Karyotype Variation and Evolution in Gymnosperms

Chapter

Abstract

The gymnosperms are the modern representatives of the most ancient group of seed-bearing plants. Their chromosomes have been studied extensively and chromosome numbers are known for representatives of all but three genera. A unique feature of the gymnosperms is the relative uniformity of their chromosome numbers both between species within genera and between genera in families. Polyploidy is very rare. Gymnosperm chromosomes are characteristically large and within most genera karyotypes also show uniformity, the exceptions being amongst some cycads. Despite this overall uniformity of shape and number differential banding patterns with Giemsa and base-specific fluorochromes reveal considerable variation in the number, size, location and base-composition of bands. Similarly, fluorescence in situ hybridization also demonstrates significant variation in number and location of many repetitive DNA elements within and between genera and families. Karyotype evolution does not appear to involve extensive structural rearrangements as meiotic pairing in F1 hybrids is usually regular and where available genetic maps suggest the conservation of large syntenic groups of genes.

Notes

Acknowledgments

I would like to thank Dr Masahiro Hizume for allowing me to use some of his images to illustrate this chapter.

References

  1. Barker MS, Graham SW, Rieseberg LH (2010) Comparative gymnosperm transcriptomics. Abstract for Botany 2010 meeting, USA. http://2010.botanyconference.org/engine/search/index.php?func=detail&aid=437, Accessed on 18 June 2011
  2. Bogunic F, Muratovic E, Siljak-Yakovlev S (2006) Chromosomal differentiation between Pinus heldreichii and Pinus nigra. Ann For Sci 63:267–274Google Scholar
  3. Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21PubMedGoogle Scholar
  4. Brenner ED, Katari MS, Stevenson DW, Rudd SA, Douglas AW, Moss WN, Twigg RW, Runko SJ, Stellari GM, McCombie WR, Coruzzi GM (2005) EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics 6:143PubMedGoogle Scholar
  5. Brown GR, Carlson JE (1997) Molecular cytogenetics of the genes encoding 18S-5.8S-26S rRNA and 5S rRNA in two species of spruce (Picea). Theor Appl Genet 95:1–9Google Scholar
  6. Brown GR, Amarasinghe V, Kiss G, Carlson JE (1993) Preliminary karyotype and chromosomal location of ribosomal DNA in white spruce using fluorescence in situ hybridization. Genome 36:310–316PubMedGoogle Scholar
  7. Brown GR, Newton CH, Carlson JE (1998) Organization and distribution of a Sau3A tandem repeated DNA sequence in Picea (Pinaceae) species. Genome 41:560–565PubMedGoogle Scholar
  8. Cafasso D, Cozzolino S, Chinali G, De Luca P (2003) An unusual satellite DNA from Zamia paucijuga (Cycadales) characterized by two different organizations of the repetitive unit in the plant genome. Gene 311:69–77Google Scholar
  9. Cafasso D, Cozzolino S, Vereecken NJ, De Luca P, Chinali G (2009) Organization of a dispersed repeated DNA element in the Zamia genome. Biol Plant 53:28–36Google Scholar
  10. Caputo P, Cozzolino S, Gaudio L, Moretti A, Stevenson DW (1996) Karyology and phylogeny of some Mesoamerican species of Zamia (Zamiaceae). Am J Bot 83:1513–1520Google Scholar
  11. Chase MW, Reveal JL (2009) A phylogenetic classification to accompany APG III. Bot J Linn Soc 161:122–127Google Scholar
  12. Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091PubMedGoogle Scholar
  13. Chaw S-M, Walters TW, Chang C-C, Hu S-H, Chen S-H (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Mol Phylogenet Evol 37:214–234PubMedGoogle Scholar
  14. Chuang T-I, Hu WWL (1963) Study of Amentotaxus argotaenia (Hance) Pilger. Bot Bull Acad Sin 4:10–14Google Scholar
  15. Chumley TW, McCoy SKR, Raubeson LA (2008) Gne-deep: exploring Gnetalean affinities in seed plant phylogeny with 83 plastid genes. Abstract for Botany 2008 meeting, USA.http://2008.botanyconference.org/engine/search/index.php?func=detail&aid=770
  16. Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE et al. (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749PubMedGoogle Scholar
  17. Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14:845–867PubMedGoogle Scholar
  18. Davies BJ, O’Brien IEW, Murray BG (1997) Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Syst Evol 208:169–185Google Scholar
  19. Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Hered 86:289–296Google Scholar
  20. Eckenwalder JE (2009) Conifers of the world. Timber Press, PortlandGoogle Scholar
  21. Elsik CG, Williams CG (2000) Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 264:47–55PubMedGoogle Scholar
  22. Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293Google Scholar
  23. Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188PubMedGoogle Scholar
  24. Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196:227–241Google Scholar
  25. Garcia S, Garnatje T, Hidalgo O, McArthur ED, Siljak-Yakovlev S, Vallès J (2007) Extensive ribosomal DNA (18S-5.8S-26S and 5S) colocalization in the North American endemic sagebushes (subgenus tridentatae, Artimisia, Asteraceae) revealed by FISH. Plant Syst Evol 267:79–92Google Scholar
  26. Givnish TJ (1980) Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34:959–972Google Scholar
  27. Grover C, Wendel JF (2010) Recent insights into mechanisms of genome size change in plants. J Bot 2010:1–8, Article ID 382732Google Scholar
  28. Guan Q-L, Yu Z-L, Feng Y-L (1993) Studies of chromosomes in Amentotaxus argotaenia. Acta Bot Yunnan 15:385–391Google Scholar
  29. Hizume M (1988) Karyomorphological studies in the family Pinaceae. Mem Fac Educ Ehime Univ Nat Sci 8:1–108Google Scholar
  30. Hizume M (1995) Physical mapping of 5S rRNA genes in Cycas revoluta. Cytologia 60:389–393Google Scholar
  31. Hizume M (1997) Chromosomes of Ginkgo biloba. In: Hori T et al. (eds) Ginkgo biloba—a global treasure. Springer, Tokyo, pp 109–118Google Scholar
  32. Hizume M, Akiyama M (1992) Size variation of chromomycin A3-band in chromosomes of Douglas fir, Pseudotsuga menziesii. Jpn J Genet 67:425–435Google Scholar
  33. Hizume M, Kuzukawa Y (1995) Fluorescent chromosome banding in Picea II. Relationships between rDNA loci and chromomycin A3-bands in somatic chromosomes of Picea jezoensis var. hondoensis. La Kromosomo II 79–80:2754–2759Google Scholar
  34. Hizume M, Tanaka A (1990) Fluorescent chromosome bandings in two American larches, Larix occidentalis and L. laricina. La Kromosomo II 58:1979–1987Google Scholar
  35. Hizume M, Abe KK, Tanaka A (1988a) Fluorescent chromosome banding in the Taxodiaceae. La Kromosomo II 50:1609–1619Google Scholar
  36. Hizume M, Shiraishi H, Tanaka A (1988b) A cytological study of Podocarpus macrophyllus with special reference to sex chromosomes. Jpn J Genet 63:413–423Google Scholar
  37. Hizume M, Kishimoto K, Kubo Y, Tanaka A (1989) Fluorescent chromosome banding in Picea I. Differences in chromomycin A3 band pattern between P. jesoensis var. jesoensis and P. jesoensis var. hondoensis. La Kromosomo II 53:1736–1744Google Scholar
  38. Hizume M, Kitazawa N, Gu Z, Kondo K (1991) Variation of fluorescent chromosome band in Picea brachytyla var. complanata collected in Yunnan, China. La Kromosomo II 63–64:2149–2158Google Scholar
  39. Hizume M, Ishida F, Murata M (1992a) Multiple locations of the rRNA genes in chromosomes of pines, Pinus densiflora and P. thunbergii. Jpn J Genet 67:389–396Google Scholar
  40. Hizume M, Ishida F, Kondo K (1992b) Differential staining and in situ hybridization of nucleolar organizers and centromeres in Cycas revoluta chromosomes. Jpn J Genet 67:381–387Google Scholar
  41. Hizume M, Tominaga HH, Kondo K, Gu Z, Yue Z (1993) Fluorescent chromosome banding in six taxa of Eurasian Larix, Pinaceae. La Kromosomo II 69:2342–2354Google Scholar
  42. Hizume M, Kuzukawa Y, Kondo T, Yang Q, Hong D, Tanaka R (1995) Localization of rDNA and fluorescent bandings in chromosomes of Larix potaninii var. macrocarpa collected in Sichuan, China. La Kromosomo II 78:2689–2694Google Scholar
  43. Hizume M, Kuzukawa Y, Kondo T (1996) Physical mapping of 5S rDNA locus on chromosomes in Pseudotsuga menziesii, Pinaceae. La Kromosomo II 83–84:2901–2908Google Scholar
  44. Hizume M, Kurose N, Shibata F, Kondo K (1998a) Molecular cytogenetic studies on sex chromosomes and proximal heterochromatin containing telomere-like sequences in Cycas revoluta. Chromosome Sci 2:63–72Google Scholar
  45. Hizume M, Shibata F, Kondo T (1998b) Fluorescence in situ hybridization of ribosomal RNA gene in Cryptomeria japonica, Taxodiaceae. Chromosome Sci 2:99–102Google Scholar
  46. Hizume M, Shibata F, Kondo K, Hoshi Y, Kondo T, Ge S, Yang Q, Hong D (1999) Identification of chromosomes in two Chinese spruce species by multicolour fluorescence in situ hybridization. Chromosome Sci 3:37–41Google Scholar
  47. Hizume M, Shibata F, Matsusaki Y, Kondo K (2000) Chromosomal localization of telomere sequence repeats in five gymnosperm species. Chromosome Sci 4:39–42Google Scholar
  48. Hizume M, Shibata F, Maruyama Y, Kondo T (2001) Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. Zucc Chromosoma 110:345–351Google Scholar
  49. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002a) Chromosome identification and comparative karyotypic analyses of Pinus species. Theor Appl Genet 105:491–497PubMedGoogle Scholar
  50. Hizume M, Shibata F, Matsumoto A, Maruyama Y, Hayashi E, Kondo T, Kondo K, Zhang S, Hong D (2002b) Tandem repeat DNA localizing on the proximal DAPI bands of chromosomes in Larix, Pinaceae. Genome 45:777–783PubMedGoogle Scholar
  51. Houben A, Moghaddam AMB, Klemme S (2013) Biology and evolution of B chromosomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 149–165Google Scholar
  52. Ickert-Bond SM (2003) Systematics of New World Ephedra L. (Ephedraceae): integrating morphological and molecular data. Thesis, Arizona State University, pp 363Google Scholar
  53. Islam-Faridi MN, Nelson CD, Kubisiak TL (2007) Reference karyotype and cytomolecular map for loblolly pine (Pinus taeda L.). Genome 50:241–251PubMedGoogle Scholar
  54. Jacobs MD, Gardner RC, Murray BG (2000) Cytological characterization of heterochromatin and rDNA in Pinus radiata and P. taeda. Plant Syst Evol 223:71–79Google Scholar
  55. Janoušek B, Hobza R, Vyskot B (2013) Chromosomes and sex diffrentiation. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 167–186Google Scholar
  56. Kamm A, Doudrick RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci USA 93:2708–2713PubMedGoogle Scholar
  57. Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24–39Google Scholar
  58. Khoshoo TN, Ahuja MR (1963) The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14:522–533Google Scholar
  59. Kokubugata G, Kondo K (1994) Quantitative variability in karyotype of Cycas revoluta. La Kromosomo II 75–76:2613–2618Google Scholar
  60. Kokubugata G, Kondo K (1996) Differential fluorescent-banding patterns in chromosomes of four species of Cycas (Cycadaceae). Bot J Linn Soc 120:51–55Google Scholar
  61. Kokubugata G, Kondo K (1998) Comparative karyotype analysis of Ceratozamia mexicana and Microcycas calocoma (Zamiaceae) using fluorochrome banding (CMA/DAPI) and fluorescence in situ hybridization of ribosomal DNA. Plant Syst Evol 210:41–50Google Scholar
  62. Kokubugata G, Kondo K, Randall LM (1999) Comparison of chromosome number and karyotype of two Lepidozamia species (Zamiaceae, Cycadales). Ann Tsukuba Bot Gard 18:65–69Google Scholar
  63. Kokubugata G, Kondo K, Wilson GW, Randall LM, van der Schans A, Morris DK (2000) Comparison of karyotype and rDNA-distribution in somatic chromosomes of Bowenia species (Stangeriaceae, Cycadales). Austral Syst Bot 13:15–20Google Scholar
  64. Kokubugata G, Hill KD, Kondo K (2002) Ribosomal DNA distribution in somatic chromosomes of Stangeria eriopus (Stangeriaceae, Cycadales) and molecular-cytotaxonomic relationships to some other cycad genera. Brittonia 54:1–5Google Scholar
  65. Kokubugata G, Vovides AP, Kondo K (2004) Mapping 5S ribosomal DNA on somatic chromosomes of four species of Ceratozamia and Stangeria eriopus (Cycadales). Bot J Linn Soc 145:499–504Google Scholar
  66. Kriebel HB (1985) DNA sequence components of the Pinus strobus genome. Can J For Res 15:1–4Google Scholar
  67. Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461PubMedGoogle Scholar
  68. Kupila-Ahvenniemi S, Hohtola A (1977) Structure of the chromosomes of Scotch pine. Hereditas 87:185–188Google Scholar
  69. Kurdi-Haidar B, Shalhoub V, Dib-Haji S, Deeb S (1983) DNA sequence organization in the genome of Cycas revoluta. Chromosoma 88:319–327Google Scholar
  70. Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646Google Scholar
  71. Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322Google Scholar
  72. Leitch IJ, Hanson L, Winfield M, Parker J, Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88:843–849Google Scholar
  73. Liu Z-L, Zhang D, Hong D-Y, Wang X-R (2003) Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204PubMedGoogle Scholar
  74. Lubaretz O, Fuchs J, Ahne R, Meister A (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416Google Scholar
  75. MacPherson P, Filion WG (1981) Karyotype analysis and the distribution of constitutive heterochromatin in five species of Pinus. J Hered 72:193–198Google Scholar
  76. Marchant CJ (1968) Chromosome patterns and nuclear phenomena in the cycad families Stangeriaceae and Zamiaceae. Chromosoma 24:100–134Google Scholar
  77. Matthey R (1945) L’évolution de la formule chromosomiale chez les Vertébrés. Experientia 1(50–56):78–86Google Scholar
  78. Miksche JP, Hotta Y (1973) DNA base composition and repetitious DNA in several conifers. Chromosoma 41:29–36Google Scholar
  79. Miller CI (1993) Impact of the Eocene on the evolution of Pinus L. Ann Missouri Bot Gard 80:471–498Google Scholar
  80. Moretti A (1990) Cytotaxonomy of cycads. Mem NY Bot Gard 57:114–122Google Scholar
  81. Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS One 4:e4332PubMedGoogle Scholar
  82. Murray BG (1998) Nuclear DNA amounts in gymnosperms. Ann Bot 82(Suppl A):3–15Google Scholar
  83. Murray BG, Friesen N, Heslop-Harrison JS (2002) Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann Bot 89:483–489PubMedGoogle Scholar
  84. Murray BG, Leitch IJ, Bennett MD (2010) Gymnosperm DNA C-values database (release 4.0, Dec 2010). http://data.kew.org/cvalues/
  85. Page CN (1990) Gymnosperms. In: Kramer KU, Green PS (eds) The families and genera of vascular plants. Springer, Berlin, pp 280–361Google Scholar
  86. Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445PubMedGoogle Scholar
  87. Parchman T, Geist K, Grahnen J, Benkman C, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180PubMedGoogle Scholar
  88. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15Google Scholar
  89. Puizina J, Sviben T, Krajacic-Sokol I, Zoldos-Pecnik V, Siljak-Yakovlev S, Papes D (2008) Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae. Plant Biol 10:256–267PubMedGoogle Scholar
  90. Quinn CJ, Rattenbury JA (1972) Structural hybridity in New Zealand Dacrydium. New Zealand J Bot 10:427–436Google Scholar
  91. Rai HS, Reeves PA, Peakall R, Olmstead RG, Graham SW (2008) Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 86:658–669Google Scholar
  92. Rake AV, Miksche JP, Hall RB, Hansen KM (1980) DNA reassociation kinetics of four conifers. Can J Genet Cytol 22:69–79Google Scholar
  93. Sangduen N, Toahsakul M, Hongtrakul V (2009) Comparative karyomorphological study between male and female plants of some Cycas and Zamia species. Kasetsart J (Nat Sci) 43:476–485Google Scholar
  94. Sax HJ (1932) Chromosome pairing in Larix species. J Arnold Arb 13:368–373Google Scholar
  95. Sax K (1960) Meiosis in interspecific pine hybrids. Forest Sci 6:135–138Google Scholar
  96. Saylor LC, Smith BW (1966) Meiotic irregularity in species and interspecific hybrids of Pinus. Am J Bot 53:453–468Google Scholar
  97. Schmidt A, Doudrick RL, Heslop-Harrison JS, Schmidt T (2000) The contribution of short repeats of low sequence complexity to large conifer genomes. Theor Appl Genet 101:7–14Google Scholar
  98. Segawa M, Kishi S, Tatsuno S (1971) Sex chromosomes of Cycas revoluta. Jpn J Genet 46:33–39Google Scholar
  99. Shibata F, Hizume M, Garajova Z (2004) Conserved FISH karyotypes in four species of Abies (Pinaceae). Chromosome Sci 8:95–98Google Scholar
  100. Shibata F, Matsusaki Y, Hizume M (2005) AT-rich sequences containing Arabidopsis-type telomere sequence and their chromosomal distribution in Pinus densiflora. Theor Appl Genet 110:1253–1258PubMedGoogle Scholar
  101. Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldos V, Jelenic S, Papes D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512PubMedGoogle Scholar
  102. Sone T, Fujisawa M, Takenaka M, Nakagawa S, Yamaoka S, Sakaida M, Nishiyama R, Yamato KT, Ohimodo N, Fukui K, Fukuzawa H, Ohyama K (1999) Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol Biol 41:679–685PubMedGoogle Scholar
  103. Stockey RA, Nishida M (1986) Pinus harborensis sp. nov. and affinities of permineralized leaves from the Upper Cretaceous of Japan. Can J Bot 64:1856–1866Google Scholar
  104. Tagashira N, Kondo K (1999) A karyotype comparison of nine species of aneuploid Zamia by using the conventional orcein staining and the fluorochrome CMA-DAPI differential staining methods. Cytologia 64:449–458Google Scholar
  105. Tagashira N, Kondo K (2001) Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst Evol 227:145–155Google Scholar
  106. Tanaka R, Hizume M (1980) C banding treatment for the chromosomes of some gymnosperms. Bot Mag Tokyo 93:167–170Google Scholar
  107. Teoh SB, Rees H (1977) B chromosomes in white spruce. P Roy Soc Lond B Bio 198:325–344Google Scholar
  108. Trivers R, Burt A, Palestris BG (2004) B chromosomes and genome size in flowering plants. Genome 47:1–8PubMedGoogle Scholar
  109. Vovides AP, Olivares M (1996) Karyotype polymorphism in the cycad Zamia loddigesii (Zamiaceae) of the Yucatan Peninsula, Mexico. Bot J Linn Soc 120:77–83Google Scholar
  110. Wardle P (1972) Podocarpus totara var. waihoensis var. nov.: the result of introgressive hybridization between P. totara and P. acutifolius. New Zealand J Bot 10:195–201Google Scholar
  111. Weiss-Schneeweiss H, Schneeweiss GM (2013) Karyotype diversity and evolutionary trends in angiosperms. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 209–230Google Scholar
  112. Werner T, Braukmann TWA, Kuzmina M, Stefanovic S (2009) Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet 55:323–337Google Scholar
  113. White MJD (1973) Animal cytology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  114. Williams CG (2009) Conifer reproductive biology. Springer, DordrechtGoogle Scholar
  115. Williams CG, Joyner KL, Auckland LD, Johnston S, Price HJ (2002) Genomic consequences of Pinus spp. hybridization. Biol J Linn Soc 75:503–508Google Scholar
  116. Zgurski JM, Rai HS, Fai QM, Bogler DJ, Francisco-Ortega J, Graham SW (2008) How well do we understand the overall backbone of cycad phylogeny? New insights from a large, multigene plastid data set. Mol Phylogenet Evol 47:1232–1237PubMedGoogle Scholar
  117. Zhou Q-x, Z-j Gu, Yue Z-S (2000) Karyomorphology and relationships of Amentotaxus Pilg. Acta Phytotax Sin 36:522–527Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.School of Biological Sciences, The University of AucklandAucklandNew Zealand

Personalised recommendations