Skip to main content

Aging of Intestinal Stem Cells in Drosophila Melanogaster

  • Chapter
Stem Cell Aging: Mechanisms, Consequences, Rejuvenation
  • 1274 Accesses

Abstract

Drosophila m. has a long history of major contributions to basic biology and biomedical research. Not surprisingly, the recent identification of several multipotent stem cell populations in the Drosophila fly digestive tract has generated an immense enthusiasm in the research community. This experimental model provides a unique opportunity to study adult somatic stem cells, using the power of fly genetics. Over the past few years, research in this field has focused on the characterization of the signaling pathways and mechanisms that control stem cell function and tissue repair in the intestine. Importantly, the rapid aging and short lifespan of Drosophila make this model ideal to investigate the impact of aging on stem cell populations and test the contribution of somatic stem cells to normal healthspan and lifespan. This chapter presents recent findings that elucidate the mechanisms causing age-related loss of tissue homeostasis in the fly intestine, as well as strategies of stem cell-specific genetic manipulation that significantly impact physiology in aging animals and can extend lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49ā€“61

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Amcheslavsky A, Ito N, Jiang J, Ip YT (2011) Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J Cell Biol 193:695ā€“710

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Amcheslavsky A, Song W, Li Q, Nie Y, Bragatto I, Ferrandon D, Perrimon N, Ip YT (2014) Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep 9:32ā€“39

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883ā€“20888

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Bangi E, Pitsouli C, Rahme LG, Cagan R, Apidianakis Y (2012) Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells. EMBO Rep 13:569ā€“576

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Bardin AJ, Perdigoto CN, Southall TD, Brand AH, Schweisguth F (2010) Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 137:705ā€“714

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Barnes AI, Boone JM, Jacobson J, Partridge L, Chapman T (2006) No extension of lifespan by ablation of germ line in Drosophila. Proc Biol Sci/The Royal Society 273:939ā€“947

    ArticleĀ  Google ScholarĀ 

  • Baumann O (2001) Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other drosophila epithelia. Exp Cell Res 270:176ā€“187

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Beebe K, Lee WC, Micchelli CA (2010) JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 338:28ā€“37

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Biteau B, Jasper H (2011) EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138:1045ā€“1055

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Biteau B, Jasper H (2014) Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell Rep 7:1867ā€“1875

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442ā€“455

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6, e1001159

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Biteau B, Hochmuth CE, Jasper H (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9:402ā€“411

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Bond D, Foley E (2012) Autocrine PDGF- VEGF- receptor related (Pvr) pathway activity controls intestinal stem cell proliferation in the adult Drosophila midgut. J Biol Chem 287:27359ā€“27370

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Brack AS, Rando TA (2007) Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev 3:226ā€“237

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009a) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333ā€“2344

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009b) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200ā€“211

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Chen H, Zheng X, Zheng Y (2014) Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia. Cell 159:829ā€“843

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA (2008) Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7:318ā€“334

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Choi NH, Lucchetta E, Ohlstein B (2011) Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc Natl Acad Sci U S A 108:18702ā€“18707

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Christofi T, Apidianakis Y (2012) Ras-oncogenic Drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites. Gut Microbes 4:54ā€“59

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Cognigni P, Bailey AP, Miguel-Aliaga I (2011) Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab 13:92ā€“104

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Cordero JB, Stefanatos RK, Scopelliti A, Vidal M, Sansom OJ (2012) Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. EMBO J 31:3901ā€“3917

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U et al (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science (New York, NY) 325:340ā€“343

    ArticleĀ  CASĀ  Google ScholarĀ 

  • de Navascues J, Perdigoto CN, Bian Y, Schneider MH, Bardin AJ, Martinez-Arias A, Simons BD (2012) Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J 31:2473ā€“2485

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9:501ā€“510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fernandez-Hernandez I, Rhiner C, Moreno E (2013) Adult neurogenesis in Drosophila. Cell Rep 3:1857ā€“1865

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Flatt T, Min KJ, Dā€™Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105:6368ā€“6373

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life spanā€“from yeast to humans. Science (New York, NY) 328:321ā€“326

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fox DT, Spradling AC (2009) The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5:290ā€“297

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fuller MT, Spradling AC (2007) Male and female Drosophila germline stem cells: two versions of immortality. Science (New York, NY) 316:402ā€“404

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Goulas S, Conder R, Knoblich JA (2012) The par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 11:529ā€“540

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Guo L, Karpac J, Tran SL, Jasper H (2014) PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156:109ā€“122

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science (New York, NY) 310:847ā€“850

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125ā€“132

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ (2009) Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10:949ā€“957

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hochmuth CE, Biteau B, Bohmann D, Jasper H (2011) Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8:188ā€“199

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science (New York, NY) 292:1115ā€“1118

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jiang H, Edgar BA (2012) Intestinal stem cell function in Drosophila and mice. Curr Opin Genet Dev 22:354ā€“360

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343ā€“1355

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84ā€“95

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Kapuria S, Karpac J, Biteau B, Hwangbo D, Jasper H (2012) Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genet 8, e1003045

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Karpac J, Biteau B, Jasper H (2013) Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila. Cell Rep 4:1250ā€“1261

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137:4135ā€“4145

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504ā€“512

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim M, Kim C, Choi YS, Park C, Suh Y (2012) Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects. Mech Ageing Dev 133:215ā€“225

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Knoblich JA (2010) Asymmetric cell division: recent developments and their implications for tumour biology. Nature Rev Mol Cell Biol 11:849ā€“860

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966ā€“15971

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Kuwamura M, Maeda K, Adachi-Yamada T (2012) Mathematical modelling and experiments for the proliferation and differentiation of Drosophila intestinal stem cells II. J Biol Dyn 6:267ā€“276

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8, e1002473

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451ā€“461

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255ā€“2264

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li Z, Zhang Y, Han L, Shi L, Lin X (2013) Trachea-derived dpp controls adult midgut homeostasis in Drosophila. Dev Cell 24:133ā€“143

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119ā€“1123

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lin G, Xu N, Xi R (2010) Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of drosophila intestinal stem cells. J Mol Cell Biol 2:37ā€“49

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu W, Singh SR, Hou SX (2010) JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109:992ā€“999

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Maeda K, Takemura M, Umemori M, Adachi-Yamada T (2008) E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure Notch signaling in adult Drosophila midgut. Genes Cells 13:1219ā€“1227

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McLeod CJ, Wang L, Wong C, Jones DL (2010) Stem cell dynamics in response to nutrient availability. Curr Biol 20:2100ā€“2105

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475ā€“479

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oā€™Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603ā€“614

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470ā€“474

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science (New York, NY) 315:988ā€“992

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Park JS, Kim YS, Yoo MA (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging (Albany NY) 1:637ā€“651

    CASĀ  Google ScholarĀ 

  • Park JS, Lee SH, Na HJ, Pyo JH, Kim YS, Yoo MA (2012) Age- and oxidative stress-induced DNA damage in Drosophila intestinal stem cells as marked by Gamma-H2AX. Exp Gerontol 47:401ā€“405

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Partridge L, Alic N, Bjedov I, Piper MD (2011) Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Exp Gerontol 46:376ā€“381

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Perdigoto CN, Schweisguth F, Bardin AJ (2011) Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development 138:4585ā€“4595

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Perrimon N (1998) Creating mosaics in Drosophila. Int J Dev Biol 42:243ā€“247

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107:21064ā€“21069

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, Ansari WS, Lo T Jr, Jones DL, Walker DW (2011) Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 14:623ā€“634

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109:21528ā€“21533

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132:681ā€“696

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34:369ā€“376

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953ā€“964

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scopelliti A, Cordero JB, Diao F, Strathdee K, White BH, Sansom OJ, Vidal M (2014) Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr Biol 24:1199ā€“1211

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731ā€“1744

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147ā€“4158

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Sieber MH, Thummel CS (2012) Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab 15:122ā€“127

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Singh SR, Liu W, Hou SX (2007) The adult Drosophila Malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191ā€“203

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Singh SR, Zeng X, Zheng Z, Hou SX (2011) The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10:1109ā€“1120

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20:1580ā€“1587

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Strand M, Micchelli CA (2011) Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc Natl Acad Sci U S A 108:17696ā€“17701

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651ā€“655

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425:13ā€“26

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9:107ā€“116

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • von Trotha JW, Egger B, Brand AH (2009) Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling. Neural Dev 4:9

    ArticleĀ  Google ScholarĀ 

  • Wang P, Hou SX (2010) Regulation of intestinal stem cells in mammals and Drosophila. J Cell Physiol 222:33ā€“37

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178ā€“1186

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354:31ā€“43

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zeng X, Hou SX (2015) Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142:644ā€“653

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zeng X, Singh SR, Hou D, Hou SX (2010) Tumor suppressors Sav/scrib and oncogene ras regulate stem-cell transformation in adult Drosophila malpighian tubules. J Cell Physiol 224:766ā€“774

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Zhou F, Rasmussen A, Lee S, Agaisse H (2013) The upd3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. Dev Biol 373:383ā€“393

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BenoƮt Biteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Biteau, B. (2015). Aging of Intestinal Stem Cells in Drosophila Melanogaster . In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_5

Download citation

Publish with us

Policies and ethics