Skip to main content

Abstract

Skeletal Muscle has a remarkable adaptive and regenerative capacity, which is primarily due to the actions of the muscle-resident stem cell population. Aging is associated with a progressive loss in tissue function, which is associated with a decline in muscle stem cell function and total muscle stem cell pool size. Whether or not the loss in muscle stem cell function is instrumental to the progression of age-related muscle wasting (termed sarcopenia) is somewhat controversial. However, the evidence suggests that muscle stem cell dysfunction is directly related to the loss of normal muscle regeneration and response to normal physiological stimuli, which eventually leads to the loss of functional skeletal muscle. Muscle stem cell dysfunction is multifactorial and the result of alterations in local and systemic factors that we describe as niche-related or extrinsic factors and alterations in cell signaling and cell metabolic processes, which we describe as intrinsic factors. It is the combination of intrinsic and extrinsic factors that dictate the level of muscle stem cell dysfunction. Although at present it appears that the eventual decline in muscle stem cell function is inevitable, studies employing resistance exercise training regimes have shown an enhancement of the satellite cell pool which may mitigate or delay the decline in muscle aging. Both intrinsic and extrinsic factors must be considered in the design of novel therapeutic strategies to ensure successful and efficacious treatment of sarcopenia which is an important cause of morbidity and mortality and imposes a significant strain on the health-care system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64

    CAS  PubMed  Google Scholar 

  • Adams GR, Caiozzo VJ, Haddad F, Baldwin KM (2002) Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol 283:C1182–C1195

    CAS  PubMed  Google Scholar 

  • Alexakis C, Partridge T, Bou-Gharios G (2007) Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol 293:C661–C669

    CAS  PubMed  Google Scholar 

  • Allen RE, Boxhorn LK (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133:567–572

    CAS  PubMed  Google Scholar 

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–312

    CAS  PubMed  Google Scholar 

  • Al-Shanti N, Stewart CE (2012) Inhibitory effects of IL-6 on IGF-1 activity in skeletal myoblasts could be mediated by the activation of SOCS-3. J Cell Biochem 113:923–933

    CAS  PubMed  Google Scholar 

  • Alvarez-Rodriguez L, Lopez-Hoyos M, Munoz-Cacho P, Martinez-Taboada VM (2012) Aging is associated with circulating cytokine dysregulation. Cell Immunol 273:124–132

    CAS  PubMed  Google Scholar 

  • Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–181

    CAS  PubMed  Google Scholar 

  • Austin L, Bower J, Kurek J, Vakakis N (1992) Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation. J Neurol Sci 112:185–191

    CAS  PubMed  Google Scholar 

  • Beaton LJ, Tarnopolsky MA, Phillips SM (2002) Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol 544:849–859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beccafico S, Puglielli C, Pietrangelo T, Bellomo R, Fano G, Fulle S (2007) Age-dependent effects on functional aspects in human satellite cells. Ann N Y Acad Sci 1100:345–352

    CAS  PubMed  Google Scholar 

  • Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR (2005) Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 98:482–488

    CAS  PubMed  Google Scholar 

  • Biressi S, Rando TA (2010) Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol 21:845–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–235

    CAS  PubMed  Google Scholar 

  • Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    CAS  PubMed  Google Scholar 

  • Bischoff R (1990a) Interaction between satellite cells and skeletal muscle fibers. Development 109:943–952

    CAS  PubMed  Google Scholar 

  • Bischoff R (1990b) Cell cycle commitment of rat muscle satellite cells. J Cell Biol 111:201–207

    CAS  PubMed  Google Scholar 

  • Bodell PW, Kodesh E, Haddad F, Zaldivar FP, Cooper DM, Adams GR (2009) Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise. J Appl Physiol 106:443–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    CAS  PubMed  Google Scholar 

  • Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420:418–421

    CAS  PubMed  Google Scholar 

  • Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812

    CAS  PubMed  Google Scholar 

  • Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10:504–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    CAS  PubMed  Google Scholar 

  • Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    CAS  PubMed  Google Scholar 

  • Broholm C, Mortensen OH, Nielsen S, Akerstrom T, Zankari A, Dahl B, Pedersen BK (2008) Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol 586:2195–2201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks SV, Faulkner JA (1996) The magnitude of the initial injury induced by stretches of maximally activated muscle fibres of mice and rats increases in old age. J Physiol 497(Pt 2):573–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673

    CAS  PubMed  Google Scholar 

  • Cantini M, Massimino ML, Rapizzi E, Rossini K, Catani C, Dalla LL, Carraro U (1995) Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun 216:49–53

    CAS  PubMed  Google Scholar 

  • Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA, Tapscott SJ (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 25:502–511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carey KA, Farnfield MM, Tarquinio SD, Cameron-Smith D (2007) Impaired expression of Notch signaling genes in aged human skeletal muscle. J Gerontol A Biol Sci Med Sci 62:9–17

    PubMed  Google Scholar 

  • Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6:371–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cefalu CA (2011) Theories and mechanisms of aging. Clin Geriatr Med 27:491–506

    PubMed  Google Scholar 

  • Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW (2000) Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway. J Biol Chem 275:35942–35952

    CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    CAS  PubMed  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    CAS  PubMed  Google Scholar 

  • Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    CAS  PubMed  Google Scholar 

  • Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112(Pt 17):2895–2901

    CAS  PubMed  Google Scholar 

  • Corbu A, Scaramozza A, Badiali-DeGiorgi L, Tarantino L, Papa V, Rinaldi R, D’Alessandro R, Zavatta M, Laus M, Lattanzi G, Cenacchi G (2010) Satellite cell characterization from aging human muscle. Neurol Res 32:63–72

    CAS  PubMed  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    CAS  PubMed  Google Scholar 

  • Cornelison DD, Olwin BB, Rudnicki MA, Wold BJ (2000) MyoD(−/−) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol 224:122–137

    CAS  PubMed  Google Scholar 

  • Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM, Hickner RC, Pofahl WE, Gavin TP (2005) Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women. J Appl Physiol 99:1872–1879

    CAS  PubMed  Google Scholar 

  • Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340:330–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS (1997) Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 8:1429–1438

    CAS  PubMed  Google Scholar 

  • DiMario J, Buffinger N, Yamada S, Strohman RC (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244:688–690

    CAS  PubMed  Google Scholar 

  • Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253

    PubMed  Google Scholar 

  • Dreyfus PA, Chretien F, Chazaud B, Kirova Y, Caramelle P, Garcia L, Butler-Browne G, Gherardi RK (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol 164:773–779

    PubMed Central  PubMed  Google Scholar 

  • Frost RA, Lang CH (2005) Skeletal muscle cytokines: regulation by pathogen-associated molecules and catabolic hormones. Curr Opin Clin Nutr Metab Care 8:255–263

    CAS  PubMed  Google Scholar 

  • Frost RA, Lang CH (2011) mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology (Bethesda) 26:83–96

    CAS  Google Scholar 

  • Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gallucci S, Provenzano C, Mazzarelli P, Scuderi F, Bartoccioni E (1998) Myoblasts produce IL-6 in response to inflammatory stimuli. Int Immunol 10:267–273

    CAS  PubMed  Google Scholar 

  • Galvin CD, Hardiman O, Nolan CM (2003) IGF-1 receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol Cell Endocrinol 200:19–29

    CAS  PubMed  Google Scholar 

  • George T, Velloso CP, Alsharidah M, Lazarus NR, Harridge SD (2010) Sera from young and older humans equally sustain proliferation and differentiation of human myoblasts. Exp Gerontol 45:875–881

    PubMed  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gopinath SD, Rando TA (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7:590–598

    CAS  PubMed  Google Scholar 

  • Greig CA, Hameed M, Young A, Goldspink G, Noble B (2006) Skeletal muscle IGF-I isoform expression in healthy women after isometric exercise. Growth Horm IGF Res 16:373–376

    CAS  PubMed  Google Scholar 

  • Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854:78–91

    CAS  PubMed  Google Scholar 

  • Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601

    PubMed Central  PubMed  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    CAS  PubMed  Google Scholar 

  • Gustafsson T, Osterlund T, Flanagan JN, Von WF, Trappe TA, Linnehan RM, Tesch PA (2010) Effects of 3 days unloading on molecular regulators of muscle size in humans. J Appl Physiol 109:721–727

    CAS  PubMed  Google Scholar 

  • Haddad F, Zaldivar F, Cooper DM, Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98:911–917

    CAS  PubMed  Google Scholar 

  • Hall ZW, Ralston E (1989) Nuclear domains in muscle cells. Cell 59:771–772

    CAS  PubMed  Google Scholar 

  • Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hameed M, Toft AD, Pedersen BK, Harridge SD, Goldspink G (2008) Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people. Scand J Med Sci Sports 18(4):447–452

    CAS  PubMed  Google Scholar 

  • Han B, Tong J, Zhu MJ, Ma C, Du M (2008) Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway. Mol Reprod Dev 75:810–817

    CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  • Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill M, Wernig A, Goldspink G (2003) Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203:89–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Z, Chen X, Chen D (2011) Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation. Cell Signal 23:1441–1446

    CAS  PubMed  Google Scholar 

  • Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA (2003) Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 33:783–793

    PubMed  Google Scholar 

  • Jang YC, Sinha M, Cerletti M, Dall’Osso C, Wagers AJ (2011) Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb Symp Quant Biol 76:101–111

    CAS  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89:81–88

    CAS  PubMed  Google Scholar 

  • Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85

    PubMed  Google Scholar 

  • Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, Kuzon WM Jr (2006) Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol 41:828–836

    CAS  PubMed  Google Scholar 

  • Johnston AP, Baker J, Bellamy LM, McKay BR, De Lisio M, Parise G (2010) Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS One 5, e15212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M (2005) The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch 451:319–327

    CAS  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JS, Cross JM, Bamman MM (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 288:E1110–E1119

    CAS  PubMed  Google Scholar 

  • Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767

    CAS  PubMed  Google Scholar 

  • Kishimoto T (2005) Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol 23:1–21

    CAS  PubMed  Google Scholar 

  • Koopman R, van Loon LJ (2009) Aging, exercise, and muscle protein metabolism. J Appl Physiol 106:2040–2048

    CAS  PubMed  Google Scholar 

  • Kovacheva EL, Hikim AP, Shen R, Sinha I, Sinha-Hikim I (2010) Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology 151:628–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31

    CAS  PubMed  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    CAS  PubMed  Google Scholar 

  • Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840

    CAS  PubMed  Google Scholar 

  • Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57:2933–2942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson L, Ansved T (1995) Effects of ageing on the motor unit. Prog Neurobiol 45:397–458

    CAS  PubMed  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leenders M, Verdijk LB, van der Hoeven L, van Kranenburg J, Nilwik R, van Loon LJ (2013) Elderly men and women benefit equally from prolonged resistance-type exercise training. J Gerontol A Biol Sci Med Sci 68(7):769–779

    PubMed  Google Scholar 

  • Leger B, Derave W, De BK, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11:163–175B

    PubMed  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193:257–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S, Kadi F, Koskinen SO, Jensen CH, Schroder HD, Langberg H (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 103:425–431

    CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107(5):1655–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFarlane C, Gu ZH, Wong ZW, Lau HY, Lokireddy S, Ge X, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R (2011) Human myostatin negatively regulates human myoblast growth and differentiation. Am J Physiol Cell Physiol 301(1):C195–C203

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKay BR, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol 586:5549–5560

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 26(6):2509–2521

    CAS  PubMed  Google Scholar 

  • McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G (2013) Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am J Physiol Cell Physiol 304(8):C717–C728

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKinnell IW, Ishibashi J, Le GF, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94:12457–12461

    CAS  PubMed Central  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    CAS  PubMed  Google Scholar 

  • Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308

    CAS  PubMed  Google Scholar 

  • Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183

    CAS  PubMed  Google Scholar 

  • Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A (2007) Resistance exercise reverses aging in human skeletal muscle. PLoS One 2, e465

    PubMed Central  PubMed  Google Scholar 

  • Melton LJ III, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL (2000) Epidemiology of sarcopenia. J Am Geriatr Soc 48:625–630

    PubMed  Google Scholar 

  • Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, Mackey AL (2009) Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol 107:1600–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

    CAS  PubMed  Google Scholar 

  • Moss FP, Leblond CP (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44:459–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26:535–542

    CAS  PubMed  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    CAS  PubMed  Google Scholar 

  • Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olguin HC, Yang Z, Tapscott SJ, Olwin BB (2007) Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol 177:769–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otto A, Collins-Hooper H, Patel K (2009) The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 215(5):477–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–3439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parise G, O’Reilly CE, Rudnicki MA (2006) Molecular regulation of myogenic progenitor populations. Appl Physiol Nutr Metab 31:773–781

    CAS  PubMed  Google Scholar 

  • Parker MH, Perry RL, Fauteux MC, Berkes CA, Rudnicki MA (2006) MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol Cell Biol 26:5771–5783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    CAS  PubMed  Google Scholar 

  • Pereira LS, Narciso FM, Oliveira DM, Coelho FM, Souza DG, Dias RC (2009) Correlation between manual muscle strength and interleukin-6 (IL-6) plasma levels in elderly community-dwelling women. Arch Gerontol Geriatr 48:313–316

    CAS  PubMed  Google Scholar 

  • Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291:E937–E946

    CAS  PubMed  Google Scholar 

  • Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol 104:1736–1742

    PubMed  Google Scholar 

  • Philip B, Lu Z, Gao Y (2005) Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 17:365–375

    CAS  PubMed  Google Scholar 

  • Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, Pissimissis N, Koutsilieris M (2009) Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo 23:567–575

    CAS  PubMed  Google Scholar 

  • Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852

    CAS  PubMed  Google Scholar 

  • Psilander N, Damsgaard R, Pilegaard H (2003) Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 95:1038–1044

    CAS  PubMed  Google Scholar 

  • Punch VG, Jones AE, Rudnicki MA (2009) Transcriptional networks that regulate muscle stem cell function. Wiley Interdiscip Rev Syst Biol Med 1:128–140

    CAS  PubMed  Google Scholar 

  • Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    CAS  PubMed  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856

    CAS  PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    CAS  PubMed  Google Scholar 

  • Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reznik M (1969) Thymidine-3H uptake by satellite cells of regenerating skeletal muscle. J Cell Biol 40:568–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhodes SJ, Konieczny SF (1989) Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev 3:2050–2061

    CAS  PubMed  Google Scholar 

  • Rotwein P, Pollock KM, Didier DK, Krivi GG (1986) Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides. J Biol Chem 261:4828–4832

    CAS  PubMed  Google Scholar 

  • Roubenoff R (1999) The pathophysiology of wasting in the elderly. J Nutr 129:256S–259S

    CAS  PubMed  Google Scholar 

  • Roubenoff R (2003) Catabolism of aging: is it an inflammatory process? Curr Opin Clin Nutr Metab Care 6:295–299

    PubMed  Google Scholar 

  • Roubenoff R, Hughes VA (2000) Sarcopenia: current concepts. J Gerontol A Biol Sci Med Sci 55:M716–M724

    CAS  PubMed  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    CAS  PubMed  Google Scholar 

  • Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP (2006) Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. J Appl Physiol 100:178–185

    CAS  PubMed  Google Scholar 

  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD−/− myogenic cells derived from adult skeletal muscle. J Cell Biol 144:631–643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656

    CAS  PubMed  Google Scholar 

  • Scheele C, Nielsen S, Kelly M, Broholm C, Nielsen AR, Taudorf S, Pedersen M, Fischer CP, Pedersen BK (2012) Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6. PLoS One 7, e39657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmalbruch H, Lewis DM (2000) Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 23:617–626

    CAS  PubMed  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    CAS  PubMed  Google Scholar 

  • Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44

    CAS  PubMed  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209:866–873

    CAS  PubMed  Google Scholar 

  • Smith CK, Janney MJ, Allen RE (1994a) Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 159:379–385

    CAS  PubMed  Google Scholar 

  • Smith LL, Keating MN, Holbert D, Spratt DJ, McCammon MR, Smith SS, Israel RG (1994b) The effects of athletic massage on delayed onset muscle soreness, creatine kinase, and neutrophil count: a preliminary report. J Orthop Sports Phys Ther 19:93–99

    CAS  PubMed  Google Scholar 

  • Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 283:C204–C211

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Allen RE (2004) Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30:654–658

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13:2909–2918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor-Jones JM, McGehee RE, Rando TA, Lecka-Czernik B, Lipschitz DA, Peterson CA (2002) Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123:649–661

    CAS  PubMed  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    CAS  PubMed  Google Scholar 

  • Tomiya A, Aizawa T, Nagatomi R, Sensui H, Kokubun S (2004) Myofibers express IL-6 after eccentric exercise. Am J Sports Med 32:503–508

    PubMed  Google Scholar 

  • Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292:E151–E157

    CAS  PubMed  Google Scholar 

  • Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, van Loon LJ (2009) Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci 64:332–339

    PubMed  Google Scholar 

  • Verdijk LB, Dirks ML, Snijders T, Prompers JJ, Beelen M, Jonkers RA, Thijssen DH, Hopman MT, van Loon LJ (2012) Reduced satellite cell numbers with spinal cord injury and aging in humans. Med Sci Sports Exerc 44:2322–2330

    PubMed  Google Scholar 

  • Viguie CA, Lu DX, Huang SK, Rengen H, Carlson BM (1997) Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat Rec 248:346–354

    CAS  PubMed  Google Scholar 

  • Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57:M326–M332

    PubMed  Google Scholar 

  • von Maltzahn MJ, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110:16474–16479

    Google Scholar 

  • Wang YX, Rudnicki MA (2012) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13:127–133

    CAS  Google Scholar 

  • Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O’Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300:965–971

    CAS  PubMed  Google Scholar 

  • Woodley DT, Rao CN, Hassell JR, Liotta LA, Martin GR, Kleinman HK (1983) Interactions of basement membrane components. Biochim Biophys Acta 761:278–283

    CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455

    CAS  PubMed  Google Scholar 

  • Yang S, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17:487–495

    CAS  PubMed  Google Scholar 

  • Yang W, Chen Y, Zhang Y, Wang X, Yang N, Zhu D (2006) Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Res 66:1320–1326

    CAS  PubMed  Google Scholar 

  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryon R. McKay PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

McKay, B.R., Parise, G. (2015). Aging of Muscle Stem Cells. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_10

Download citation

Publish with us

Policies and ethics