003) Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365PubMedGoogle Scholar
  186. Sampayo MAM (1993) Trying to cultivate Dinophysis spp. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier Science, New York, pp 807–810Google Scholar
  187. Sanchez Puerta MV, Bachvaroff TR, Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12:151–156PubMedGoogle Scholar
  188. Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007a) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117PubMedGoogle Scholar
  189. Sanchez-Puerta M, Bachvaroff TR, Delwiche CF (2007b) Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Biol Evol 44:885–897Google Scholar
  190. Schnepf E (1993) From prey via endosymbiont to plastid: comparative studies in dinoflagellates. In: Lewin R (ed) Origins of plastids. Chapman & Hall, London, pp 53–76Google Scholar
  191. Schnepf E (2004) Protoctists and microalgae: antagonistic and mutualistic associations and the symbiosis of plastids. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany, vol 65. Springer, Heidelberg, pp 3–51Google Scholar
  192. Schnepf E, Elbrächter M (1988) Cryptophycean-like double-membrane-bound chloroplast in the dinoflagellate, Dynophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Bot Acta 101:196–203Google Scholar
  193. Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny – a review. Grana 38:81–97Google Scholar
  194. Schnepf E, Winter S, Mollenhauer D (1989) Gymnodinium aeruginosum (Dinophyta): a blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Plant Syst Evol 164:75–91Google Scholar
  195. Schweikert M, Elbrächter M (2004) First ultrastructural investigations of the consortium between a phototrophic eukaryotic endocytobiont and Podolampas bipes (Dinophyceae). Phycologia 43:614–623Google Scholar
  196. Shalchian-Tabrizi K, Skanseng M, Ronquist F, Klaveness D, Bachvaroff TR, Delwiche CF, Botnen A, Tengs T, Jakobsen KS (2006) Heterotachy processes in rhodophyte-derived secondhand plastid genes: implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol 23:1504–1515PubMedGoogle Scholar
  197. Skovgaard A (1998) Role of chloroplast retention in a marine dinoflagellate. Aquat Microb Ecol 15:293–301Google Scholar
  198. Skovgaard A (2000) A phagotrophically derivable growth factor in the plastidic dinoflagellate Gyrodinium resplendens (Dinophyceae). J Phycol 36:1069–1078Google Scholar
  199. Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306PubMedGoogle Scholar
  200. Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118:1651–1661PubMedGoogle Scholar
  201. Sommer MS, Schleiff E (2013) Evolution of the protein translocon at the envelopes of chloroplasts. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 81–110Google Scholar
  202. Steidinger KA, Truby EW, Dawes CJ (1978) Ultrastructure of the red tide dinoflagellate Gymnodinium breve. I. General description. J Phycol 14:72–79Google Scholar
  203. Steidinger KA, Landsberg JH, Truby EW, Roberts BS (1998) First report of Gymnodinium pulchellum (Dinophyceae) in North America and associated fish kills in the Indian River, Florida. J Phycol 34:431–437Google Scholar
  204. Stiller W, Reel D, Johnson J (2002) The case for a single plastid origin revisited: convergent evolution in organellar gene content. J Phycol 38:34–34Google Scholar
  205. Stoebe B, Maier U-G (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130PubMedGoogle Scholar
  206. Stoecker DK (1999) Mixotrophy among dinoflagellates. J Eukaryot Microbiol 46:397–401Google Scholar
  207. Stoecker DK, Silver MW (1990) Replacement and aging of chloroplasts in Strombidium capitatum (Ciliophora: Oligotrichida). Mar Biol 107:491–502Google Scholar
  208. Stoecker DK, Silver MW, Michaels AE, Davis LH (1988) Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Mar Biol 99:415–423Google Scholar
  209. Stoecker DK, Johnson MD, de Vargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310Google Scholar
  210. Sulli C, Fang Z, Muchhal U, Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274:457–463PubMedGoogle Scholar
  211. Sweeney BM (1978) Ultrastructure of Noctiluca miliaris (Pyrrophyta) with green flagellate symbionts. J Phycol 14:116–120Google Scholar
  212. Takano Y, Hansen G, Fujita D, Horiguchi T (2008) Serial replacement of diatom endosymbionts in two freshwater dinoflagellates, Peridiniopsis spp. (Peridiniales, Dinophyceae). Phycologia 47:41–53Google Scholar
  213. Takishita K, Koike K, Maruyama T, Ogata T (2002) Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist 153:293–302PubMedGoogle Scholar
  214. Takishita K, Ishida K-I, Maruyama T (2004) Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist 155:447–458PubMedGoogle Scholar
  215. Tamura M, Shimada S, Horiguchi T (2005) Galeidiniium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. J Phycol 41:658–671Google Scholar
  216. Tanaka T, Fukuda Y, Yoshino T, Maeda Y, Muto M, Matsumoto M, Mayama S, Matsunaga T (2011) High-throughput pyrosequencing of the chloroplast genome of a highly neutral-lipid-producing marine pennate diatom, Fistulifera sp. strain JPCC DA0580. Photosynth Res 109:223–229PubMedGoogle Scholar
  217. Tanifuji G, Archibald JM (2013) Nucleomorph comparative genomics. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 197–214Google Scholar
  218. Tarangkoon W, Hansen G, Hansen PJ (2007) Dinoflagellate⁄cyanobacteria consortia in the tropical Indian Ocean and the north west Australian Sea. J Phycol 43:38Google Scholar
  219. Taylor FJR (1976) Dinoflagellates from the International Indian Ocean expedition. A report on material collected by the R.V. “Anton Bruun” 1963–1964. Bibliotheca Bot 132:1–234Google Scholar
  220. Taylor FJRM (2004) Illumination or confusion? Dinoflagellate molecular phylogenetic data viewed from a primarily morphological standpoint. Phycol Res 52:308–324Google Scholar
  221. Taylor FJR, Hoppenrath M, Saldarriaga JF (2007) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418Google Scholar
  222. Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19' hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729PubMedGoogle Scholar
  223. Tippit DH, Pickett-Heaps JD (1976) Apparent amitosis in the binucleate dinoflagellate Peridinium balticum. J Cell Sci 21:273–289PubMedGoogle Scholar
  224. Tomas RN, Cox ER (1973) Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure. J Phycol 9:304–323Google Scholar
  225. van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977PubMedGoogle Scholar
  226. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080PubMedGoogle Scholar
  227. Vesk M, Dibbayawan TP, Vesk PA (1996) Immunogold localization of phycoerythrin in chloroplasts of Dinophysis acuminata and D. fortii (Dinophysiales, Dinophyta). Phycologia 35:234–238Google Scholar
  228. Wägele H, Martin WF (2013) Endosymbioses in sacoglossan seaslugs: plastid-bearing animals that keep photosynthetic organelles without borrowing genes. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 291–324Google Scholar
  229. Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245PubMedGoogle Scholar
  230. Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6:349–371PubMedGoogle Scholar
  231. Wang Y, Morse D (2006) The plastid-encoded psbA gene in the dinoflagellate Gonyaulax is not encoded on a minicircle. Gene 371:206–210PubMedGoogle Scholar
  232. Wang Y, Joly S, Morse D (2008) Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes. J Mol Evol 66:175–184PubMedGoogle Scholar
  233. Watkins SM, Reich A, Fleming LE, Hammond R (2008) Neurotoxic shellfish poisoning. Mar Drugs 6:431–455PubMedGoogle Scholar
  234. Whitney SM, Shaw DC, Yellowlees D (1995) Evidence that some dinoflagellates contain a ribulose-1, 5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Proc Biol Sci 259:271–275PubMedGoogle Scholar
  235. Wilcox LW, Wedemayer GJ (1984) Gymnodinium acidotum Nygaard (Pyrrophyta), a dinoflagellate with an endosymbiotic cryptomonad. J Phycol 20:236–242Google Scholar
  236. Wilcox LW, Wedemayer GJ (1985) Dinoflagellate with blue-green chloroplasts derived from an endosymbiotic eukaryote. Science 227:192–194PubMedGoogle Scholar
  237. Wisecaver J, Hackett J (2010) Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics 11:366PubMedGoogle Scholar
  238. Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev Microbiol 65:369–387PubMedGoogle Scholar
  239. Withers NW, Cox ER, Tomas R, Haxo FT (1977) Pigments of the dinoflagellate Peridinium balticum and its photosynthetic endosymbiont. J Phycol 13:354–358Google Scholar
  240. Yamaguchi H, Nakayama T, Kai A, Inouye I (2011) Taxonomy and phylogeny of a new kleptoplastidal dinoflagellate, Gymnodinium myriopyrenoides sp. nov. (Gymnodiniales, Dinophyceae), and its cryptophyte symbiont. Protist 162:650–667PubMedGoogle Scholar
  241. Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729PubMedGoogle Scholar
  242. Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL, Bhattacharya D (2005) Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22:1299–1308PubMedGoogle Scholar
  243. Zapata M, Jeffrey S, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102Google Scholar
  244. Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier UG (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett 577:535–538PubMedGoogle Scholar
  245. Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40PubMedGoogle Scholar
  246. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007a) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623PubMedGoogle Scholar
  247. Zhang H, Bhattacharya D, Lin S (2007b) A three-gene dinoflagellate phylogeny suggests monophyly of prorocentrales and a basal position for Amphidinium and Heterocapsa. J Mol Evol 65:463–474PubMedGoogle Scholar
  248. Zhang H, Bhattacharya D, Maranda L, Lin S (2008) Mitochondrial cob and cox1 genes and editing of the corresponding mRNAs in Dinophysis acuminata from Narragansett Bay, with special reference to the phylogenetic position of the genus Dinophysis. Appl Environ Microbiol 74:1546–1554PubMedGoogle Scholar
  249. Zhang Q, Liu G, Hu Z (2011) Morphological differences and molecular phylogeny of freshwater blooming species, Peridiniopsis spp. (Dinophyceae) from China. Eur J Protistol 47:149–160PubMedGoogle Scholar
  250. Zhou C, Fernandez N, Chen H, You Y, Yan X (2011) Toxicological studies of Karlodinium micrum (Dinophyceae) isolated from East China Sea. Toxicon 57:9–18PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Przemysław Gagat
    • 1
  • Andrzej Bodył
    • 2
  • Paweł Mackiewicz
    • 1
    Email author
  • John W. Stiller
    • 3
  1. 1.Department of Genomics, Faculty of BiotechnologyUniversity of WrocławWrocławPoland
  2. 2.Laboratory of Evolutionary Protistology, Department of Evolutionary Biology and EcologyUniversity of WrocławWrocławPoland
  3. 3.Department of BiologyEast Carolina UniversityGreenvilleUSA

Personalised recommendations