Skip to main content

Germline Stem Cells and Their Roles in the Regulation of Organism Longevity

  • Chapter
Stem Cell Aging: Mechanisms, Consequences, Rejuvenation

Abstract

Aging is a genetically regulated process that happens in all organisms. Lifespan extension can be achieved through several mechanisms, including regulatory signaling from germline stem cells, which will be the focus of this chapter. The free-living nematode Caenorhabditis elegans has become the standard workhorse for aging studies due to its fast life cycle, short lifespan, and powerful functional genomics. In this chapter, we will first introduce germline organization and germline stem cell maintenance in C. elegans. Next, we will review the knowledge achieved by C. elegans research on how gonadal signaling pathways regulate organism longevity. Lastly, the current model of lipid metabolic reprogramming as the link between germline and longevity will be discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman D, Gems D (2012) The mystery of C. elegans aging: an emerging role for fat. Distant parallels between C. elegans aging and metabolic syndrome? Bioessays 34:466–471

    Article  CAS  PubMed  Google Scholar 

  • Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295:502–505

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi K (2007) Obesity and the regulation of fat metabolism. WormBook, ed. The C. elegans Research Community, WormBook 1–20, doi:10.1895/wormbook.1.130.1, http://www.wormbook.org

  • Beckstead RB, Thummel CS (2006) Indicted: worms caught using steroids. Cell 124:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Berman JR, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124:1055–1068

    Article  CAS  PubMed  Google Scholar 

  • Berry LW, Westlund B, Schedl T (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124:925–936

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Campisi J, Sinclair DA, Bartke A, Blasco MA, Bonner WM, Bohr VA, Brosh RM Jr, Brunet A, Depinho RA et al (2010) Impact papers on aging in 2009. Aging (Albany NY) 2:111–121

    CAS  PubMed Central  Google Scholar 

  • Boulias K, Horvitz HR (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15:439–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock TJ, Browse J, Watts JL (2006) Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet 2, e108

    Article  PubMed Central  PubMed  Google Scholar 

  • Broue F, Liere P, Kenyon C, Baulieu EE (2007) A steroid hormone that extends the lifespan of Caenorhabditis elegans. Aging Cell 6:87–94

    Article  CAS  PubMed  Google Scholar 

  • Byrd DT, Kimble J (2009) Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol 20:1107–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Cargill SL, Carey JR, Muller HG, Anderson G (2003) Age of ovary determines remaining life expectancy in old ovariectomized mice. Aging Cell 2:185–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carty SM, Goldstrohm AC, Sune C, Garcia-Blanco MA, Greenleaf AL (2000) Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc Natl Acad Sci U S A 97:9015–9020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crittenden SL, Troemel ER, Evans TC, Kimble J (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120:2901–2911

    CAS  PubMed  Google Scholar 

  • Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660–663

    Article  CAS  PubMed  Google Scholar 

  • Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834

    Article  CAS  PubMed  Google Scholar 

  • Eckmann CR, Kraemer B, Wickens M, Kimble J (2002) GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev Cell 3:697–710

    Article  CAS  PubMed  Google Scholar 

  • Eckmann CR, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168:147–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzgerald K, Greenwald I (1995) Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo. Development 121:4275–4282

    CAS  PubMed  Google Scholar 

  • Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106:2700–2705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flatt T, Min KJ, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105:6368–6373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC (2015) Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347:83–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150:129–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1:841–851

    Article  CAS  PubMed  Google Scholar 

  • Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A (2007) A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci U S A 104:5014–5019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghazi A, Henis-Korenblit S, Kenyon C (2009) A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. PLoS Genet 5, e1000639

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 21:7617–7628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H (2011) Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 9:e1000599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res 26:781–789

    CAS  PubMed  Google Scholar 

  • Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, van de Weijer T, Hesselink M, Jaeger D, Kienesberger PC, Zierler K et al (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 17:1076–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen D, Wilson-Berry L, Dang T, Schedl T (2004) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131:93–104

    Article  CAS  PubMed  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  CAS  PubMed  Google Scholar 

  • Henderson ST, Gao D, Lambie EJ, Kimble J (1994) lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120:2913–2924

    CAS  PubMed  Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    Article  CAS  PubMed  Google Scholar 

  • Hubbard EJA, Greenstein D (2005) Introduction to the germ line. WormBook, ed. The C. elegans Research Community, WormBook 1–4, doi:10.1895/wormbook.1.18.1, http://www.wormbook.org

  • Huffman DM, Barzilai N (2009) Role of visceral adipose tissue in aging. Biochim Biophys Acta 1790:1117–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson TE, Tedesco PM, Lithgow GJ (1993) Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Genetica 91:65–77

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C (2010a) A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann N Y Acad Sci 1204:156–162

    Article  CAS  PubMed  Google Scholar 

  • Kenyon CJ (2010b) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Kidd AR 3rd, Miskowski JA, Siegfried KR, Sawa H, Kimble J (2005) A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell 121:761–772

    Article  CAS  PubMed  Google Scholar 

  • Kimble J, Crittenden SL (2005) Germline proliferation and its control. WormBook, ed. The C. elegans Research Community, WormBook 1–14, doi:10.1895/wormbook.1.13.1, http://www.wormbook.org

  • Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219

    Article  CAS  PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  • Kipreos ET, Gohel SP, Hedgecock EM (2000) The C. elegans F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development 127:5071–5082

    CAS  PubMed  Google Scholar 

  • Kojima T, Kamei H, Aizu T, Arai Y, Takayama M, Nakazawa S, Ebihara Y, Inagaki H, Masui Y, Gondo Y et al (2004) Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Exp Gerontol 39:1595–1598

    Article  CAS  PubMed  Google Scholar 

  • Lam N, Chesney MA, Kimble J (2006) Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr Biol 16:287–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7:697–707

    Article  CAS  PubMed  Google Scholar 

  • Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21:1507–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SS, Schroeder FC (2012) Steroids as central regulators of organismal development and lifespan. PLoS Biol 10, e1001307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tewari M, Vidal M, Lee SS (2007) The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans. Dev Biol 301:82–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  CAS  PubMed  Google Scholar 

  • Lin KT, Lu RM, Tarn WY (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol 24:9176–9185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872

    Article  CAS  PubMed  Google Scholar 

  • McCormick M, Chen K, Ramaswamy P, Kenyon C (2012) New genes that extend Caenorhabditis elegans’ lifespan in response to reproductive signals. Aging Cell 11:192–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  CAS  PubMed  Google Scholar 

  • Narbonne P, Roy R (2006) Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div 1:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  CAS  PubMed  Google Scholar 

  • Panowski SH, Dillin A (2009) Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol Metab 20:259–264

    Article  CAS  PubMed  Google Scholar 

  • Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555

    Article  CAS  PubMed  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pathare PP, Lin A, Bornfeldt KE, Taubert S, Van Gilst MR (2012) Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships. PLoS Genet 8, e1002645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson JL, Robinson TJ, Munoz MJ, Kornblihtt AR, Garcia-Blanco MA (2008) Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J Biol Chem 283:7949–7961

    Article  CAS  PubMed  Google Scholar 

  • Ratnappan R, Amrit FR, Chen SW, Gill H, Holden K, Ward J, Yamamoto KR, Olsen CP, Ghazi A (2014) Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet 10:e1004829

    Article  PubMed Central  PubMed  Google Scholar 

  • Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691

    Article  CAS  PubMed  Google Scholar 

  • Samuelson AV, Klimczak RR, Thompson DB, Carr CE, Ruvkun G (2007) Identification of Caenorhabditis elegans genes regulating longevity using enhanced RNAi-sensitive strains. Cold Spring Harb Symp Quant Biol 72:489–497

    Article  CAS  PubMed  Google Scholar 

  • Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287

    Article  CAS  PubMed  Google Scholar 

  • Shmookler Reis RJ, Xu L, Lee H, Chae M, Thaden JJ, Bharill P, Tazearslan C, Siegel E, Alla R, Zimniak P et al (2011) Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany NY) 3:125–147

    CAS  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith MJ, Kulkarni S, Pawson T (2004) FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol Cell Biol 24:9274–9285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strome S (2005) Specification of the germ line. WormBook, ed. The C. elegans Research Community, WormBook 1–10, doi:10.1895/wormbook.1.9.1, http://www.wormbook.org

  • Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A 105:3438–3442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  • Sune C, Garcia-Blanco MA (1999) Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 19:4719–4728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148:703–717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Updike D, Strome S (2010) P granule assembly and function in Caenorhabditis elegans germ cells. J Androl 31:53–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Eckmann CR, Kadyk LC, Wickens M, Kimble J (2002) A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419:312–316

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99:5854–5859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105:13987–13992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, Habermann B, Cummins CL, Antebi A (2012) A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 10, e1001305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie T (2008) Germline stem cell niches. StemBook, ed. The Stem Cell Research Community, StemBook, doi:10.3824/stembook.1.23.1, http://www.stembook.org

  • Yamawaki TM, Arantes-Oliveira N, Berman JR, Zhang P, Kenyon C (2008) Distinct activities of the germline and somatic reproductive tissues in the regulation of Caenorhabditis elegans’ longevity. Genetics 178:513–526

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamawaki TM, Berman JR, Suchanek-Kavipurapu M, McCormick M, Gaglia MM, et al (2010) The Somatic Reproductive Tissues of C. elegans Promote Longevity through Steroid Hormone Signaling. PLoS Biol 8(8): e1000468. doi:10.1371/journal.pbio.1000468

  • Yokota S, Togo SH, Maebuchi M, Bun-Ya M, Haraguchi CM, Kamiryo T (2002) Peroxisomes of the nematode Caenorhabditis elegans: distribution and morphological characteristics. Histochem Cell Biol 118:329–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge all the scientists in the C. elegans research community for their contributions to the field of reproductive system-regulated aging. We also thank Cheng-lin Li and Timothy R. Mahoney for helpful comments and valuable advice on the manuscript. The work in the authors’ laboratory is supported by the National Institutes of Health grant RO0 AG034988 and RO1 AG045183 and the Ellison Medical Foundation grant AG-NS-0756-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Carla Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Lin, Cc.J., Wang, M.C. (2015). Germline Stem Cells and Their Roles in the Regulation of Organism Longevity. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_3

Download citation

Publish with us

Policies and ethics