Skip to main content

Abstract

Dendrimers can be prepared by both convergent and divergent approaches. In the convergent approach, first suitable building blocks are prepared and then connected by lego chemistry, ligations or click chemistry. In the divergent approach, the synthesis is done stepwise. The advantage of convergent synthesis is greater difference between product and side products. The purification is therefore easier. On the other hand, the synthesis of big building blocks is complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agard, N., Bertozzi, C.: Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 42(6), 788–797 (2009)

    Article  PubMed  CAS  Google Scholar 

  2. Amabilino, D., Ashton, P., Brown, C., Cordova, E., Godinez, L., Goodnow, T., Kaifer, A., Newton, S., Pietraszkiewicz, M., Philp, D., Raymo, F., Reder, A., Rutland, M., Slawin, A., Spencer, N., Stoddart, J., Williams, D.: Molecular meccano. 2. self-assembly of [n]catenanes. J. Am. Chem. Soc. 117(4), 1271–1293 (1995)

    Google Scholar 

  3. Anelli, P., Ashton, P., Ballardini, R., Balzani, V., Delgado, M., Gandoffi, M., Goodnow, T., Kaifer, A., Philp, D., Pietraszkiewicz, M., Prodi, L., Reddington, M., Slawin, A., Spencer, N., Fraser Stoddart, J., Vicent, C., Williams, D.: Molecular meccano. 1. [2]rotaxanes and a [2]catenane made to order. J. Am. Chem. Soc. 114(1), 193–218 (1992)

    Google Scholar 

  4. Astruc, D., Ornelas, C., Diallo, A.K., Ruiz, J.: Extremely efficient catalysis of carbon-carbon bond formation using “click” dendrimer-stabilized palladium nanoparticles. Molecules 15(7), 4947–4960 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. Balogh, L.: Dendrimer 101. Adv. Exp. Med. Biol. 620, 136–155 (2007)

    Article  PubMed  Google Scholar 

  6. Bang, D., Kent, S.: A one-pot total synthesis of crambin. Angew. Chem. Int. Ed. 43(19), 2534–2538 (2004)

    Article  CAS  Google Scholar 

  7. Bang, D., Makhatadze, G., Tereshko, V., Kossiakoff, A., Kent, S.: Total chemical synthesis and X-ray crystal structure of a protein diastereomer: [D-Gln35]ubiquitin. Angew. Chem. Int. Ed. 44(25), 3852–3856 (2005)

    Article  CAS  Google Scholar 

  8. Bang, D., Pentelute, B., Gates, Z., Kent, S.: Direct on-resin synthesis of peptide-α-thiophenylesters for use in native chemical ligation. Org. Lett. 8(6), 1049–1052 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. Bang, D., Pentelute, B., Kent, S.: Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 45(24), 3985–3988 (2006)

    Article  CAS  Google Scholar 

  10. Bayley, H., Cheley, S., Harrington, L., Syeda, R.: Wrestling with native chemical ligation. ACS Chem. Biol. 4(12), 983–985 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. Becker, T., Kaiser, A., Kunz, H.: Synthesis of dendrimeric tumor-associated mucin-type glycopeptide antigens. Synthesis (7), 1113–1122 (2009)

    Google Scholar 

  12. Bennett, C., Dean, S., Payne, R., Ficht, S., Brik, A., Wong, C.H.: Sugar-assisted glycopeptide ligation with complex oligosaccharides: Scope and limitations. J. Am. Chem. Soc. 130(36), 11945–11952 (2008)

    Article  PubMed  CAS  Google Scholar 

  13. Bennett, C., Wong, C.H.: Chemoenzymatic approaches to glycoprotein synthesis. Chem. Soc. Rev. 36(8), 1227–1238 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Bergeron-Brlek, M., Shiao, T.C., Trono, M.C., Roy, R.: Synthesis of a small library of bivalent α-D-mannopyranosides for lectin cross-linking. Carbohydr. Res. 346(12), 1479–1489 (2011)

    Article  PubMed  CAS  Google Scholar 

  15. Berrade, L., Camarero, J.: Expressed protein ligation: A resourceful tool to study protein structure and function. Cell Mol. Life Sci. 66(24), 3909–3922 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. Binder, W., Sachsenhofer, R.: ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28(1), 15–54 (2007)

    Article  CAS  Google Scholar 

  17. Blanco-Canosa, J., Dawson, P.: An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 47(36), 6851–6855 (2008)

    Article  CAS  Google Scholar 

  18. Boas, U., Heegaard, P.: Dendrimers in drug research. Chem. Soc. Rev. 33(1), 43–63 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. Borner, H.: Functional polymer-bioconjugates as molecular LEGO®; bricks. Macromol. Chem. Phys. 208(2), 124–130 (2007)

    Article  CAS  Google Scholar 

  20. Bossu, I., Berthet, N., Dumy, P., Renaudet, O.: Synthesis of glycocyclopeptides by click chemistry and inhibition assays with lectins. J. Carbohydr. Chem. 30(7–9), 458–468 (2011)

    Article  CAS  Google Scholar 

  21. Boturyn, D., Defrancq, E., Dolphin, G., Garcia, J., Labbe, P., Renaudet, O., Dumy, P.: RAFT nano-constructs: Surfing to biological applications. J. Pept. Sci. 14(2), 224–240 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. Brabez, N., Lynch, R.M., Xu, L., Gillies, R.J., Chassaing, G., Lavielle, S., Hruby, V.J.: Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment. J. Med. Chem. 54(20), 7375–7384 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. Branderhorst, H., Liskamp, R., Visser, G., Pieters, R.: Strong inhibition of cholera toxin binding by galactose dendrimers. Chem. Commun. (47), 5043–5045 (2007)

    Article  CAS  Google Scholar 

  24. Branderhorst, H., Ruijtenbeek, R., Liskamp, R., Pieters, R.: Multivalent carbohydrate recognition on a glycodendrimer-functionalized flow-through chip. ChemBioChem. 9(11), 1836–1844 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. Brask, J., Albericio, F., Jensen, K.: Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org. Lett. 5(16), 2951–2953 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. Brik, A., Wong, C.H.: Sugar-assisted ligation for the synthesis of glycopeptides. Chem. Eur. J. 13(20), 5670–5675 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Brunsveld, L., Kuhlmann, J., Waldmann, H.: Synthesis of palmitoylated Ras-peptides and -proteins. Methods 40(2), 151–165 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Camponovo, J., Hadad, C., Ruiz, J., Cloutet, E., Gatard, S., Muzart, J., Bouquillon, S., Astruc, D.: “click” glycodendrimers containing 27, 81, and 243 modified xylopyranoside termini. J. Org. Chem. 74(14), 5071–5074 (2009)

    Google Scholar 

  29. Canalle, L., Lowik, D., van Hest, J.: Polypeptide-polymer bioconjugates. Chem. Soc. Rev. 39(1), 329–353 (2010)

    CAS  Google Scholar 

  30. Carlmark, A., Hawker, C., Hult, A., Malkoch, M.: New methodologies in the construction of dendritic materials. Chem. Soc. Rev. 38(2), 352–362 (2009)

    Article  PubMed  CAS  Google Scholar 

  31. Carrico, I.: Chemoselective modification of proteins: Hitting the target. Chem. Soc. Rev. 37(7), 1423–1431 (2008)

    Article  PubMed  CAS  Google Scholar 

  32. Chabre, Y., Roy, R.: Recent trends in glycodendrimer syntheses and applications. Curr. Top. Med. Chem. 8(14), 1237–1285 (2008)

    Article  PubMed  CAS  Google Scholar 

  33. Chabre, Y., Roy, R.: Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 63, 165–393 (2010)

    Article  PubMed  CAS  Google Scholar 

  34. Chabre, Y., Contino-Pepin, C., Placide, V., Tze, C., Roy, R.: Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. J. Org. Chem. 73(14), 5602–5605 (2008)

    Article  PubMed  CAS  Google Scholar 

  35. Chabre, Y.M., Brisebois, P.P., Abbassi, L., Kerr, S.C., Fahy, J.V., Marcotte, I., Roy, R.: Hexaphenylbenzene as a rigid template for the straightforward syntheses of “star-shaped” glycodendrimers. J. Org. Chem. 76(2), 724–727 (2011)

    Article  PubMed  CAS  Google Scholar 

  36. Chabre, Y.M., Giguere, D., Blanchard, B., Rodrigue, J., Rocheleau, S., Neault, M., Rauthu, S., Papadopoulos, A., Arnold, A.A., Imberty, A., Roy, R.: Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors. Chem. Eur. J. 17(23), 6545–6562 (2011)

    Article  PubMed  CAS  Google Scholar 

  37. Chabre, Y.M., Roy, R.: Dendrimer-Based Drug Delivery Systems: From Theory to Practice. Dendrimer-Coated Carbohydrate Residues as Drug Delivery Trojan Horses in Glycoscience, 1st edn., pp. 405–436. Wiley, New York (2012)

    Google Scholar 

  38. Chang, P.V., Prescher, J.A., Sletten, E.M., Baskin, J.M., Miller, I.A., Agard, N.J., Lo, A., Bertozzi, C.R.: Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. USA 107(5), 1821–1826 (2010)

    Article  PubMed  CAS  Google Scholar 

  39. Chen, G., Wan, Q., Tan, Z., Kan, C., Hua, Z., Ranganathan, K., Danishefsky, S.: Development of efficient methods for accomplishing cysteine-free peptide and glycopeptide coupling. Angew. Chem. Int. Ed. 46(39), 7383–7387 (2007)

    Article  CAS  Google Scholar 

  40. Chen, X., Thomas, J., Gangopadhyay, P., Norwood, R., Peyghambarian, N., McGrath, D.: Modification of symmetrically substituted phthalocyanines using click chemistry: Phthalocyanine nanostructures by nanoimprint lithography. J. Am. Chem. Soc. 131(38), 13840–13843 (2009)

    Article  PubMed  CAS  Google Scholar 

  41. Cheng, Y., Xu, Z., Ma, M., Xu, T.: Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci. 97(1), 123–143 (2008)

    Article  PubMed  CAS  Google Scholar 

  42. Conroy, T., Jolliffe, K.A., Payne, R.J.: Synthesis of N-linked glycopeptides via solid-phase aspartylation. Org. Biomol. Chem. 8, 3723–3733 (2010)

    Article  PubMed  CAS  Google Scholar 

  43. Crich, D., Banerjee, A.: Native chemical ligation at phenylalanine. J. Am. Chem. Soc. 129(33), 10064–10065 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. David, R., Richter, M., Beck-Sickinger, A.: Expressed protein ligation: Method and applications. Eur. J. Biochem. 271(4), 663–677 (2004)

    Article  PubMed  CAS  Google Scholar 

  45. Dawson, P., Muir, T., Clark-Lewis, I., Kent, S.: Synthesis of proteins by native chemical ligation. Science 266(5186), 776–779 (1994)

    Article  PubMed  CAS  Google Scholar 

  46. Dirksen, A., Dawson, P.: Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19(12), 2543–2548 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. Dirksen, A., Dirksen, S., Hackeng, T., Dawson, P.: Nucleophilic catalysis of hydrazone formation and transimination: Implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128(49), 15602–15603 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Dirksen, A., Hackeng, T., Dawson, P.: Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. 45(45), 7581–7584 (2006)

    Article  CAS  Google Scholar 

  49. Dondoni, A.: Triazole: The keystone in glycosylated molecular architectures constructed by a click reaction. Chem. Asia J. 2(6), 700–708 (2007)

    Article  CAS  Google Scholar 

  50. Dondoni, A., Marra, A.: C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers. J. Org. Chem. 71(20), 7546–7557 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. Du, J., Meledeo, M., Wang, Z., Khanna, H., Paruchuri, V., Yarema, K.: Metabolic glycoengineering: Sialic acid and beyond. Glycobiology 19(12), 1382–1401 (2009)

    Article  PubMed  CAS  Google Scholar 

  52. Dufes, C., Uchegbu, I., Schatzlein, A.: Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57(15), 2177–2202 (2005)

    Article  PubMed  CAS  Google Scholar 

  53. Durek, T., Becker, C.: Protein semi-synthesis: New proteins for functional and structural studies. Biomol. Eng. 22(5–6), 153–172 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. Durek, T., Torbeev, V., Kent, S.: Convergent chemical synthesis and high-resolution X-ray structure of human lysozyme. Proc. Natl. Acad. Sci. USA 104(12), 4846–4851 (2007)

    Article  PubMed  CAS  Google Scholar 

  55. Ellwood, P., Mathias, J., Stoddart, J., Kohnke, F.: Stereoelectronically programmed molecular LEGO sets. Bull. Soc. Chem. Belg. 97, 669–678 (1988)

    Article  CAS  Google Scholar 

  56. Elsner, K., Boysen, M., Lindhorst, T.: Synthesis of new polyether glycodendrons as oligosaccharide mimetics. Carbohydr. Res. 342(12–13), 1715–1725 (2007)

    Article  PubMed  CAS  Google Scholar 

  57. Eom, K., Miao, Z., Yang, J.L., Tam, J.: Tandem ligation of multipartite peptides with cell-permeable activity. J. Am. Chem. Soc. 125(1), 73–82 (2003)

    Article  PubMed  CAS  Google Scholar 

  58. Erlich, L.A., Kumar, K.S.A., Haj-Yahya, M., Dawson, P.E., Brik, A.: N-Methylcysteine-mediated total chemical synthesis of ubiquitin thioester. Org. Biomol. Chem. 8(10), 2392–2396 (2010)

    Article  PubMed  CAS  Google Scholar 

  59. Euzen, R., Reymond, J.L.: Synthesis of glycopeptide dendrimers, dimerization and affinity for concanavalin A. Bioorg. Med. Chem. 19(9), 2879–2887 (2011)

    Article  PubMed  CAS  Google Scholar 

  60. Flavell, R., Muir, T.: Expressed protein ligation (epl) in the study of signal transduction, ion conduction, and chromatin biology. Acc. Chem. Res. 42(1), 107–116 (2009)

    Article  PubMed  CAS  Google Scholar 

  61. Flavell, R., Kothari, P., Bar-Dagan, M., Synan, M., Vallabhajosula, S., Friedman, J., Muir, T., Ceccarini, G.: Site-specific 18F-labeling of the protein hormone leptin using a general two-step ligation procedure. J. Am. Chem. Soc. 130(28), 9106–9112 (2008)

    Article  PubMed  CAS  Google Scholar 

  62. Flemer Jr., S.: Efficient method of circumventing insolubility problems with fully protected peptide carboxylates via in situ direct thioesterification reactions. J. Pept. Sci. 15(11), 693–696 (2009)

    Article  PubMed  CAS  Google Scholar 

  63. Fortier, S., Touaibia, M., Lord-Dufour, S., Galipeau, J., Roy, R., Annabi, B.: Tetra- and hexavalent mannosides inhibit the pro-apoptotic, antiproliferative and cell surface clustering effects of concanavalin-A: Impact on MT1-MMP functions in marrow-derived mesenchymal stromal cells. Glycobiology 18(2), 195–204 (2008)

    Article  PubMed  CAS  Google Scholar 

  64. Fotouhi, N., Galakatos, N., Kemp, D.: Peptide synthesis by prior thiol capture. 6. Rates of the disulfide bond forming capture reaction and demonstration of the overall strategy by synthesis of the C-terminal 29-peptide sequence of BPTI. J. Org. Chem. 54(12), 2803–2817 (1989)

    Google Scholar 

  65. Friscourt, F., Ledin, P.A., Mbua, N.E., Flanagan-Steet, H.R., Wolfert, M.A., Steet, R., Boons, G.J.: Polar dibenzocyclooctynes for selective labeling of extracellular glycoconjugates of living cells. J. Am. Chem. Soc. 134(11), 5381–5389 (2012)

    Article  PubMed  CAS  Google Scholar 

  66. Gaertner, H., Rose, K., Cotton, R., Timms, D., Camble, R., Offord, R.: Construction of protein analogues by site-specific condensation of unprotected fragments. Bioconjug. Chem. 3(3), 262–268 (1992)

    Article  PubMed  CAS  Google Scholar 

  67. Gao, Y., Eguchi, A., Kakehi, K., Lee, Y.: Synthesis and molecular recognition of carbohydrate-centered multivalent glycoclusters by a plant lectin RCA120. Bioorg. Med. Chem. 13(22), 6151–6157 (2005)

    Article  PubMed  CAS  Google Scholar 

  68. Gao, C., Yan, D., Frey, H.: Hyperbranched polymers. Promising Dendritic Materials: An Introduction to Hyperbranched Polymers, pp. 1–26. Wiley, New York (2011)

    Google Scholar 

  69. Garner, J., Jolliffe, K., Harding, M., Payne, R.: Synthesis of homogeneous antifreeze glycopeptides via a ligation-desulfurisation strategy. Chem. Commun. (45), 6925–6927 (2009)

    Article  CAS  Google Scholar 

  70. Gauthier, M., Klok, H.A.: Peptide/protein-polymer conjugates: Synthetic strategies and design concepts. Chem. Commun. (23), 2591–2611 (2008)

    Article  CAS  Google Scholar 

  71. Ge, Z., Wang, D., Zhou, Y., Liu, H., Liu, S.: Synthesis of organic/inorganic hybrid quatrefoil-shaped star-cyclic polymer containing a polyhedral oligomeric silsesquioxane core. Macromolecules 42(8), 2903–2910 (2009)

    Article  CAS  Google Scholar 

  72. Greatrex, B., Brodie, S., Furneaux, R., Hook, S., McBurney, W., Painter, G., Rades, T., Rendle, P.: The synthesis and immune stimulating action of mannose-capped lysine-based dendrimers. Tetrahedron 65(15), 2939–2950 (2009)

    Article  CAS  Google Scholar 

  73. Gross, C., Lelievre, D., Woodward, C., Barany, G.: Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nα-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: Considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine. J. Pept. Res. 65(3), 395–410 (2005)

    Article  PubMed  CAS  Google Scholar 

  74. Haase, C., Rohde, H., Seitz, O.: Native chemical ligation at valine. Angew. Chem. Int. Ed. 47(36), 6807–6810 (2008)

    Article  CAS  Google Scholar 

  75. Haase, C., Seitz, O.: Extending the scope of native chemical peptide coupling. Angew. Chem. Int. Ed. 47(9), 1553–1556 (2008)

    Article  CAS  Google Scholar 

  76. Hackenberger, C., Schwarzer, D.: Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 47(52), 10030–10074 (2008)

    Article  CAS  Google Scholar 

  77. Hansen, F.K., Ha, K., Todadze, E., Lillicotch, A., Frey, A., Katritzky, A.R.: Microwave-assisted chemical ligation of S-acyl peptides containing non-terminal cysteine residues. Org. Biomol. Chem. 9, 7162–7167 (2011)

    Article  PubMed  CAS  Google Scholar 

  78. Hansen, M.B., van Gurp, T.H.M., van Hest, J.C.M., Lowik, D.W.P.M.: Simple and efficient solid-phase preparation of azido-peptides. Org. Lett. 14(9), 2330–2333 (2012)

    Article  PubMed  CAS  Google Scholar 

  79. Hein, C., Liu, X.M., Wang, D.: Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceut. Res. 25(10), 2216–2230 (2008)

    Article  CAS  Google Scholar 

  80. Hirano, K., Macmillan, D., Tezuka, K., Tsuji, T., Kajihara, Y.: Design and synthesis of a homogeneous erythropoietin analogue with two human complex-type sialyloligosaccharides: Combined use of chemical and bacterial protein expression methods. Angew. Chem. Int. Ed. 48(50), 9557–9560 (2009)

    Article  CAS  Google Scholar 

  81. Hoiberg-Nielsen, R., Tofteng Shelton, A., Sorensen, K., Roessle, M., Svergun, D., Thulstrup, P., Jensen, K., Arleth, L.: 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering. ChemBioChem. 9(16), 2663–2672 (2008)

    Article  PubMed  CAS  Google Scholar 

  82. Hojo, H., Matsumoto, Y., Nakahara, Y., Ito, E., Suzuki, Y., Suzuki, M., Suzuki, A., Nakahara, Y.: Chemical synthesis of 23 kDa glycoprotein by repetitive segment condensation: A synthesis of MUC2 basal motif carrying multiple O-GalNAc moieties. J. Am. Chem. Soc. 127(39), 13720–13725 (2005)

    Article  PubMed  CAS  Google Scholar 

  83. Hojo, H., Murasawa, Y., Katayama, H., Ohira, T., Nakahara, Y., Nakahara, Y.: Application of a novel thioesterification reaction to the synthesis of chemokine CCL27 by the modified thioester method. Org. Biomol. Chem. 6(10), 1808–1813 (2008)

    Article  PubMed  CAS  Google Scholar 

  84. Hojo, H., Onuma, Y., Akimoto, Y., Nakahara, Y., Nakahara, Y.: N-Alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett. 48(1), 25–28 (2007)

    Article  CAS  Google Scholar 

  85. Hojo, H., Ozawa, C., Katayama, H., Ueki, A., Nakahara, Y., Nakahara, Y.: The mercaptomethyl group facilitates an efficient one-pot ligation at Xaa-Ser/Thr for (glyco)peptide synthesis. Angew. Chem. Int. Ed. 49(31), 5318–5321 (2010)

    Article  CAS  Google Scholar 

  86. Hong, V., Presolski, S., Ma, C., Finn, M.: Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48(52), 9879–9883 (2009)

    Article  CAS  Google Scholar 

  87. Hu, M., Li, J., Yao, S.: In situ “click” assembly of small molecule matrix metalloprotease inhibitors containing zinc-chelating groups. Org. Lett. 10(24), 5529–5531 (2008)

    Article  PubMed  CAS  Google Scholar 

  88. Imberty, A., Chabre, Y., Roy, R.: Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Chem. Eur. J. 14(25), 7490–7499 (2008)

    Article  PubMed  CAS  Google Scholar 

  89. Jewett, J.C., Bertozzi, C.R.: Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org. Lett. 13(22), 5937–5939 (2011)

    Article  PubMed  CAS  Google Scholar 

  90. Jewett, J.C., Sletten, E.M., Bertozzi, C.R.: Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 132(11), 3688–3690 (2010)

    Article  PubMed  CAS  Google Scholar 

  91. Johnson, E., Kent, S.: Towards the total chemical synthesis of integral membrane proteins: a general method for the synthesis of hydrophobic peptide-α-thioester building blocks. Tetrahedron Lett. 48(10), 1795–1799 (2007)

    Article  PubMed  CAS  Google Scholar 

  92. Johnson, J., Baskin, J., Bertozzi, C., Koberstein, J., Turro, N.: Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chem. Commun. (26), 3064–3066 (2008)

    Article  CAS  Google Scholar 

  93. Joosten, J., Tholen, N., Ait El Maate, F., Brouwer, A., Wilma Van Esse, G., Rijkers, D., Liskamp, R., Pieters, R.: High-yielding microwave-assisted synthesis of triazole-linked glycodendrimers by copper-catalyzed [3+2] cycloaddition. Eur. J. Org. Chem. (15), 3182–3185 (2005)

    Google Scholar 

  94. Kalia, J., Raines, R.: Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47(39), 7523–7526 (2008)

    Article  CAS  Google Scholar 

  95. Kan, C., Danishefsky, S.: Recent departures in the synthesis of peptides and glycopeptides. Tetrahedron 65(45), 9047–9065 (2009)

    Article  PubMed  CAS  Google Scholar 

  96. Kantchev, E., Chang, C.C., Cheng, S.F., Roche, A.C., Chang, D.K.: Direct solid-phase synthesis and fluorescence labeling of large, monodisperse mannosylated dendrons in a peptide synthesizer. Org. Biomol. Chem. 6(8), 1377–1385 (2008)

    Article  PubMed  CAS  Google Scholar 

  97. Katayama, H., Hojo, H., Ohira, T., Nakahara, Y.: An efficient peptide ligation using azido-protected peptides via the thioester method. Tetrahedron Lett. 49(38), 5492–5494 (2008)

    Article  CAS  Google Scholar 

  98. Kecskes, A., Tosh, D.K., Wei, Q., Gao, Z.G., Jacobson, K.A.: GPCR ligand dendrimer (GLiDe) conjugates: Adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug. Chem. 22(6), 1115–1127 (2011)

    Article  PubMed  CAS  Google Scholar 

  99. Kehat, T., Goren, K., Portnoy, M.: Dendrons on insoluble supports: synthesis and applications. New J. Chem. 31(7), 1218–1242 (2007)

    Article  CAS  Google Scholar 

  100. Kemp, D., Galakatos, N.: Peptide synthesis by prior thiol capture. 1. A convenient synthesis of 4-hydroxy-6-mercaptodibenzofuran and novel solid-phase synthesis of peptide-derived 4-(acyloxy)-6-mercaptodibenzofurans. J. Org. Chem. 51(10), 1821–1829 (1986)

    Google Scholar 

  101. Kemp, D., Carey, R.: Synthesis of a 39-peptide and a 25-peptide by thiol capture ligations: Observation of a 40-fold rate acceleration of the intramolecular O,N-acyl-transfer reaction between peptide fragments bearing only cysteine protective groups. J. Org. Chem. 58(8), 2216–2222 (1993)

    Article  CAS  Google Scholar 

  102. Kemp, D., Galakatos, N., Bowen, B., Tan, K.: Peptide synthesis by prior thiol capture. 2. Design of templates for intramolecular O,N-acyl transfer. 4,6-Disubstituted dibenzofurans as optimal spacing elements. J. Org. Chem. 51(10), 1829–1838 (1986)

    Google Scholar 

  103. Kent, S., Sohma, Y., Liu, S., Bang, D., Pentelute, B., Mandal, K.: Through the looking glass—a new world of proteins enabled by chemical synthesis. J. Pept. Sci. 18(7), 428–436 (2012)

    Article  PubMed  CAS  Google Scholar 

  104. Kimmerlin, T., Seebach, D.: “100 years of peptide synthesis”: Ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J. Pept. Res. 65(2), 229–260 (2005)

    Article  PubMed  CAS  Google Scholar 

  105. Kleinert, M., Winkler, T., Terfort, A., Lindhorst, T.: A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition. Org. Biomol. Chem. 6(12), 2118–2132 (2008)

    Article  PubMed  CAS  Google Scholar 

  106. Kohler, J.: Aniline: a catalyst for sialic acid detection. ChemBioChem. 10(13), 2147–2150 (2009)

    Article  PubMed  CAS  Google Scholar 

  107. Kohnke, F., Mathias, J., Stoddart, J.: Structure-directed synthesis of new organic materials. Angew. Chem. Int. Ed. 28, 1103–1110 (1989)

    Article  Google Scholar 

  108. Kolb, H., Finn, M., Sharpless, K.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40(11), 2004–2021 (2001)

    Article  CAS  Google Scholar 

  109. Komarov, A., Linn, K., Devereaux, J., Valiyaveetil, F.: Modular strategy for the semisynthesis of a K +  channel: investigating interactions of the pore helix. ACS Chem. Biol. 4(12), 1029–1038 (2009)

    Article  PubMed  CAS  Google Scholar 

  110. Kowalczyk, W., Monso, M., de la Torre, B.G., Andreu, D.: Synthesis of multiple antigenic peptides (MAPs)—strategies and limitations. J. Pept. Sci. 17(4), 247–251 (2011)

    Article  PubMed  CAS  Google Scholar 

  111. Krasinski, A., Radic, Z., Manetsch, R., Raushel, J., Taylor, P., Sharpless, K., Kolb, H.: In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. J. Am. Chem. Soc. 127(18), 6686–6692 (2005)

    Article  PubMed  CAS  Google Scholar 

  112. Kurpiers, T., Mootz, H.: Bioorthogonal ligation in the spotlight. Angew. Chem. Int. Ed. 48(10), 1729–1731 (2009)

    Article  CAS  Google Scholar 

  113. Lahmann, M.: Glycoscience and microbial adhesion. Architectures of Multivalent Glycomimetics for Probing Carbohydrate–Lectin Interactions, pp. 17–65. Springer, Berlin (2009)

    Google Scholar 

  114. Larsen, K., Thygesen, M., Guillaumie, F., Willats, W., Jensen, K.: Solid-phase chemical tools for glycobiology. Carbohydr. Res. 341(10), 1209–1234 (2006)

    Article  PubMed  CAS  Google Scholar 

  115. Laughlin, S., Bertozzi, C.: Imaging the glycome. Proc. Natl. Acad. Sci. USA 106(1), 12–17 (2009)

    Article  PubMed  CAS  Google Scholar 

  116. Le Chevalier Isaad, A., Papini, A., Chorev, M., Rovero, P.: Side chain-to-side chain cyclization by click reaction. J. Pept. Sci. 15(7), 451–454 (2009)

    Article  PubMed  CAS  Google Scholar 

  117. Lempens, E., Helms, B., Merkx, M., Meijer, E.: Efficient and chemoselective surface immobilization of proteins by using aniline-catalyzed oxime chemistry. ChemBioChem. 10(4), 658–662 (2009)

    Article  PubMed  CAS  Google Scholar 

  118. Li, X., Kawakami, T., Aimoto, S.: Direct preparation of peptide thioesters using an Fmoc solid-phase method. Tetrahedron Lett. 39(47), 8669–8672 (1998)

    Article  CAS  Google Scholar 

  119. Li, Y., Cheng, Y., Xu, T.: Design, synthesis and potent pharmaceutical applications of glycodendrimers: a mini review. Curr. Drug Discov. Technol. 4(4), 246–254 (2007)

    Article  PubMed  CAS  Google Scholar 

  120. Li, X., Fekner, T., Ottesen, J., Chan, M.: A pyrrolysine analogue for site-specific protein ubiquitination. Angew. Chem. Int. Ed. 48(48), 9184–9187 (2009)

    Article  CAS  Google Scholar 

  121. Li, X., Lam, H.Y., Zhang, Y., Chan, C.K.: Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org. Lett. 12(8), 1724–1727 (2010)

    Article  PubMed  CAS  Google Scholar 

  122. Liu, C.F., Tam, J.: Chemical ligation approach to form a peptide bond between unprotected peptide segments. concept and model study. J. Am. Chem. Soc. 116(10), 4149–4153 (1994)

    Google Scholar 

  123. Liu, C.F., Tam, J.: Peptide segment ligation strategy without use of protecting groups. Proc. Natl. Acad. Sci. USA 91(14), 6584–6588 (1994)

    Article  PubMed  CAS  Google Scholar 

  124. Lutz, J.F., Zarafshani, Z.: Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv. Drug Deliv. Rev. 60(9), 958–970 (2008)

    Article  PubMed  CAS  Google Scholar 

  125. Manetsch, R., Krasinski, A., Radic, Z., Raushel, J., Taylor, P., Sharpless, K., Kolb, H.: In situ click chemistry: Enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126(40), 12809–12818 (2004)

    Article  PubMed  CAS  Google Scholar 

  126. Mano, N., Kuhn, A.: Molecular lego for the assembly of biosensing layers. Talanta 66(1), 21–27 (2005)

    Article  PubMed  CAS  Google Scholar 

  127. Maraval, V., Pyzowski, J., Caminade, A.M., Majoral, J.P.: “Lego” chemistry for the straightforward synthesis of dendrimers. J. Org. Chem. 68(15), 6043–6046 (2003)

    Article  PubMed  CAS  Google Scholar 

  128. Martin, A., Li, B., Gillies, E.: Surface functionalization of nanomaterials with dendritic groups: Toward enhanced binding to biological targets. J. Am. Chem. Soc. 131(2), 734–741 (2009)

    Article  PubMed  CAS  Google Scholar 

  129. Mathias, J., Stoddart, J.: Constructing a molecular LEGO set. Chem. Soc. Rev. 21(4), 215–225 (1992)

    Article  CAS  Google Scholar 

  130. Matsushita, T., Sadamoto, R., Ohyabu, N., Nakata, H., Fumoto, M., Fujitani, N., Takegawa, Y., Sakamoto, T., Kurogochi, M., Hinou, H., Shimizu, H., Ito, T., Naruchi, K., Togame, H., Takemoto, H., Kondo, H., Nishimura, S.I.: Functional neoglycopeptides: synthesis and characterization of a new class of MUC1 glycoprotein models having core 2-based O-glycan and complex-type N-glycan chains. Biochemistry 48(46), 11117–11133 (2009)

    Article  PubMed  CAS  Google Scholar 

  131. McGinty, R., Chatterjee, C., Muir, T.: Chapter 11 Semisynthesis of ubiquitylated proteins. Method Enzymol. 462, 225–243 (2009)

    Article  CAS  Google Scholar 

  132. Meldal, M., Tornoe, C., Nielsen, T., Diness, F., Le Quement, S., Christensen, C., Jensen, J., Worm-Leonhard, K., Groth, T., Bouakaz, L., Wu, B., Hagel, G., Keinicke, L.: Ralph F. Hirschmann award address 2009: Merger of organic chemistry with peptide diversity. Biopolymers 94(2), 161–182 (2010)

    Google Scholar 

  133. Mende, F., Seitz, O.: Solid-phase synthesis of peptide thioesters with self-purification. Angew. Chem. Int. Ed. 46(24), 4577–4580 (2007)

    Article  CAS  Google Scholar 

  134. Miao, Z., Tam, J.: Bidirectional tandem pseudoproline ligations of proline-rich helical peptides. J. Am. Chem. Soc. 122(18), 4253–4260 (2000)

    Article  CAS  Google Scholar 

  135. Milton, R., Milton, S., Kent, S.: Total chemical synthesis of a D-enzyme: The enantiomers of HIV-1 protease show demonstration of reciprocal chiral substrate specificity. Science 256(5062), 1445–1448 (1992)

    Article  PubMed  CAS  Google Scholar 

  136. Miseta, A., Csutora, P.: Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 17(8), 1232–1239 (2000)

    Article  PubMed  CAS  Google Scholar 

  137. Mocharla, V., Colasson, B., Lee, L., Roper, S., Sharpless, K., Wong, C.H., Kolb, H.: In situ click chemistry: Enzyme-generated inhibitors of carbonic anhydrase II. Angew. Chem. Int. Ed. 44(1), 116–120 (2005)

    Article  CAS  Google Scholar 

  138. Mootz, H.: Split inteins as versatile tools for protein semisynthesis. ChemBioChem. 10(16), 2579–2589 (2009)

    Article  PubMed  CAS  Google Scholar 

  139. Morvan, F., Meyer, A., Jochum, A., Sabin, C., Chevolot, Y., Imberty, A., Praly, J.P., Vasseur, J.J., Souteyrand, E., Vidal, S.: Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): Automated synthesis of DNA-based glycoclusters and binding to Pseudomonas aeruginosa lectin (PA-IIL). Bioconjug. Chem. 18(5), 1637–1643 (2007)

    Article  PubMed  CAS  Google Scholar 

  140. Muir, T., Sondhi, D., Cole, P.: Expressed protein ligation: A general method for protein engineering. Proc. Natl. Acad. Sci. USA 95(12), 6705–6710 (1998)

    Article  PubMed  CAS  Google Scholar 

  141. Murase, T., Tsuji, T., Kajihara, Y.: Efficient and systematic synthesis of a small glycoconjugate library having human complex type oligosaccharides. Carbohydr. Res. 344(6), 762–770 (2009)

    Article  PubMed  CAS  Google Scholar 

  142. Nakamura, K., Kanao, T., Uesugi, T., Hara, T., Sato, T., Kawakami, T., Aimoto, S.: Synthesis of peptide thioesters via an N-S acyl shift reaction under mild acidic conditions on an N-4, 5-dimethoxy-2-mercaptobenzyl auxiliary group. J. Pept. Sci. 15(11), 731–737 (2009)

    Article  PubMed  CAS  Google Scholar 

  143. Nandivada, H., Jiang, X., Lahann, J.: Click chemistry: Versatility and control in the hands of materials scientists. Adv. Mater. 19(17), 2197–2208 (2007)

    Article  CAS  Google Scholar 

  144. Nanjwade, B., Bechra, H., Derkar, G., Manvi, F., Nanjwade, V.: Dendrimers: Emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 38(3), 185–196 (2009)

    Article  PubMed  CAS  Google Scholar 

  145. Newkome, G., Shreiner, C.: Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different \(1 \rightarrow 2\) branching motifs: an overview of the divergent procedures. Polymer 49(1), 1–173 (2008)

    Article  CAS  Google Scholar 

  146. Newkome, G.R., Shreiner, C.: Dendrimers derived from \(1 \rightarrow 3\) branching motifs. Chem. Rev. 110(10), 6338–6442 (2010)

    Article  PubMed  CAS  Google Scholar 

  147. Niederhafner, P., Sebestik, J., Jezek, J.: Peptide dendrimers. J. Pept. Sci. 11(12), 757–788 (2005)

    Article  CAS  Google Scholar 

  148. Niederhafner, P., Sebestik, J., Jezek, J.: Glycopeptide dendrimers. Part I. J. Pept. Sci. 14(1), 2–43 (2008)

    CAS  Google Scholar 

  149. Niederhafner, P., Sebestik, J., Jezek, J.: Glycopeptide dendrimers. Part II. J. Pept. Sci. 14(1), 44–65 (2008)

    CAS  Google Scholar 

  150. Nilsson, B., Soellner, M., Raines, R.: Chemical synthesis of proteins. Ann. Rev. Biophys. Biomol. Struct. 34, 91–118 (2005)

    Article  CAS  Google Scholar 

  151. Okamoto, R., Souma, S., Kajihara, Y.: Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: Repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T N antigens. J. Org. Chem. 74(6), 2494–2501 (2009)

    Article  PubMed  CAS  Google Scholar 

  152. Ollivier, N., Behr, J.B., El-Mahdi, O., Blanpain, A., Melnyk, O.: Fmoc solid-phase synthesis of peptide thioesters using an intramolecular N,S-acyl shift. Org. Lett. 7(13), 2647–2650 (2005)

    Article  CAS  Google Scholar 

  153. Ortega-Munoz, M., Morales-Sanfrutos, J., Perez-Balderas, F., Hernandez-Mateo, F., Giron-Gonzalez, M., Sevillano-Tripero, N., Salto-Gonzalez, R., Santoyo-Gonzalez, F.: Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines. Org. Biomol. Chem. 5(14), 2291–2301 (2007)

    Article  PubMed  CAS  Google Scholar 

  154. Ortega-Munoz, M., Perez-Balderas, F., Morales-Sanfrutos, J., Hernandez-Mateo, F., Isac-Garcia, J., Santoyo-Gonzalez, F.: Click multivalent heterogeneous neoglycoconjugates—modular synthesis and evaluation of their binding affinities. Eur. J. Org. Chem. (15), 2454–2473 (2009)

    Article  CAS  Google Scholar 

  155. Ozawa, C., Hojo, H., Nakahara, Y., Katayama, H., Nabeshima, K., Akahane, T., Nakahara, Y.: Synthesis of glycopeptide dendrimer by a convergent method. Tetrahedron 63(39), 9685–9690 (2007)

    Article  CAS  Google Scholar 

  156. Ozawa, C., Katayama, H., Hojo, H., Nakahara, Y., Nakahara, Y.: Efficient sequential segment coupling using N-alkylcysteine-assisted thioesterification for glycopeptide dendrimer synthesis. Org. Lett. 10(16), 3531–3533 (2008)

    Article  PubMed  CAS  Google Scholar 

  157. Papadopoulos, A., Shiao, T.C., Roy, R.: Diazo transfer and click chemistry in the solid phase syntheses of lysine-based glycodendrimers as antagonists against Escherichia coli FimH. Mol. Pharmaceut. 9(3), 394–403 (2012)

    Article  CAS  Google Scholar 

  158. Pasunooti, K., Yang, R., Vedachalam, S., Gorityala, B., Liu, C.F., Liu, X.W.: Synthesis of 4-mercapto-L-lysine derivatives: Potential building blocks for sequential native chemical ligation. Bioorg. Med. Chem. Lett. 19(22), 6268–6271 (2009)

    Article  PubMed  CAS  Google Scholar 

  159. Payne, R., Ficht, S., Tang, S., Brik, A., Yang, Y.Y., Case, D., Wong, C.H.: Extended sugar-assisted glycopeptide ligations: Development, scope, and applications. J. Am. Chem. Soc. 129(44), 13527–13536 (2007)

    Article  PubMed  CAS  Google Scholar 

  160. Payne, R., Wong, C.H.: Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem. Commun. 46(1), 21–43 (2010)

    Article  CAS  Google Scholar 

  161. Pentelute, B., Kent, S.: Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org. Lett. 9(4), 687–690 (2007)

    Article  PubMed  CAS  Google Scholar 

  162. Perez-Balderas, F., Morales-Sanfrutos, J., Hernandez-Mateo, F., Isac-Garcia, J., Santoyo-Gonzalez, F.: Click multivalent homogeneous neoglycoconjugates - synthesis and evaluation of their binding affinities. Eur. J. Org. Chem. (15), 2441–2453 (2009)

    Article  CAS  Google Scholar 

  163. Pernille Tofteng, A., Hansen, T., Brask, J., Nielsen, J., Thulstrup, P., Jensen, K.: Synthesis of functionalized de novo designed 8–16 kDa model proteins towards metal ion-binding and esterase activity. Org. Biomol. Chem. 5(14), 2225–2233 (2007)

    Article  PubMed  CAS  Google Scholar 

  164. Pieters, R.: Intervention with bacterial adhesion by multivalent carbohydrates. Med. Res. Rev. 27(6), 796–816 (2007)

    Article  PubMed  CAS  Google Scholar 

  165. Pourceau, G., Meyer, A., Vasseur, J.J., Morvan, F.: Combinatorial and automated synthesis of phosphodiester galactosyl cluster on solid support by click chemistry assisted by microwaves. J. Org. Chem. 73(15), 6014–6017 (2008)

    Article  PubMed  CAS  Google Scholar 

  166. Pourceau, G., Meyer, A., Vasseur, J.J., Morvan, F.: Synthesis of mannose and galactose oligonucleotide conjugates by bi-click chemistry. J. Org. Chem. 74(3), 1218–1222 (2009)

    Article  PubMed  CAS  Google Scholar 

  167. Pritz, S.: Enzymes in protein ligation: The coupling of peptides, peptide nucleic acids and proteins by sortase A. Mini Rev. Org. Chem. 5(1), 47–52 (2008)

    Article  CAS  Google Scholar 

  168. Pukin, A., Branderhorst, H., Sisu, C., Weijers, C., Gilbert, M., Liskamp, R., Visser, G., Zuilhof, H., Pieters, R.: Strong inhibition of cholera toxin by multivalent GM1 derivatives. ChemBioChem. 8(13), 1500–1503 (2007)

    Article  PubMed  CAS  Google Scholar 

  169. Quaderer, R., Hilvert, D.: Improved synthesis of C-terminal peptide thioesters on “safety-catch” resins using LiBr/THF. Org. Lett. 3(20), 3181–3184 (2001)

    Article  PubMed  CAS  Google Scholar 

  170. Radha Kishan, K., Sharma, A.: Salt-assisted religation of proteolyzed glutathione- S-transferase follows Hofmeister series. Prot. Pept. Lett. 17(1), 54–63 (2010)

    Article  Google Scholar 

  171. Rajagopal, S., Kent, S.: Total chemical synthesis and biophysical characterization of the minimal isoform of the KChIP2 potassium channel regulatory subunit. Prot. Sci. 16(9), 2056–2064 (2007)

    Article  CAS  Google Scholar 

  172. Rajakumar, P., Anandhan, R., Kalpana, V.: Click chemistry approach for the synthesis of water-soluble glycodendrimer with triazole as building unit. Synlett (9), 1417–1422 (2009)

    Article  CAS  Google Scholar 

  173. Renaudet, O.: Recent advances on cyclopeptide-based glycoclusters. Mini Rev. Org. Chem. 5(4), 274–286 (2008)

    Article  CAS  Google Scholar 

  174. Reymond, J.L., Darbre, T.: Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. Org. Biomol. Chem. 10, 1483–1492 (2012)

    Article  PubMed  CAS  Google Scholar 

  175. Rijkers, D., Merkx, R., Yim, C.B., Brouwer, A., Liskamp, R.: ‘Sulfo-click’ for ligation as well as for site-specific conjugation with peptides, fluorophores, and metal chelators. J. Pept. Sci. 16(1), 1–5 (2010)

    Article  PubMed  CAS  Google Scholar 

  176. Roglin, L., Lempens, E.H.M., Meijer, E.W.: A synthetic “tour de force”: Well-defined multivalent and multimodal dendritic structures for biomedical applications. Angew. Chem. Int. Ed. 50(1), 102–112 (2011)

    Article  CAS  Google Scholar 

  177. Rohde, H., Seitz, O.: Ligation-desulfurization: A powerful combination in the synthesis of peptides and glycopeptides. Biopolymers 94(4), 551–559 (2010)

    Article  PubMed  CAS  Google Scholar 

  178. Rose, K.: Facile synthesis of homogeneous artificial proteins. J. Am. Chem. Soc. 116(1), 30–33 (1994)

    Article  CAS  Google Scholar 

  179. Rosen, B., Wilson, C., Wilson, D., Peterca, M., Imam, M., Percec, V.: Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109(11), 6275–6540 (2009)

    Article  PubMed  CAS  Google Scholar 

  180. Rostovtsev, V., Green, L., Fokin, V., Sharpless, K.: A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41(14), 2596–2599 (2002)

    Article  CAS  Google Scholar 

  181. Roy, R.: A decade of glycodendrimer chemistry. Trends Glycosci. Glycotechnol. 15(85), 291–310 (2003)

    Article  CAS  Google Scholar 

  182. Roy, R., Touaibia, M.: Carbohydrate-protein and carbohydrate-carbohydrate interactions; comprehensive glycoscience. Application of multivalent mannosylated dendrimers in glycobiology, pp. 821–870. Elsevier, Utrecht (2007)

    Google Scholar 

  183. Schafmeister, C.: Molecular lego. Sci. Am. 296(2), 76–82B (2007)

    Article  CAS  Google Scholar 

  184. Schnolzer, M., Kent, S.: Constructing proteins by dovetailing unprotected synthetic peptides: Backbone-engineered HIV protease. Science 256(5054), 221–225 (1992)

    Article  PubMed  CAS  Google Scholar 

  185. Schnolzer, M., Alewood, P., Jones, A., Alewood, D., Kent, S.: In situ neutralization in Boc-chemistry solid phase peptide synthesis: Rapid, high yield assembly of difficult sequences. Int. J. Pept. Res. Ther. 13(1–2), 31–44 (2007)

    Article  CAS  Google Scholar 

  186. Sebestik, J., Niederhafner, P., Jezek, J.: Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40(2), 301–370 (2011)

    Article  PubMed  CAS  Google Scholar 

  187. Sewing, A., Hilvert, D.: Fmoc-compatible solid-phase peptide synthesis of long C-terminal peptide thioesters. Angew. Chem. Int. Ed. 40(18), 3395–3396 (2001)

    Article  Google Scholar 

  188. Shekhter, T., Metanis, N., Dawson, P., Keinan, E.: A residue outside the active site CXXC motif regulates the catalytic efficiency of glutaredoxin 3. Mol. BioSyst. 6, 231–238 (2010)

    Article  CAS  Google Scholar 

  189. Skrisovska, L., Schubert, M., Allain, F.T.: Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J. Biomol. NMR 46(1), 51–65 (2010)

    Article  PubMed  CAS  Google Scholar 

  190. Sletten, E., Bertozzi, C.: Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48(38), 6974–6998 (2009)

    Article  CAS  Google Scholar 

  191. Stockmann, H., Neves, A.A., Stairs, S., Brindle, K.M., Leeper, F.J.: Exploring isonitrile-based click chemistry for ligation with biomolecules. Org. Biomol. Chem. 9, 7303–7305 (2011)

    Article  PubMed  CAS  Google Scholar 

  192. Stoddart, J.: Molecular LEGO. Chem. Br. 24, 1203–1208 (1988)

    CAS  Google Scholar 

  193. Su, J., Hu, B.H., Lowe Jr., W., Kaufman, D., Messersmith, P.: Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomater. 31(2), 308–314 (2010)

    Article  CAS  Google Scholar 

  194. Svenson, S.: Dendrimers. Kirk-Othmer Encyclop. Chem. Technol. 26, 786–812 (2007)

    CAS  Google Scholar 

  195. Svenson, S., Tomalia, D.: Dendrimers in biomedical applications - reflections on the field. Adv. Drug Deliv. Rev. 57(15), 2106–2129 (2005)

    Article  PubMed  CAS  Google Scholar 

  196. Swinnen, D., Hilvert, D.: Facile, Fmoc-compatible solid-phase synthesis of peptide C-terminal thioesters. Org. Lett. 2(16), 2439–2442 (2000)

    CAS  Google Scholar 

  197. Tam, J., Miao, Z.: Stereospecific pseudoproline ligation of N-terminal serine, threonine, or cysteine-containing unprotected peptides. J. Am. Chem. Soc. 121(39), 9013–9022 (1999)

    Article  CAS  Google Scholar 

  198. Tam, J., Yu, Q., Miao, Z.: Orthogonal ligation strategies for peptide and protein. Biopolymers 51(5), 311–332 (1999)

    Article  PubMed  CAS  Google Scholar 

  199. Tiefenbrunn, T., Dawson, P.: Chemoselective ligation techniques: modern applications of time-honored chemistry. Biopolymers 94(1), 95–106 (2010)

    Article  PubMed  CAS  Google Scholar 

  200. Tomalia, D.: Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 30(3–4), 294–324 (2005)

    Article  CAS  Google Scholar 

  201. Torbeev, V., Kent, S.: Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV-1 protease enzyme molecule. Angew. Chem. Int. Ed. 46(10), 1667–1670 (2007)

    Article  CAS  Google Scholar 

  202. Tornoe, C., Christensen, C., Meldal, M.: Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67(9), 3057–3064 (2002)

    Article  PubMed  CAS  Google Scholar 

  203. Toth, I., Simerska, P., Fujita, Y.: Recent advances in design and synthesis of self-adjuvanting lipopeptide vaccines. Int. J. Pept. Res. Ther. 14(4), 333–340 (2008)

    Article  CAS  Google Scholar 

  204. Touaibia, M., Roy, R.: Glycodendrimers as anti-adhesion drugs against type 1 fimbriated E. coli uropathogenic infections. Mini Rev. Med. Chem. 7(12), 1270–1283 (2007)

    Google Scholar 

  205. Touaibia, M., Shiao, T., Papadopoulos, A., Vaucher, J., Wang, Q., Benhamioud, K., Roy, R.: Tri- and hexavalent mannoside clusters as potential inhibitors of type 1 fimbriated bacteria using pentaerythritol and triazole linkages. Chem. Commun. (4), 380–382 (2007)

    Article  CAS  Google Scholar 

  206. Touaibia, M., Wellens, A., Shiao, T.C., Wang, Q., Sirois, S., Bouckaert, J., Roy, R.: Mannosylated G(0) dendrimers with nanomolar affinities to Escherichia coli FimH. ChemMedChem. 2(8), 1190–1201 (2007)

    Article  PubMed  CAS  Google Scholar 

  207. Tron, G., Pirali, T., Billington, R., Canonico, P., Sorba, G., Genazzani, A.: Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 28(2), 278–308 (2008)

    Article  PubMed  CAS  Google Scholar 

  208. Tuchscherer, G., Mutter, M.: Under the influence of phi and psi. J. Pept. Sci. 11(5), 278–282 (2005)

    Article  PubMed  CAS  Google Scholar 

  209. Uhlich, N.A., Darbre, T., Reymond, J.L.: Peptide dendrimer enzyme models for ester hydrolysis and aldolization prepared by convergent thioether ligation. Org. Biomol. Chem. 9, 7071–7084 (2011)

    Article  PubMed  CAS  Google Scholar 

  210. Van Dijk, M., Rijkers, D., Liskamp, R., Van Nostrum, C., Hennink, W.: Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjug. Chem. 20(11), 2001–2016 (2009)

    Article  PubMed  CAS  Google Scholar 

  211. Villalonga-Barber, C., Micha-Screttas, M., Steele, B., Georgopolous, A., Demetzos, C.: Dendrimers as biopharmaceuticals: Synthesis and properties. Curr. Top. Med. Chem. 8(14), 1294–1309 (2008)

    Article  PubMed  CAS  Google Scholar 

  212. Von Eggelkraut-Gottanka, R., Klose, A., Beck-Sickinger, A., Beyermann, M.: Peptide α-thioester formation using standard Fmoc-chemistry. Tetrahedron Lett. 44(17), 3551–3554 (2003)

    Article  CAS  Google Scholar 

  213. Wan, Q., Danishefsky, S.: Free-radical-based, specific desulfurization of cysteine: A powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46(48), 9248–9252 (2007)

    Article  CAS  Google Scholar 

  214. Wang, P., Miranda, L.: Fmoc-protein synthesis: Preparation of peptide thioesters using a side-chain anchoring strategy. Int. J. Pept. Res. Ther. 11(2), 117–123 (2005)

    Article  CAS  Google Scholar 

  215. Wang, J., Li, H., Zou, G., Wang, L.X.: Novel template-assembled oligosaccharide clusters as epitope mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody binding study. Org. Biomol. Chem. 5(10), 1529–1540 (2007)

    Google Scholar 

  216. Wathier, M., Johnson, C., Kim, T., Grinstaff, M.: Hydrogels formed by multiple peptide ligation reactions to fasten corneal transplants. Bioconjug. Chem. 17(4), 873–876 (2006)

    Article  PubMed  CAS  Google Scholar 

  217. Weiwer, M., Chen, C.C., Kemp, M., Linhardt, R.: Synthesis and biological evaluation of non-hydrolyzable 1,2,3-triazole-linked sialic acid derivatives as neuraminidase inhibitors. Eur. J. Org. Chem. (16), 2611–2620 (2009)

    Article  CAS  Google Scholar 

  218. Whiting, M., Muldoon, J., Lin, Y.C., Silverman, S., Lindstrom, W., Olson, A., Kolb, H., Finn, M., Sharpless, K., Elder, J., Fokin, V.: Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. 45(9), 1435–1439 (2006)

    Article  CAS  Google Scholar 

  219. Wilkinson, B.L., Malins, L.R., Chun, C.K.Y., Payne, R.J.: Synthesis of MUC1-lipopeptide chimeras. Chem. Commun. 46, 6249–6251 (2010)

    Article  CAS  Google Scholar 

  220. Wu, P., Chen, X., Hu, N., Tam, U., Blixt, O., Zettl, A., Bertozzi, C.: Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew. Chem. Int. Ed. 47(27), 5022–5025 (2008)

    Article  CAS  Google Scholar 

  221. Xiao, S., Fu, N., Peckham, K., Smith, B.D.: Efficient synthesis of fluorescent squaraine rotaxane dendrimers. Org. Lett. 12(1), 140–143 (2010)

    Article  PubMed  CAS  Google Scholar 

  222. Yang, R., Pasunooti, K., Li, F., Liu, X.W., Liu, C.F.: Dual native chemical ligation at lysine. J. Am. Chem. Soc. 131(38), 13,592–13,593 (2009)

    CAS  Google Scholar 

  223. Ye, S., Kohrer, C., Huber, T., Kazmi, M., Sachdev, P., Yan, E., Bhagat, A., RajBhandary, U., Sakmar, T.: Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J. Biol. Chem. 283(3), 1525–1533 (2008)

    Article  PubMed  CAS  Google Scholar 

  224. Zhang, J., Pourceau, G., Meyer, A., Vidal, S., Praly, J.P., Souteyrand, E., Vasseur, J.J., Morvan, F., Chevolot, Y.: DNA-directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on-chip IC50 measurement assay. Biosens. Bioelectron. 24(8), 2515–2521 (2009)

    Article  PubMed  CAS  Google Scholar 

  225. Zhang, L., Tam, J.: Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers. J. Am. Chem. Soc. 119(10), 2363–2370 (1997)

    Article  CAS  Google Scholar 

  226. Zhong, W., Skwarczynski, M., Fujita, Y., Simerska, P., Good, M., Toth, I.: Design and synthesis of lipopeptide-carbohydrate assembled multivalent vaccine candidates using native chemical ligation. Aust. J. Chem. 62(9), 993–999 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Šebestík, J., Reiniš, M., Ježek, J. (2012). Synthesis of Dendrimers: Convergent and Divergent Approaches. In: Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1206-9_6

Download citation

Publish with us

Policies and ethics