Genome Size Diversity and Evolution in Land Plants

  • Ilia J. LeitchEmail author
  • Andrew R. Leitch


The amount of DNA in the nucleus of a cell is commonly referred to as the genome size or C-value and people have been estimating this character in plants and animals for over 50 years. Today, with data available for over 7,000 species (Table 19.1), land plants (embryophytes) are the best studied of the major taxonomic groups of eukaryotes. This chapter provides an overview of what is currently known about the diversity of genome sizes encountered in land plant groups and considers how such diversity might have evolved. The chapter by Greilhuber and Leitch (2012, this volume) will discuss the impact of this diversity on plants in terms of how differences in genome size have an impact at all levels of complexity, from the nucleus to the whole organism. This chapter should also be read with reference to those by Weiss-Schneeweiss and Schneeweiss (2012, this volume) who explore intra- and inter-specific chromosome complexity across angiosperms, including polyploidy and dysploidy, Murray (2012, this volume) who discusses gymnosperm chromosomes, and Barker (2012, this volume) who considers the chromosomes of monilophytes and lycophytes.


Genome Size Land Plant Large Genome Small Genome Large Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abderrahman SA (2004) Nuclear DNA content of haploid and diploid Physcomitrium pyriforme using DAPI staining. Korean J Genet 26:245–250Google Scholar
  2. Abraham A, Ninan CA, Mathew PM (1962) Studies on the cytology and phylogeny of the pteridophytes VII. Observations on one hundred species of South Indian ferns. J Indian Bot Soc 41:339–421Google Scholar
  3. APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  4. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  5. Barker MS (2013) Karyotype and genome evolution in pteridophytes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 245–253Google Scholar
  6. Barker MS, Wolf PG (2010) Unfurling fern biology in the genomics age. Bioscience 60:177–185CrossRefGoogle Scholar
  7. Barker MS, Graham SW, Rieseberg LH (2010) Comparative gymnosperm transcriptomics. Abstract for Botany 2010, Accessed on 9 July 2012
  8. Barlow BA, Wiens D (1971) The cytogeography of the loranthaceous mistletoes. Taxon 20:291–312CrossRefGoogle Scholar
  9. Bateman RM, Hilton J, Rudall PJ (2006) Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J Exp Bot 57:3471–3503PubMedCrossRefGoogle Scholar
  10. Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec 2010). Accessed on 9 July 2012
  11. Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms – targets, trends and tomorrow. Ann Bot 107:467–590PubMedCrossRefGoogle Scholar
  12. Blackwood M (1953) Chromosomes of Phylloglossum drummondii. Nature 172:591–592PubMedCrossRefGoogle Scholar
  13. Bornefeld T, Grillenberger C (1987) Some aspects of size in chromosome analysis of liverworts (Marchantiales). Nova Hedwigia 44:91–100Google Scholar
  14. Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21PubMedCrossRefGoogle Scholar
  15. Brownsey PJ, Lovis JD (1987) Chromosome numbers of the New Zealand species of Psilotum and Tmesipteris, and the phylogenetic relationships of the Psilotales. New Zealand J Bot 25:439–454CrossRefGoogle Scholar
  16. Chase MW, Fay MF, Devey DS, Maurin O, Rønsted N et al (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75Google Scholar
  17. Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091PubMedCrossRefGoogle Scholar
  18. Covas G, Schnack B (1946) Numero de chromosomas en antofitas de la region de Cuya (Republica Argentina). Revista Argent Agron 13:152–166Google Scholar
  19. Crandall-Stotler B, Stotler RE, Long DG (2009) Morphology and classification of the Marchantiophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 1–54Google Scholar
  20. Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE et al. (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749PubMedCrossRefGoogle Scholar
  21. Delevoryas T (1980) Polyploidy in gymnosperms. In: Lewis WH (ed) Polyploidy. Plenum Press, New York, pp 215–218CrossRefGoogle Scholar
  22. Dunlop DW (1949) Notes on the cytology of some lycopsids. Bull Torrey Bot Club 76:266–277CrossRefGoogle Scholar
  23. Elsik CG, Williams CG (2000) Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 264:47–55PubMedCrossRefGoogle Scholar
  24. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl Acid Res 20:3639–3644CrossRefGoogle Scholar
  25. Gao L, Su YJ, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93CrossRefGoogle Scholar
  26. Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 323–344Google Scholar
  27. Greilhuber J, Sastad SM, Flatberg KI (2003) Ploidy determination in Sphagnum samples from Svalbard, Arctic Norway, by DNA image cytometry. J Bryol 25:235–239CrossRefGoogle Scholar
  28. Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  29. Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777PubMedCrossRefGoogle Scholar
  30. Grover C, Wendel JF (2010) Recent insights into mechanisms of genome size change in plants. J Bot Article ID 382732, 8 pp. doi:10.1115/2010/382732Google Scholar
  31. Guillon JM (2004) Phylogeny of horsetails (Equisetum) based on the chloroplast rps4 gene and adjacent noncoding sequences. Syst Bot 29:251–259CrossRefGoogle Scholar
  32. Guillon JM (2007) Molecular phylogeny of horsetails (Equisetum) including chloroplast atpB sequences. J Plant Res 120:569–574PubMedCrossRefGoogle Scholar
  33. Hanson L, Leitch IJ (2002) DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Bot J Linn Soc 140:169–173CrossRefGoogle Scholar
  34. Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for 25 angiosperm families. Ann Bot 87:251–258CrossRefGoogle Scholar
  35. Ickert-Bond SM (2003) Systematics of new world Ephedra L. (Ephedraceae): integrating morphological and molecular data. Ph.D. thesis, Arizona State UniversityGoogle Scholar
  36. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  37. Jermy AC (1967) Cytomorphological variation in Selaginella. Bot J Linn Soc 60:147–158CrossRefGoogle Scholar
  38. Kejnovsky E, Leitch IJ, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582PubMedCrossRefGoogle Scholar
  39. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  40. Khandelwal S (1990) Chromosome evolution in the genus Ophioglossum L. Bot J Linn Soc 102:205–217CrossRefGoogle Scholar
  41. Kuta E, Przywara L (2000) Cytotaxonomy of bryophytes in the Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Kraców, Poland. IOPB Newsl 32:3–8Google Scholar
  42. Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549PubMedCrossRefGoogle Scholar
  43. Large MF, Braggins JE (1989) An assessment of characters of taxonomic significance in the genus Pilularia (Marsileaceae): with particular reference to P. americana, P. novae-follandiae, and P. novae-zelandiae. New Zealand J Bot 27:481–486CrossRefGoogle Scholar
  44. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  45. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483PubMedCrossRefGoogle Scholar
  46. Leitch AR, Leitch IJ. (2012) Ecolgoical and genetic factors cause contrasting genome dynamics in seed plants. New Phytol 194:629–646Google Scholar
  47. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl A):85–94CrossRefGoogle Scholar
  48. Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217PubMedCrossRefGoogle Scholar
  49. Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot Article ID 862516, 18 pp. doi:10.1155/2010/862516Google Scholar
  50. Lesho CL (1994) A summary of chromosome numbers in the Marsileaceae, with counts for additional species of Marsilea. Am Fern J 84:121–125CrossRefGoogle Scholar
  51. Loyal DS (1962) Abnormal sporelings of Regnellidium diphyllum Lindm. and chromosome number of the genus. Res Bull (NS) Panjab Univ 13:25–30Google Scholar
  52. Manton I (1950) Problems of cytology and evolution in the Pteridophyta. Cambridge University Press, CambridgeGoogle Scholar
  53. Marchant CJ (1968) Chromosome patterns and nuclear phenomena in the cycad families Stangeriaceae and Zamiaceae. Chromosoma 24:100–134CrossRefGoogle Scholar
  54. Martin NJ (1983) Nuclear DNA variation in the Australasian Loranthaceae. In: Calder M, Berhnhardt P (eds) Biology of mistletoes. Academic, Sydney, pp 277–293Google Scholar
  55. Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR et al (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354PubMedCrossRefGoogle Scholar
  56. Mishler BD, Kelch DG (2009) Phylogenomics and early land plant evolution. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 175–197Google Scholar
  57. Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z et al (2009) Evolution of genome size and complexity in Pinus. PLoS One 4:e4332PubMedCrossRefGoogle Scholar
  58. Murray B (2013) Karyotype variation and evolution in gymnosperms. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 231–243Google Scholar
  59. Nagalingum NS, Nowak MD, Pryer KM (2008) Assessing phylogenetic relationships in extant heterosporous ferns (Salviniales), with a focus on Pilularia and Salvinia. Bot J Linn Soc 157:673–685CrossRefGoogle Scholar
  60. Nakazato T, Jung MK, Housworth EA, Rieseberg LH, Gastony GJ (2006) Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics 173:1585–1597PubMedCrossRefGoogle Scholar
  61. Nakazato T, Barker MS, Rieseberg LH, Gastony GL (2008) Evolution of the nuclear genome of ferns and lycophytes. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, UK, pp 175–198CrossRefGoogle Scholar
  62. Newton ME (1985) Heterochromatin diversity in two species of Pellia (Hepaticae) as revealed by C-, Q-, N- and Hoechst 33258-banding. Chromosoma 92:378–386CrossRefGoogle Scholar
  63. Newton ME (1987) Developmental aspects of chromatin condensation in liverworts. Bryologist 90:376–382CrossRefGoogle Scholar
  64. Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59:538–558Google Scholar
  65. Ogur M, Erickson RO, Rosen GU, Sax KB, Holden C (1951) Nucleic acids in relation to cell division in Lilium longiflorum. Exp Cell Res 2:73–89CrossRefGoogle Scholar
  66. Orzechowska M, Siwinska D, Maluszynska J (2010) Molecular cytogenetic analyses of haploid and allopolyploid Pellia species. J Bryol 32:113–121CrossRefGoogle Scholar
  67. Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445PubMedCrossRefGoogle Scholar
  68. Parchman T, Geist K, Grahnen J, Benkman C, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180PubMedCrossRefGoogle Scholar
  69. Paton AJ, Brummitt N, Govaerts R, Harman K, Hinchcliffe S, Allkin B, Lughadha EN (2008) Towards target 1 of the global strategy for plant conservation: a working list of all known plant species – progress and prospects. Taxon 57:602–611Google Scholar
  70. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15CrossRefGoogle Scholar
  71. Pena MJ, Darvill AG, Eberhard S, York WS, O’Neill MA (2008) Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants. Glycobiology 18:891–904PubMedCrossRefGoogle Scholar
  72. Peruzzi L, Cesca G, Puntillo D (2003) Isoetes (Isoetaceae), Ophioglossum and Botrychium (Ophioglossaceae) in Calabria (S Italy): more karyological and taxonomical data. Caryologia 56:359–363Google Scholar
  73. Pichersky E, Soltis D, Soltis P (1990) Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. Proc Natl Acad Sci USA 87:195–199PubMedCrossRefGoogle Scholar
  74. Proskauer J (1950) Notes on Hepaticae. I. Bryologist 53:166–172Google Scholar
  75. Proskauer J (1958) Studies on the Anthocerotales. V. Phytomorphology 7:113–135Google Scholar
  76. Proskauer J (1967) The variable ploidy life history of a monoecious self-fertilizing hornwort (Anthercerotales). Am J Bot 54:641–642Google Scholar
  77. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622PubMedCrossRefGoogle Scholar
  78. Przywara L, Kuta E (1995) Karyology of bryophytes. Pol Bot Stud 9:1–83Google Scholar
  79. Qiu YL (2008) Phylogeny and evolution of charophytic algae and land plants. J Syst Evol 46:287–306Google Scholar
  80. Qiu YL, Li LB, Wang B, Chen ZD, Knoop V et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516PubMedCrossRefGoogle Scholar
  81. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  82. Rensing SA, Beike AK, Lang D (2013) Evolutionary importance of generative polyploidy for genome evolution of haploid-dominant land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 295–305Google Scholar
  83. Renzaglia KS, Rasch EM, Pike LM (1995) Estimates of nuclear DNA content in bryophyte sperm cells: phylogenetic considerations. Am J Bot 82:18–25CrossRefGoogle Scholar
  84. Sax K, Beal JM (1934) Chromosomes of the Cycadales. J Arnold Arbor 15:255–258Google Scholar
  85. Schneider H, Smith AR, Pryer KM (2009) Is morphology really at odds with molecules in estimating fern phylogeny? Syst Bot 34:455–475CrossRefGoogle Scholar
  86. Schuettpelz E, Pryer KM (2008) Fern phylogeny. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 395–416CrossRefGoogle Scholar
  87. Shaw J, Renzaglia K (2004) Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581PubMedCrossRefGoogle Scholar
  88. Soltis PS, Soltis DE (2013) Angiosperm phylogeny: A framework for studies of genome evolution. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 1–11Google Scholar
  89. Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603PubMedCrossRefGoogle Scholar
  90. Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25PubMedCrossRefGoogle Scholar
  91. Stergianou KK, Fowler K (1990) Chromosome numbers and taxonomic implications in the fern genus Azolla (Azollaceae). Plant Syst Evol 173:223–239CrossRefGoogle Scholar
  92. Takamiya M (1993) Comparative karyomorphology and interrelationships of Selaginella in Japan. J Plant Res 106:149–166CrossRefGoogle Scholar
  93. Tatuno S, Takei M (1969) Cytological studies of Salviniaceae I. Karyotype of two species in the genus Salvinia. Bot Magazine 82:403–408Google Scholar
  94. Temsch EM, Greilhuber J, Krisai R (1998) Genome size in Sphagnum (peat moss). Bot Acta 111:325–330Google Scholar
  95. Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80Google Scholar
  96. Tindale MD, Roy SK (2002) A cytotaxonomic survey of the Pteridophyta of Australia. Aust Syst Bot 15:839–937CrossRefGoogle Scholar
  97. Troìa A (2001) The genus Isoëtes L. (Lycophyta, Isoëtaceae): synthesis of karyological data. Webbia 56:201–218Google Scholar
  98. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  99. Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643PubMedCrossRefGoogle Scholar
  100. Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540PubMedCrossRefGoogle Scholar
  101. Voglmayr H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot 85:531–546CrossRefGoogle Scholar
  102. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128PubMedCrossRefGoogle Scholar
  103. Wang XY, Shi XL, Hao BL, Ge S, Luo JC (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946PubMedCrossRefGoogle Scholar
  104. Weiss-Schneeweiss H, Schneeweiss GM (2013) Karyotype diversity and evolutionary trends in angiosperms. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 209–230Google Scholar
  105. Werner T, Braukmann TWA, Kuzmina M, Stefanovic S (2009) Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet 55:323–337CrossRefGoogle Scholar
  106. Wiens D (1964) Chromosome numbers in North American Loranthaceae: (Arceuthobium, Phoradendron, Psittacanthus, Struthanthus). Am J Bot 51:1–6CrossRefGoogle Scholar
  107. Wiens D (1968) Chromosomal and flowering characteristics in dwarf mistletoes (Arceuthobium). Am J Bot 55:325–334CrossRefGoogle Scholar
  108. Wiens D, Barlow BA (1971) The cytogeography and relationships of the viscaceous and eremolepidaceous mistletoes. Taxon 20:313–332CrossRefGoogle Scholar
  109. Zheng M, Zhu R-L (2009) Karyological studies on some liverworts from China and Singapore. Fieldiana Bot 81:87Google Scholar
  110. Zonneveld BJM (2010) New record holders for maximum genome size in eudicots and monocots. J Bot. doi: 10.1155/2010/527357, Article ID 527357

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Jodrell LaboratoryRoyal Botanic Gardens, KewRichmond, SurreyUK
  2. 2.School of Biological and Chemical SciencesQueen Mary, University of LondonLondonUK

Personalised recommendations