Skip to main content

Spatial and Nonspatial Representations in the Lateral Entorhinal Cortex

Abstract

The hippocampus is thought to function as a “cognitive map,” which stores nonspatial information such as items and events in a spatial framework. In order to understand the computations involved in creating such conjunctive nonspatial + spatial representations, it is essential to understand the function of hippocampal inputs. Medial entorhinal cortex (MEC) is known to convey spatial information to the hippocampus. In this chapter, we discuss recent evidence showing that lateral entorhinal cortex (LEC) conveys both spatial and nonspatial information to the hippocampus, in the presence of objects. Perirhinal cortex (PRC), a major cortical input to LEC, encodes nonspatial, object-related information, but does not encode spatial information in the presence of objects. Thus, the landmark-derived spatial information arises de novo in LEC. The classical dual-pathway model, in which LEC encodes nonspatial information while MEC encodes spatial information, cannot account for LEC spatial representation in the presence of objects. We propose that the functional difference between LEC and MEC is better understood in terms of the different inputs they use to create their representations: LEC generates spatial as well as nonspatial representations by processing external sensory inputs in contrast to MEC, which generates spatial representations by processing internally based path integration information.

Keywords

  • Dentate Gyrus
  • Entorhinal Cortex
  • Spatial Selectivity
  • Medial Entorhinal Cortex
  • Lateral Entorhinal Cortex

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-1292-2_6
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-7091-1292-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7

References

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–444

    CAS  PubMed  Google Scholar 

  • Alonso A, Garcia-Austt E (1987a) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials. Exp Brain Res 67:493–501

    CAS  PubMed  Google Scholar 

  • Alonso A, Garcia-Austt E (1987b) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. II. Phase relations between unit discharges and theta field potentials. Exp Brain Res 67:502–509

    CAS  PubMed  Google Scholar 

  • Bannerman DM, Yee BK, Lemaire M, Wilbrecht L, Jarrard L, Iversen SD, Rawlins JN, Good MA (2001) The role of the entorhinal cortex in two forms of spatial learning and memory. Exp Brain Res 141(3):281–303

    CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    CAS  PubMed  Google Scholar 

  • Blair HT, Fanselow MS (2014) Fear and memory: a view of the hippocampus through the lens of the amygdala. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Bramham CR, Errington ML, Bliss TV (1988) Naloxone blocks the induction of long-term potentiation in the lateral but not in the medial perforant pathway in the anesthetized rat. Brain Res 449:352–356

    CAS  PubMed  Google Scholar 

  • Bramham CR, Milgram NW, Srebro B (1991a) Activation of AP5-sensitive NMDA receptors is not required to induce LTP of synaptic transmission in the lateral perforant path. Eur J Neurosci 3:1300–1308

    PubMed  Google Scholar 

  • Bramham CR, Milgram NW, Srebro B (1991b) Delta opioid receptor activation is required to induce LTP of synaptic transmission in the lateral perforant path in vivo. Brain Res 567:42–50

    CAS  PubMed  Google Scholar 

  • Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser MB (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18:1200–1212

    PubMed  Google Scholar 

  • Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17:801–812

    PubMed Central  PubMed  Google Scholar 

  • Burke SN, Maurer AP, Hartzell AL, Nematollahi S, Uprety A, Wallace JL, Barnes CA (2012) Representation of three-dimensional objects by the rat perirhinal cortex. Hippocampus 22:2032–2044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burwell RD (2000) The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci 911:25–42

    CAS  PubMed  Google Scholar 

  • Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    CAS  PubMed  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    CAS  PubMed  Google Scholar 

  • Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:381243. doi:10.1155/2008/381243

    PubMed Central  PubMed  Google Scholar 

  • Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274

    CAS  PubMed  Google Scholar 

  • Collett TS, Cartwright BA, Smith BA (1986) Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A 158:835–851

    CAS  PubMed  Google Scholar 

  • de Curtis M, Pare D (2004) The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog Neurobiol 74:101–110

    PubMed  Google Scholar 

  • Derdikman D, Moser EI (2014) Spatial maps in the entorhinal cortex and adjacent structures. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Deshmukh SS, Knierim JJ (2011) Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front Behav Neurosci 5:69. doi:10.3389/fnbeh.2011.00069

    PubMed Central  PubMed  Google Scholar 

  • Deshmukh SS, Knierim JJ (2012) Hippocampus. Wiley Interdiscip Rev Cogn Sci 3:231–251

    Google Scholar 

  • Deshmukh SS, Knierim JJ (2013) Influence of local objects on hippocampal representations: landmark vectors and memory. Hippocampus 23:253–267

    PubMed  Google Scholar 

  • Deshmukh SS, Yoganarasimha D, Voicu H, Knierim JJ (2010) Theta modulation in the medial and the lateral entorhinal cortices. J Neurophysiol 104:994–1006

    PubMed Central  PubMed  Google Scholar 

  • Deshmukh SS, Johnson JL, Knierim JJ (2012) Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: comparison with lateral entorhinal cortex. Hippocampus 22:2045–2058

    PubMed  Google Scholar 

  • Do VH, Martinez CO, Martinez JL, Derrick BE (2002) Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. J Neurophysiol 87:669–678

    PubMed  Google Scholar 

  • Dolorfo CL, Amaral DG (1998a) Entorhinal cortex of the rat: organization of intrinsic connections. J Comp Neurol 398:49–82

    CAS  PubMed  Google Scholar 

  • Dolorfo CL, Amaral DG (1998b) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398:25–48

    CAS  PubMed  Google Scholar 

  • Eichenbaum H, Fortin NJ (2005) Bridging the gap between brain and behavior: cognitive and neural mechanisms of episodic memory. J Exp Anal Behav 84:619–629

    PubMed Central  PubMed  Google Scholar 

  • Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox SE, Ranck JB (1981) Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 41:399–410

    CAS  PubMed  Google Scholar 

  • Frank LM, Brown EN, Wilson MA (2001) A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J Neurophysiol 86:2029–2040

    CAS  PubMed  Google Scholar 

  • Fredens K, Stengaard-Pedersen K, Larsson LI (1984) Localization of enkephalin and cholecystokinin immunoreactivities in the perforant path terminal fields of the rat hippocampal formation. Brain Res 304:255–263

    CAS  PubMed  Google Scholar 

  • Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26:4266–4276

    CAS  PubMed  Google Scholar 

  • Furtak SC, Ahmed OJ, Burwell RD (2012) Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 76:976–988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gall C, Brecha N, Karten HJ, Chang KJ (1981) Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus. J Comp Neurol 198:335–350

    CAS  PubMed  Google Scholar 

  • Glasier MM, Sutton RL, Stein DG (1995) Effects of unilateral entorhinal cortex lesion and ganglioside GM1 treatment on performance in a novel water maze task. Neurobiol Learn Mem 64:203–214

    CAS  PubMed  Google Scholar 

  • Glasier MM, Janis LS, Roof RL, Stein DG (1999) Effects of unilateral entorhinal cortex lesion on retention of water maze performance. Neurobiol Learn Mem 71:19–33

    CAS  PubMed  Google Scholar 

  • Good M, Honey RC (1997) Dissociable effects of selective lesions to hippocampal subsystems on exploratory behavior, contextual learning, and spatial learning. Behav Neurosci 111:487–493

    CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453:1248–1252

    CAS  PubMed  Google Scholar 

  • Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308:1792–1794

    CAS  PubMed  Google Scholar 

  • Hasselmo ME, Giocomo LM, Zilli EA (2007) Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus 17:1252–1271

    PubMed Central  PubMed  Google Scholar 

  • Henriksen EJ, Colgin LL, Barnes CA, Witter MP, Moser MB, Moser EI (2010) Spatial representation along the proximodistal axis of CA1. Neuron 68:127–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho JW, Burwell RD (2014) Perirhinal and postrhinal functional inputs to the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Hunsaker MR, Chen V, Tran GT, Kesner RP (2013) The medial and lateral entorhinal cortex both contribute to contextual and item recognition memory: a test of the binding of items and context model. Hippocampus 23:380–391

    PubMed  Google Scholar 

  • Kajiwara R, Takashima I, Mimura Y, Witter MP, Iijima T (2003) Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. J Neurophysiol 89:2176–2184

    PubMed  Google Scholar 

  • Kerr KM, Agster KL, Furtak SC, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17:697–708

    PubMed  Google Scholar 

  • Knierim JJ (2006) Neural representations of location outside the hippocampus. Learn Mem 13:405–415

    PubMed  Google Scholar 

  • Knierim JJ, Lee I, Hargreaves EL (2006) Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory. Hippocampus 16:755–764

    PubMed  Google Scholar 

  • Komorowski RW, Manns JR, Eichenbaum H (2009) Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J Neurosci 29:9918–9929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Las L, Ulanovsky N (2014) Hippocampal neurophysiology across species. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Lenck-Santini PP, Rivard B, Muller RU, Poucet B (2005) Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment. Hippocampus 15:356–369

    PubMed  Google Scholar 

  • Lever C, Kaplan R, Burgess N (2014) The function of oscillations in the hippocampal formation. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Lisman JE (2007) Role of the dual entorhinal inputs to hippocampus: a hypothesis based on cue/action (non-self/self) couplets. Prog Brain Res 163:615–625

    PubMed  Google Scholar 

  • Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, Witter MP, Moser MB, Moser EI (2013) Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci 16:1085–1093

    CAS  PubMed  Google Scholar 

  • Manns JR, Eichenbaum H (2006) Evolution of declarative memory. Hippocampus 16:795–808

    PubMed  Google Scholar 

  • Manns JR, Eichenbaum H (2009) A cognitive map for object memory in the hippocampus. Learn Mem 16:616–624

    PubMed Central  PubMed  Google Scholar 

  • Martinez CO, Do VH, Derrick BE (2011) Endogenous opioid peptides contribute to associative LTP in the hippocampal CA3 region. Neurobiol Learn Mem 96:207–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNaughton BL, Knierim JJ, Wilson MA (1995) Vector encoding and the vestibular foundations of spatial cognition: neurophysiological and computational mechanisms. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, MA, pp 585–595

    Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678

    CAS  PubMed  Google Scholar 

  • Miller VM, Best PJ (1980) Spatial correlates of hippocampal unit activity are altered by lesions of the fornix and entorhinal cortex. Brain Res 194:311–323

    CAS  PubMed  Google Scholar 

  • Mitchell SJ, Ranck JB (1980) Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Res 189:49–66

    CAS  PubMed  Google Scholar 

  • Morris RG, Frey U (1997) Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond B Biol Sci 352:1489–1503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    CAS  PubMed  Google Scholar 

  • Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30:99–122

    CAS  PubMed  Google Scholar 

  • Naber PA, Lopes da Silva FH, Witter MP (2001) Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus 11:99–104

    CAS  PubMed  Google Scholar 

  • Nakamura NH, Flashbeck V, Maingret N, Kitsukawa T, Sauvage MM (2013) Proximodistal segregation of nonspatial information in CA3: preferential recruitment of a proximal CA3-distal CA1 network in nonspatial recognition memory. J Neurosci 33:11506–11514

    CAS  PubMed  Google Scholar 

  • Navratilova Z, McNaughton BL (2014) Models of path integration in the hippocampal complex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Neunuebel JP, Yoganarasimha D, Rao G, Knierim JJ (2013) Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J Neurosci 33:9246–9258

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    PubMed  Google Scholar 

  • O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15:853–866

    PubMed Central  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford

    Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    PubMed  Google Scholar 

  • Oswald CJ, Bannerman DM, Yee BK, Rawlins JN, Honey RC, Good M (2003) Entorhinal cortex lesions disrupt the transition between the use of intra- and extramaze cues for navigation in the water maze. Behav Neurosci 117:588–595

    CAS  PubMed  Google Scholar 

  • Ranck JB (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 41:461–531

    PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    CAS  PubMed  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    CAS  PubMed  Google Scholar 

  • Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169:347–370

    CAS  PubMed  Google Scholar 

  • Stewart M, Quirk GJ, Barry M, Fox SE (1992) Firing relations of medial entorhinal neurons to the hippocampal theta rhythm in urethane anesthetized and walking rats. Exp Brain Res 90:21–28

    CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994a) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533

    CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877

    CAS  PubMed  Google Scholar 

  • Suzuki WA, Miller EK, Desimone R (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081

    CAS  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435

    CAS  PubMed  Google Scholar 

  • Tsao A, Moser MB, Moser EI (2013) Traces of experience in the lateral entorhinal cortex. Curr Biol 23:399–405

    CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586

    Google Scholar 

  • Van Cauter T, Poucet B, Save E (2008) Unstable CA1 place cell representation in rats with entorhinal cortex lesions. Eur J Neurosci 27:1933–1946

    PubMed  Google Scholar 

  • Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save E (2013) Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cereb Cortex 23:451–459

    PubMed  Google Scholar 

  • Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:376–380

    CAS  PubMed  Google Scholar 

  • Wan H, Aggleton JP, Brown MW (1999) Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19:1142–1148

    CAS  PubMed  Google Scholar 

  • Weible AP, Rowland DC, Pang R, Kentros C (2009) Neural correlates of novel object and novel location recognition behavior in the mouse anterior cingulate cortex. J Neurophysiol 102:2055–2068

    PubMed  Google Scholar 

  • Weible AP, Rowland DC, Monaghan CK, Wolfgang NT, Kentros CG (2012) Neural correlates of long-term object memory in the mouse anterior cingulate cortex. J Neurosci 32:5598–5608

    CAS  PubMed  Google Scholar 

  • Wilson DI, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA (2013) Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 23:352–366

    PubMed Central  PubMed  Google Scholar 

  • Winter SS, Taube JS (2014) Head direction cells: from generation to integration. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam, pp 635–704

    Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    CAS  PubMed  Google Scholar 

  • Wood ER, Dudchenko PA, Eichenbaum H (1999) The global record of memory in hippocampal neuronal activity. Nature 397:613–616

    CAS  PubMed  Google Scholar 

  • Yoganarasimha D, Yu X, Knierim JJ (2006) Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells. J Neurosci 26:622–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoganarasimha D, Rao G, Knierim JJ (2011) Lateral entorhinal neurons are not spatially selective in cue-rich environments. Hippocampus 21:1363–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young BJ, Otto T, Fox GD, Eichenbaum H (1997) Memory representation within the parahippocampal region. J Neurosci 17:5183–5195

    CAS  PubMed  Google Scholar 

  • Zhu XO, Brown MW, Aggleton JP (1995a) Neuronal signalling of information important to visual recognition memory in rat rhinal and neighbouring cortices. Eur J Neurosci 7:753–765

    CAS  PubMed  Google Scholar 

  • Zhu XO, Brown MW, McCabe BJ, Aggleton JP (1995b) Effects of the novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain. Neuroscience 69:821–829

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Deshmukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Deshmukh, S.S. (2014). Spatial and Nonspatial Representations in the Lateral Entorhinal Cortex. In: Derdikman, D., Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1292-2_6

Download citation