Skip to main content

Evolutionary Importance of Generative Polyploidy for Genome Evolution of Haploid-Dominant Land Plants

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

In this chapter, we focus on aspects and effects of polyploidization in haploid-dominant plants, like bryophytes, which have a dominant haploid gametophyte and a reduced diploid sporophytic generation. What role does polyploidization play in the evolution of these organisms? Can we find evidence of ancient and recent polyploidization events in the genomes of extant bryophytes? What is the importance of auto- versus allopolyploidy? What is the extent of the paranome, i.e. the genomic fraction of paralogs, within a bryophyte genome? What is the prevalent model for functionalization of paralogs and which kind of functional classes of genes have been retained preferentially? We come to the conclusion that the established moss model P. patens and its siblings appears as a model ideally suited to study genome evolution through polyploidization and hybridization in haploid-dominant organisms. Moreover, due to the extensive range of morphological differences of the sporophyte, ranging from the elaborate F. hygrometrica to the vastly reduced P. patens morphology, Funariaceae are an excellent model to study gene-phene evolution. The fact that there is a low breeding barrier among the family also enables crossing and associated genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T (2010) Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci USA 107:11128–11133

    Article  PubMed  CAS  Google Scholar 

  • Ando H (1980) Evolution of bryophytes in relation to their sexuality. Proc Bryol Soc Jpn 2:129–130

    Google Scholar 

  • Andrews AL (1918) A new hybrid in Physcomitrium. Torreya 18:52–54

    Google Scholar 

  • Andrews AL (1942) Taxonomic notes II. Another natural hybrid in the Funariaceae. Bryologist 45:176–178

    Google Scholar 

  • Beike AK, Rensing SA (2010) The Physcomitrella patens genome—a first stepping stone towards understanding bryophyte and land plant evolution. Trop Bryol 31:43–49

    Google Scholar 

  • Blanc G, Wolfe KH (2004a) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004b) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Britton EG (1895) Contributions to American bryology IX. Bull Torrey Bot Club 22:62–68

    Article  Google Scholar 

  • Bryan VS (1957) Cytotaxonomic studies in the Ephemeraceae and Funariaceae. Bryologist 60:103–126

    Google Scholar 

  • Cove DJ, Quatrano RS (2006) Agravitropic mutants of the moss Ceratodon purpureus do not complement mutants having a reversed gravitropic response. Plant Cell Environ 29:1379–1387

    Article  PubMed  Google Scholar 

  • Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  PubMed  CAS  Google Scholar 

  • Cove DJ, Perroud P-F, Charron AJ, Mcdaniel SF, Khandelwal A, Quatrano RS (2009) The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb Protoc 2009: pdb.emo115

    Google Scholar 

  • Crawford M, Jesson LK, Garnock-Jones PJ (2009) Correlated evolution of sexual system and life-history traits in mosses. Evolution 63:1129–1142

    Article  PubMed  Google Scholar 

  • Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892, In: Proceedings of the SMBE tri-national young investigators’ workshop 2005

    Article  PubMed  CAS  Google Scholar 

  • Engel PP (1968) The induction of biochemical and morphological mutants in the moss Physcomitrella patens. Am J Bot 55:438–446

    Article  CAS  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Frahm J-P (2001) Biologie der Moose. Spektrum Akademischer Verlag, Heidelberg/Berlin

    Google Scholar 

  • Frahm J-P (2010) Die Laubmoosflora des Baltischen Bernsteinwaldes. Weißdorn-Verlag, Jena

    Google Scholar 

  • Frank W, Decker EL, Reski R (2005) Molecular tools to study Physcomitrella patens. Plant Biol 7:220–227

    Article  PubMed  CAS  Google Scholar 

  • Fritsch R (1991) Index to bryophyte chromosome counts. Bryophytorum Bibliotheka vol 40. J. Cramer/Gebrueder Borntraeger, Berlin/Stuttgart

    Google Scholar 

  • Gout JF, Duret L, Kahn D (2009) Differential retention of metabolic genes following whole-genome duplication. Mol Biol Evol 26:1067–1072

    Article  PubMed  CAS  Google Scholar 

  • Husband BC, Baldwin SJ, Suda J (2013) The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 255–276

    Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    Article  PubMed  CAS  Google Scholar 

  • Karlin EF, Boles SB, Ricca M, Temsch EM, Greilhuber J, Shaw AJ (2009) Three-genome mosses: complex double allopolyploid origins for triploid gametophytes in Sphagnum. Mol Ecol 18:1439–1454

    Article  PubMed  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546

    Article  PubMed  CAS  Google Scholar 

  • Lang D (2008) Comparative genomic and phylogenomic analysis of the moss Physcomitrella patens (Hedw.) Bruch & Schimp. Albert-Ludwigs-Universität Freiburg, Freiburg

    Google Scholar 

  • Lang D, Eisinger J, Reski R, Rensing SA (2005) Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism among mosses. Plant Biol 7:228–237

    Article  PubMed  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  PubMed  CAS  Google Scholar 

  • Lang D, Weiche B, Timmerhaus G, Richardt S, Riano-Pachon DM, Correa LG, Reski R, Mueller-Roeber B, Rensing SA (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2:488–503

    Article  PubMed  Google Scholar 

  • Longton RE (1976) Reproductive biology and evolutionary potential in bryophytes. J Hattori Bot Lab 41:205–223

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:236–249

    Article  PubMed  CAS  Google Scholar 

  • Markmann-Mulisch U, Hadi MZ, Koepchen K, Alonso JC, Russo VE, Schell J, Reiss B (2002) The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proc Natl Acad Sci USA 99:2959–2964

    Article  PubMed  CAS  Google Scholar 

  • Markmann-Mulisch U, Wendeler E, Zobell O, Schween G, Steinbiss HH, Reiss B (2007) Differential requirements for RAD51 in Physcomitrella patens and Arabidopsis thaliana development and DNA damage repair. Plant Cell 19:3080–3089

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Lang D, Hanke ST, Mueller SJ, Sarnighausen E, Vervliet-Scheebaum M, Reski R (2009a) Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing. Mol Plant 2:1359–1372

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Lang D, Heckmann J, Zimmer AD, Vervliet-Scheebaum M, Reski R (2009b) A uniquely high number of ftsZ genes in the moss Physcomitrella patens. Plant Biol 11:744–750

    Article  PubMed  CAS  Google Scholar 

  • McDaniel SF (2005) Genetic correlations do not constrain the evolution of sexual dimorphism in the moss Ceratodon purpureus. Evolution 59:2353–2361

    PubMed  Google Scholar 

  • McDaniel SF, von Stackelberg M, Richardt S, Quatrano RS, Reski R, Rensing SA (2010) The speciation history of the Physcomitrium-Physcomitrella species complex. Evolution 64:217–231

    Article  PubMed  CAS  Google Scholar 

  • Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480

    Article  PubMed  CAS  Google Scholar 

  • Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    Article  PubMed  CAS  Google Scholar 

  • Mueller F (1995) Neue und bemerkenswerte Moosfunde aus Zaire. Trop Bryol 10:81–90

    Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:363–378

    Article  Google Scholar 

  • Natcheva R, Cronberg N (2004) What do we know about hybridization among bryophytes in nature? Can J Bot 82:1687–1704

    Article  Google Scholar 

  • Newton AE, Wikström N, Bell N, Forrest LL, Ignatov MS (2007) Dating the diversification of the pleurocarpous mosses. In: Tangney N (ed) Pleurocarpous mosses: systematics and evolution. Systematics Association Special, vol 71. Systematics Association, CRC Press, Boca Raton

    Google Scholar 

  • Ochi H (1968) A revision of the family Funariaceae (Musci) in Japan and the adjacent regions. Jpn J Bot 20:1–34

    Google Scholar 

  • Odrzykoski IJ, Chudzinska E, Szweykowski J (1996) The hybrid origin of the polyploid liverwort Pellia borealis. Genetica 98:75–86

    Article  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5:89

    Article  PubMed  Google Scholar 

  • Orzechowska M, Siwinska D, Maluszynska J (2010) Molecular cytogenetic analyses of haploid and allopolyploid Pellia species. J Bryol 32:113–121

    Article  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  PubMed  CAS  Google Scholar 

  • Pettet A (1964) Hybrid sporophytes in Funariaceae. I. Hybrid sporophytes on Physcomitrella patens (Hedw.) B. & S., and Physcomitrium sphaericum (Schkuhr) Brid. in Britain. Trans Br Bryol Soc 4:642–648

    Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Quatrano RS, McDaniel SF, Khandelwal A, Perroud PF, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10:182–189

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Rombauts S, Van de Peer Y, Reski R (2002) Moss transcriptome and beyond. Trends Plant Sci 7:535–538

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:130

    Article  PubMed  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD (2009) Comparative genomics. In: Knight C, Perroud P-F, Cove D (eds) The moss Physcomitrella patens, vol 36. Wiley-Blackwell, Oxford, pp 42–75

    Google Scholar 

  • Reski R, Frank W (2005) Moss (Physcomitrella patens) functional genomics―gene discovery and tool development, with implications for crop plants and human health. Brief Funct Genomic Proteomic 4:48–57

    Article  PubMed  CAS  Google Scholar 

  • Reski R, Faust M, Wang XH, Wehe M, Abel WO (1994) Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G. Mol Gen Genet 244:352–359

    Article  PubMed  CAS  Google Scholar 

  • Ricca M, Shaw AJ (2010) Allopolyploidy and homoploid hybridization in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta). Biol J Linn Soc 99:135–151

    Article  Google Scholar 

  • Schween G, Egener T, Fritzkowsky D, Granado J, Guitton M-C, Hartmann N, Hohe A, Holtorf H, Lang D, Lucht JM, Reinhard C, Rensing SA, Schlink K, Schulte J, Reski R (2005a) Large-scale analysis of 73,329 gene-disrupted Physcomitrella mutants: production parameters and mutant phenotypes. Plant Biol 7:238–250

    Article  Google Scholar 

  • Schween G, Hohe A, Schulte J, Reski R (2005b) Effect of ploidy level on growth, differentiation and phenotype in Physcomitrella patens. Bryologist 108:27–35

    Article  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana genome. Trends Genet 20:461–464

    Article  PubMed  CAS  Google Scholar 

  • Shaw AJ, Pokorny L, Shaw B, Ricca M, Boles S, Szovenyi P (2008) Genetic structure and genealogy in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta). Mol Phylogenet Evol 49:304–317

    Article  PubMed  CAS  Google Scholar 

  • Sloover JL (1975) Note de bryologie africaine III. Physcomitrella magdalenae sp. nov. Bull Jard Bot Natl Belg/Bull Natl Plant Belg 45:131–135

    Article  Google Scholar 

  • Smith AJE (1979) Cytogenetics, biosystematics and evolution in the Bryophyta. Adv Bot Res 6:195–276

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE (2013) Angiosperm phylogeny: A framework for studies of genome evolution. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 1–11

    Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331

    Article  PubMed  CAS  Google Scholar 

  • Szovenyi P, Rensing SA, Lang D, Wray GA, Shaw AJ (2010) Generation-biased gene expression in a bryophyte model system. Mol Biol Evol 2010:20

    Google Scholar 

  • Tan BC (1978) Physcomitrella patens (Musci: Funariaceae) in North America. Bryologist 81:561–567

    Article  Google Scholar 

  • Tan BC (1979) A new classification for the genus Physcomitrella B.S.G. J Hattori Bot Lab 46:327–336

    Google Scholar 

  • Tanahashi T, Sumikawa N, Kato M, Hasebe M (2005) Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development 132:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Taylor PJ, Eppley SM, Jesson LK (2007) Sporophytic inbreeding depression in mosses occurs in a species with separate sexes but not in a species with combined sexes. Am J Bot 94:1853–1859

    Article  PubMed  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N (2007) The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 24:699–709

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    Article  PubMed  Google Scholar 

  • van Hoek MJ, Hogeweg P (2009) Metabolic adaptation after whole genome duplication. Mol Biol Evol 26:2441–2453

    Article  PubMed  Google Scholar 

  • Veron AS, Kaufmann K, Bornberg-Bauer E (2007) Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol Biol Evol 24:670–678

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang H, Bowers JE, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177:1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wettstein F (1924) Gattungskreuzungen bei Moosen. Z Indukt Abstammungs-Vererbungsl 33:253–257

    Google Scholar 

  • Wettstein F (1932) Genetik. In: Verdoorn F (ed) Manual of bryology. Nijhoff, The Hague, pp 233–272

    Google Scholar 

  • Wyatt R, Odrzykoski IJ, Stoneburner A, Bass HW, Galau GA (1988) Allopolyploidy in bryophytes: multiple origins of Plagiomnium medium. Proc Natl Acad Sci USA 85:5601–5604

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R, Odrzykoski IJ, Stoneburner A (1992) Isozyme evidence of reticulate evolution in mosses: Plagiomnium medium is an allopolyploid of P. ellipticum × P. insigne. Syst Bot 17:532–550

    Article  Google Scholar 

  • Zimmer A, Lang D, Richardt S, Frank W, Reski R, Rensing SA (2007) Dating the early evolution of plants: detection and molecular clock analyses of orthologs. Mol Genet Genomics 278:393–402

    Article  PubMed  CAS  Google Scholar 

  • Zobell O, Faigl W, Saedler H, Munster T (2010) MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Mol Biol Evol 27:1201–1211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Stanislav Karnatsevych for conducting literature and experimental research with regard to crossing and hybridization within the Funariaceae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan A. Rensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Rensing, S.A., Beike, A.K., Lang, D. (2013). Evolutionary Importance of Generative Polyploidy for Genome Evolution of Haploid-Dominant Land Plants. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_18

Download citation

Publish with us

Policies and ethics