Skip to main content

Genome Size Diversity and Evolution in Land Plants

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

The amount of DNA in the nucleus of a cell is commonly referred to as the genome size or C-value and people have been estimating this character in plants and animals for over 50 years. Today, with data available for over 7,000 species (Table 19.1), land plants (embryophytes) are the best studied of the major taxonomic groups of eukaryotes. This chapter provides an overview of what is currently known about the diversity of genome sizes encountered in land plant groups and considers how such diversity might have evolved. The chapter by Greilhuber and Leitch (2012, this volume) will discuss the impact of this diversity on plants in terms of how differences in genome size have an impact at all levels of complexity, from the nucleus to the whole organism. This chapter should also be read with reference to those by Weiss-Schneeweiss and Schneeweiss (2012, this volume) who explore intra- and inter-specific chromosome complexity across angiosperms, including polyploidy and dysploidy, Murray (2012, this volume) who discusses gymnosperm chromosomes, and Barker (2012, this volume) who considers the chromosomes of monilophytes and lycophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrahman SA (2004) Nuclear DNA content of haploid and diploid Physcomitrium pyriforme using DAPI staining. Korean J Genet 26:245–250

    CAS  Google Scholar 

  • Abraham A, Ninan CA, Mathew PM (1962) Studies on the cytology and phylogeny of the pteridophytes VII. Observations on one hundred species of South Indian ferns. J Indian Bot Soc 41:339–421

    Google Scholar 

  • APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Barker MS (2013) Karyotype and genome evolution in pteridophytes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 245–253

    Google Scholar 

  • Barker MS, Wolf PG (2010) Unfurling fern biology in the genomics age. Bioscience 60:177–185

    Article  Google Scholar 

  • Barker MS, Graham SW, Rieseberg LH (2010) Comparative gymnosperm transcriptomics. Abstract for Botany 2010, http://2010.botanyconference.org/engine/search/index.php?func=detail&aid=437. Accessed on 9 July 2012

  • Barlow BA, Wiens D (1971) The cytogeography of the loranthaceous mistletoes. Taxon 20:291–312

    Article  Google Scholar 

  • Bateman RM, Hilton J, Rudall PJ (2006) Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J Exp Bot 57:3471–3503

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec 2010). http://data.kew.org/cvalues/. Accessed on 9 July 2012

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms – targets, trends and tomorrow. Ann Bot 107:467–590

    Article  PubMed  CAS  Google Scholar 

  • Blackwood M (1953) Chromosomes of Phylloglossum drummondii. Nature 172:591–592

    Article  PubMed  CAS  Google Scholar 

  • Bornefeld T, Grillenberger C (1987) Some aspects of size in chromosome analysis of liverworts (Marchantiales). Nova Hedwigia 44:91–100

    Google Scholar 

  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21

    Article  PubMed  CAS  Google Scholar 

  • Brownsey PJ, Lovis JD (1987) Chromosome numbers of the New Zealand species of Psilotum and Tmesipteris, and the phylogenetic relationships of the Psilotales. New Zealand J Bot 25:439–454

    Article  Google Scholar 

  • Chase MW, Fay MF, Devey DS, Maurin O, Rønsted N et al (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75

    Google Scholar 

  • Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Covas G, Schnack B (1946) Numero de chromosomas en antofitas de la region de Cuya (Republica Argentina). Revista Argent Agron 13:152–166

    Google Scholar 

  • Crandall-Stotler B, Stotler RE, Long DG (2009) Morphology and classification of the Marchantiophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 1–54

    Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE et al. (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  • Delevoryas T (1980) Polyploidy in gymnosperms. In: Lewis WH (ed) Polyploidy. Plenum Press, New York, pp 215–218

    Chapter  Google Scholar 

  • Dunlop DW (1949) Notes on the cytology of some lycopsids. Bull Torrey Bot Club 76:266–277

    Article  Google Scholar 

  • Elsik CG, Williams CG (2000) Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 264:47–55

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl Acid Res 20:3639–3644

    Article  CAS  Google Scholar 

  • Gao L, Su YJ, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93

    Article  Google Scholar 

  • Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 323–344

    Google Scholar 

  • Greilhuber J, Sastad SM, Flatberg KI (2003) Ploidy determination in Sphagnum samples from Svalbard, Arctic Norway, by DNA image cytometry. J Bryol 25:235–239

    Article  Google Scholar 

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  PubMed  CAS  Google Scholar 

  • Grover C, Wendel JF (2010) Recent insights into mechanisms of genome size change in plants. J Bot Article ID 382732, 8 pp. doi:10.1115/2010/382732

    Google Scholar 

  • Guillon JM (2004) Phylogeny of horsetails (Equisetum) based on the chloroplast rps4 gene and adjacent noncoding sequences. Syst Bot 29:251–259

    Article  Google Scholar 

  • Guillon JM (2007) Molecular phylogeny of horsetails (Equisetum) including chloroplast atpB sequences. J Plant Res 120:569–574

    Article  PubMed  Google Scholar 

  • Hanson L, Leitch IJ (2002) DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Bot J Linn Soc 140:169–173

    Article  Google Scholar 

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for 25 angiosperm families. Ann Bot 87:251–258

    Article  CAS  Google Scholar 

  • Ickert-Bond SM (2003) Systematics of new world Ephedra L. (Ephedraceae): integrating morphological and molecular data. Ph.D. thesis, Arizona State University

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jermy AC (1967) Cytomorphological variation in Selaginella. Bot J Linn Soc 60:147–158

    Article  Google Scholar 

  • Kejnovsky E, Leitch IJ, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582

    Article  PubMed  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Khandelwal S (1990) Chromosome evolution in the genus Ophioglossum L. Bot J Linn Soc 102:205–217

    Article  Google Scholar 

  • Kuta E, Przywara L (2000) Cytotaxonomy of bryophytes in the Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Kraców, Poland. IOPB Newsl 32:3–8

    Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  PubMed  CAS  Google Scholar 

  • Large MF, Braggins JE (1989) An assessment of characters of taxonomic significance in the genus Pilularia (Marsileaceae): with particular reference to P. americana, P. novae-follandiae, and P. novae-zelandiae. New Zealand J Bot 27:481–486

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR, Leitch IJ. (2012) Ecolgoical and genetic factors cause contrasting genome dynamics in seed plants. New Phytol 194:629–646

    Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl A):85–94

    Article  CAS  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot Article ID 862516, 18 pp. doi:10.1155/2010/862516

    Google Scholar 

  • Lesho CL (1994) A summary of chromosome numbers in the Marsileaceae, with counts for additional species of Marsilea. Am Fern J 84:121–125

    Article  Google Scholar 

  • Loyal DS (1962) Abnormal sporelings of Regnellidium diphyllum Lindm. and chromosome number of the genus. Res Bull (NS) Panjab Univ 13:25–30

    Google Scholar 

  • Manton I (1950) Problems of cytology and evolution in the Pteridophyta. Cambridge University Press, Cambridge

    Google Scholar 

  • Marchant CJ (1968) Chromosome patterns and nuclear phenomena in the cycad families Stangeriaceae and Zamiaceae. Chromosoma 24:100–134

    Article  Google Scholar 

  • Martin NJ (1983) Nuclear DNA variation in the Australasian Loranthaceae. In: Calder M, Berhnhardt P (eds) Biology of mistletoes. Academic, Sydney, pp 277–293

    Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR et al (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Mishler BD, Kelch DG (2009) Phylogenomics and early land plant evolution. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 175–197

    Google Scholar 

  • Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z et al (2009) Evolution of genome size and complexity in Pinus. PLoS One 4:e4332

    Article  PubMed  CAS  Google Scholar 

  • Murray B (2013) Karyotype variation and evolution in gymnosperms. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 231–243

    Google Scholar 

  • Nagalingum NS, Nowak MD, Pryer KM (2008) Assessing phylogenetic relationships in extant heterosporous ferns (Salviniales), with a focus on Pilularia and Salvinia. Bot J Linn Soc 157:673–685

    Article  Google Scholar 

  • Nakazato T, Jung MK, Housworth EA, Rieseberg LH, Gastony GJ (2006) Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics 173:1585–1597

    Article  PubMed  CAS  Google Scholar 

  • Nakazato T, Barker MS, Rieseberg LH, Gastony GL (2008) Evolution of the nuclear genome of ferns and lycophytes. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, UK, pp 175–198

    Chapter  Google Scholar 

  • Newton ME (1985) Heterochromatin diversity in two species of Pellia (Hepaticae) as revealed by C-, Q-, N- and Hoechst 33258-banding. Chromosoma 92:378–386

    Article  Google Scholar 

  • Newton ME (1987) Developmental aspects of chromatin condensation in liverworts. Bryologist 90:376–382

    Article  Google Scholar 

  • Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59:538–558

    Google Scholar 

  • Ogur M, Erickson RO, Rosen GU, Sax KB, Holden C (1951) Nucleic acids in relation to cell division in Lilium longiflorum. Exp Cell Res 2:73–89

    Article  CAS  Google Scholar 

  • Orzechowska M, Siwinska D, Maluszynska J (2010) Molecular cytogenetic analyses of haploid and allopolyploid Pellia species. J Bryol 32:113–121

    Article  Google Scholar 

  • Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445

    Article  PubMed  Google Scholar 

  • Parchman T, Geist K, Grahnen J, Benkman C, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180

    Article  PubMed  CAS  Google Scholar 

  • Paton AJ, Brummitt N, Govaerts R, Harman K, Hinchcliffe S, Allkin B, Lughadha EN (2008) Towards target 1 of the global strategy for plant conservation: a working list of all known plant species – progress and prospects. Taxon 57:602–611

    Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Pena MJ, Darvill AG, Eberhard S, York WS, O’Neill MA (2008) Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants. Glycobiology 18:891–904

    Article  PubMed  CAS  Google Scholar 

  • Peruzzi L, Cesca G, Puntillo D (2003) Isoetes (Isoetaceae), Ophioglossum and Botrychium (Ophioglossaceae) in Calabria (S Italy): more karyological and taxonomical data. Caryologia 56:359–363

    Google Scholar 

  • Pichersky E, Soltis D, Soltis P (1990) Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. Proc Natl Acad Sci USA 87:195–199

    Article  PubMed  CAS  Google Scholar 

  • Proskauer J (1950) Notes on Hepaticae. I. Bryologist 53:166–172

    Google Scholar 

  • Proskauer J (1958) Studies on the Anthocerotales. V. Phytomorphology 7:113–135

    Google Scholar 

  • Proskauer J (1967) The variable ploidy life history of a monoecious self-fertilizing hornwort (Anthercerotales). Am J Bot 54:641–642

    Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622

    Article  PubMed  CAS  Google Scholar 

  • Przywara L, Kuta E (1995) Karyology of bryophytes. Pol Bot Stud 9:1–83

    Google Scholar 

  • Qiu YL (2008) Phylogeny and evolution of charophytic algae and land plants. J Syst Evol 46:287–306

    Google Scholar 

  • Qiu YL, Li LB, Wang B, Chen ZD, Knoop V et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Beike AK, Lang D (2013) Evolutionary importance of generative polyploidy for genome evolution of haploid-dominant land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 295–305

    Google Scholar 

  • Renzaglia KS, Rasch EM, Pike LM (1995) Estimates of nuclear DNA content in bryophyte sperm cells: phylogenetic considerations. Am J Bot 82:18–25

    Article  Google Scholar 

  • Sax K, Beal JM (1934) Chromosomes of the Cycadales. J Arnold Arbor 15:255–258

    Google Scholar 

  • Schneider H, Smith AR, Pryer KM (2009) Is morphology really at odds with molecules in estimating fern phylogeny? Syst Bot 34:455–475

    Article  Google Scholar 

  • Schuettpelz E, Pryer KM (2008) Fern phylogeny. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 395–416

    Chapter  Google Scholar 

  • Shaw J, Renzaglia K (2004) Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581

    Article  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2013) Angiosperm phylogeny: A framework for studies of genome evolution. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 1–11

    Google Scholar 

  • Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603

    Article  PubMed  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    Article  PubMed  CAS  Google Scholar 

  • Stergianou KK, Fowler K (1990) Chromosome numbers and taxonomic implications in the fern genus Azolla (Azollaceae). Plant Syst Evol 173:223–239

    Article  Google Scholar 

  • Takamiya M (1993) Comparative karyomorphology and interrelationships of Selaginella in Japan. J Plant Res 106:149–166

    Article  Google Scholar 

  • Tatuno S, Takei M (1969) Cytological studies of Salviniaceae I. Karyotype of two species in the genus Salvinia. Bot Magazine 82:403–408

    Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (1998) Genome size in Sphagnum (peat moss). Bot Acta 111:325–330

    Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80

    Google Scholar 

  • Tindale MD, Roy SK (2002) A cytotaxonomic survey of the Pteridophyta of Australia. Aust Syst Bot 15:839–937

    Article  Google Scholar 

  • Troìa A (2001) The genus Isoëtes L. (Lycophyta, Isoëtaceae): synthesis of karyological data. Webbia 56:201–218

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot 85:531–546

    Article  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Shi XL, Hao BL, Ge S, Luo JC (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Schneeweiss GM (2013) Karyotype diversity and evolutionary trends in angiosperms. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 209–230

    Google Scholar 

  • Werner T, Braukmann TWA, Kuzmina M, Stefanovic S (2009) Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet 55:323–337

    Article  CAS  Google Scholar 

  • Wiens D (1964) Chromosome numbers in North American Loranthaceae: (Arceuthobium, Phoradendron, Psittacanthus, Struthanthus). Am J Bot 51:1–6

    Article  Google Scholar 

  • Wiens D (1968) Chromosomal and flowering characteristics in dwarf mistletoes (Arceuthobium). Am J Bot 55:325–334

    Article  Google Scholar 

  • Wiens D, Barlow BA (1971) The cytogeography and relationships of the viscaceous and eremolepidaceous mistletoes. Taxon 20:313–332

    Article  Google Scholar 

  • Zheng M, Zhu R-L (2009) Karyological studies on some liverworts from China and Singapore. Fieldiana Bot 81:87

    Google Scholar 

  • Zonneveld BJM (2010) New record holders for maximum genome size in eudicots and monocots. J Bot. doi:10.1155/2010/527357, Article ID 527357

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia J. Leitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Leitch, I.J., Leitch, A.R. (2013). Genome Size Diversity and Evolution in Land Plants. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_19

Download citation

Publish with us

Policies and ethics