Holocentric Chromosomes

Chapter

Abstract

In contrast to the “normal type” of monocentric mitotic chromosomes, where spindle attachment is restricted to a single kinetochore, holocentric chromosomes are chromosomes to which spindle microtubules attach along the whole length through kinetochores that cover a substantial part of their poleward surfaces during mitosis. In addition, holocentric sister chromatids are interconnected along their whole lengths before anaphase disjunction, unlike monocentric chromatids, which cohere only in the pericentromeric area. The morphological distinctions between monocentric and holocentric chromosomes are associated with differences in chromatin structure and modified mitosis or meiosis, as well as karyotype evolution of the holocentrics themselves. In this chapter, we will survey these aspects of holocentrism and also discuss some hypotheses on the origin of holocentric chromosomes, their patterns of occurrence and methods of verification, particularly among plants.

Notes

Acknowledgments

Our study was supported by the Czech Science Foundation (Grant no. GACR206/09/1405) and by the Ministry of Education, Youth and Sports of the Czech Republic (Grants no. MSM0021622416, and LC06073).

References

  1. Albertson DG, Thomson NJ (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1:15–26PubMedCrossRefGoogle Scholar
  2. Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078PubMedCrossRefGoogle Scholar
  3. Bačič T, Jogan N, Dolenc Koce J (2007) Luzula sect. Luzula in the south-eastern Alps—karyology and genome size. Taxon 56:129–136Google Scholar
  4. Barlow PW, Nevin D (1976) Quantitative karyology of some species of Luzula. Plant Syst Evol 125:77–86CrossRefGoogle Scholar
  5. Bennett MD, Leitch IJ (2005) Angiosperm DNA C-values database (release 6.0, Oct 2005) http://www.kew.org/cvalues/
  6. Bhatti N, Datson P, Murray B (2007) Chromosome number, genome size and phylogeny in the genus Schoenus (Cyperaceae). Chromosome Res 15(suppl 2):33–34Google Scholar
  7. Bokhari FS (1976) Meiosis in untreated and irradiated Cyperus eragrostis. Cytologia 41:607–614CrossRefGoogle Scholar
  8. Bokhari FS, Godward MBE (1980) The ultrastructure of the diffuse kinetochore in Luzula nivea. Chromosoma (Berl) 79:125–136CrossRefGoogle Scholar
  9. Bolkhovskikh Z, Grif V, Matvejeva T, Zakharyeva O (1969) Chromosome numbers of flowering plants. Nauka, LeningradGoogle Scholar
  10. Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341PubMedCrossRefGoogle Scholar
  11. Braselton JP (1971) The ultrastructure of the non-localized kinetochores of Luzula and Cyperus. Chromosoma 36:89–99CrossRefGoogle Scholar
  12. Braselton JP (1981) The ultrastructure of meiotic kinetochores of Luzula. Chromosoma (Berl) 82:143–151CrossRefGoogle Scholar
  13. Brown KS Jr, von Schoultz B, Suomalainen E (2004) Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141:216–236CrossRefGoogle Scholar
  14. Brown KS Jr, Freitas AVL, Wahlberg N, von Schoultz B, Saura AO, Saura A (2007) Chromosomal evolution in the South American Nymphalidae. Hereditas 144:137–148PubMedCrossRefGoogle Scholar
  15. Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) Cell division: a histone-H3-like protein in C. elegans. Nature 401:547–548PubMedCrossRefGoogle Scholar
  16. Bureš P (1998) A high polyploid Eleocharis uniglumis s.l. (Cyperaceae) from Central and Southeastern Europe. Folia Geobot 33:429–439CrossRefGoogle Scholar
  17. Bureš P, Rotreklová O, Stoneberg Holt SD, Pikner R (2004) Cytogeographical survey of Eleocharis subser. Eleocharis in Europe 1: Eleocharis palustris. Folia Geobot 39:235–257CrossRefGoogle Scholar
  18. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  19. Cayouette J, Morisset P (1986a) Chromosome studies on the Carex salina complex (Cyperaceae, section Cryptocarpae) in northeastern North America. Cytologia 51:817–856CrossRefGoogle Scholar
  20. Cayouette J, Morisset P (1986b) Chromosome studies on Carex paleacea Wahl., C. nigra (L.) Reichard and C. aquatilis Wahl. in northeastern North America. Cytologia 51:857–883CrossRefGoogle Scholar
  21. Chakravorti AK (1948a) Multiplication of chromosome numbers in relation to speciation in Zingiberaceae. Sci Cult 14:137–140Google Scholar
  22. Chakravorti AK (1948b) Theory of fragmentation of chromosomes and evolution of species. Sci Cult 13:309–312Google Scholar
  23. Cheng ZK, Dong FG, Langdon T, Shu OY, Buell CR, Gu MH, Blattner FR, Jiang JM (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704PubMedCrossRefGoogle Scholar
  24. Claycomb JM, Batista PJ, Pang KM, Gu WF, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF et al (2009) The argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139:123–134PubMedCrossRefGoogle Scholar
  25. Cook LG (2000) Extraordinary and extensive karyotypic variation: a 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera: Coccoidea: Eriococcidae). Genome 43:255–263PubMedGoogle Scholar
  26. Cope TA, Stace CA (1985) Cytology and hybridization in the Juncus bufonius L. aggregate in Western Europe. Watsonia 15:309–320Google Scholar
  27. Cremonini R (2005) Low chromosome number angiosperms. Caryologia 58:403–409Google Scholar
  28. d’Alençon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, Gagneur C, Cousserans F, Shimomura M, Brun-Barale A, Flutre T, Couloux A, East P, Gordon K, Mita K, Quesneville H, Fournier P, Feyereisen R (2010) Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci USA 107:7680–7685PubMedCrossRefGoogle Scholar
  29. da Silva CRM, González-Elizondo MS, Vanzela ALL (2005) Reduction in chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocation. Bot J Linn Soc 149:457–464CrossRefGoogle Scholar
  30. da Silva CRM, González-Elizondo MS, LdNadA R, Torezan JMD, Vanzela ALL (2008a) Cytogenetical and cytotaxonomical analysis of some Brazilian species of Eleocharis. Aust J Bot 56:82–90CrossRefGoogle Scholar
  31. da Silva CRM, González-Elizondo MS, Vanzela ALL (2008b) Chromosome reduction in Eleocharis maculosa (Cyperaceae). Cytogenet Genome Res 122:175–180PubMedCrossRefGoogle Scholar
  32. da Silva CRM, Quintas CC, Vanzela ALL (2010) Distribution of 45S and 5S rDNA sites in 23 species of Eleocharis (Cyperaceae). Genetica 138:951–957PubMedCrossRefGoogle Scholar
  33. Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trends Biochem Sci 31:662–669PubMedCrossRefGoogle Scholar
  34. Dawe RK, Hiatt EN (2004) Plant neocentromeres: fast, focused, and driven. Chromosome Res 12:655–669PubMedCrossRefGoogle Scholar
  35. de Carvalho CE, Zaaijer S, Smolikov S, Gu Y, Schumacher JM, Colaiacovo MP (2008) LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 22:2869–2885PubMedCrossRefGoogle Scholar
  36. de Castro D, Camara A, Malheiros N (1949) X-rays in the centromere problem of Luzula purpurea LINK. Genet Iber 1:49–54Google Scholar
  37. de Lesse H (1970) Les nombres de chromosomes dans le groupe de Lysandra argester et leur incidence sur la taxonomie. Bull Soc Entomol Fr 75:64–68Google Scholar
  38. de Villena FPM, Sapienza C (2001a) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189Google Scholar
  39. de Villena FPM, Sapienza C (2001b) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12:331–339CrossRefGoogle Scholar
  40. de Villena FPM, Sapienza C (2001c) Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet 108:31–36CrossRefGoogle Scholar
  41. Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. Cell Biol 6:F33–F38CrossRefGoogle Scholar
  42. Diaz MO, Maynard R, Brum-Zorrilla N (2010) Diffuse centromere and chromosome polymorphism in haplogyne spiders of the families Dysderidae and Segestriidae. Cytogenet Genome Res 128:131–138PubMedCrossRefGoogle Scholar
  43. Dumont J, Oegema K, Desai A (2010) A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat Cell Biol 12:894–901PubMedCrossRefGoogle Scholar
  44. Emmons SW (1988) The genome. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp 47–79Google Scholar
  45. Escudero M, Valcárcel V, Vargas P, Luceño M (2008) Evolution in Carex L. sect. Spirostachyae (Cyperaceae): a molecular and cytogenetic approach. Organ Divers Evol 7:271–291CrossRefGoogle Scholar
  46. Faulkner JS (1972) Chromosome studies on Carex section Acutae in northwest Europe. Bot J Linn Soc 65:271–301CrossRefGoogle Scholar
  47. Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559–1562PubMedCrossRefGoogle Scholar
  48. Flach M (1966) Diffuse centromeres in a dicotyledonous plant. Nature 209:1369–1370CrossRefGoogle Scholar
  49. Furness CA, Rudall PJ (2010) Selective microspore abortion correlated with aneuploidy: an indication of meiotic drive. Sex Plant Reprod. doi:10.1007/s00497-010-0150-z
  50. Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176PubMedCrossRefGoogle Scholar
  51. Goday C, Pimpinelli S (1989) Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma 98:160–166PubMedCrossRefGoogle Scholar
  52. Goday C, Ciofi-Luzzatto A, Pimpinelli S (1988) Centromere ultrastructure in germ-line chromosomes of Parascaris. Chromosoma 91:121–125CrossRefGoogle Scholar
  53. Godward MDE (1954) The ‘diffuse’ centromere or polycentric chromosomes in Spirogyra. Ann Bot 70:143–156Google Scholar
  54. Godward MBE (1985) The kinetochore. Int Rev Cytol 94:77–106PubMedCrossRefGoogle Scholar
  55. Goldblatt P, Johnson DE (eds) (2010) Index to plant chromosome numbers [1973–2003]. Missouri Botanical Garden, St. Louis, http://mobot.mobot.org/W3T/Search/ipcn.html Google Scholar
  56. Greilhuber J (1995) Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Kew Royal Botanic Gardens, Surrey, pp 379–414Google Scholar
  57. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041CrossRefGoogle Scholar
  58. Guerra M, García MA (2004) Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47:134–140PubMedCrossRefGoogle Scholar
  59. Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ (2006) Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126:33–41PubMedCrossRefGoogle Scholar
  60. Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas MJ (2010) Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res 129:82–96PubMedCrossRefGoogle Scholar
  61. Haizel T, Lim YK, Leitch AR, Moore G (2005) Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res 109:134–143PubMedCrossRefGoogle Scholar
  62. Håkansson A (1954) Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis palustris. Hereditas 15:325–345Google Scholar
  63. Håkansson A (1958) Holocentric chromosomes in Eleocharis. Hereditas 44:531–540CrossRefGoogle Scholar
  64. Hauf S, Watanabe Y (2004) Kinetochore orientation in mitosis and meiosis. Cell 119:317–327PubMedCrossRefGoogle Scholar
  65. Heilborn O (1924) Chromosome numbers and dimensions, species-formation and phylogeny in the genus Carex. Hereditas 5:129–216CrossRefGoogle Scholar
  66. Heilborn O (1934) On the origin and preservation of polyploidy. Hereditas 19:233–242CrossRefGoogle Scholar
  67. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102PubMedCrossRefGoogle Scholar
  68. Hipp AL (2007) Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194PubMedCrossRefGoogle Scholar
  69. Hipp AL, Rothrock PE, Reznicek AA, Berry PE (2007) Chromosome number changes associated with speciation in sedges: a phylogenetic study in Carex section Ovales (Cyperaceae) using AFLP data. Aliso 23:193–203Google Scholar
  70. Hipp AL, Rothrock PE, Roalson EH (2009) The evolution of chromosome arrangements in Carex (Cyperaceae). Bot Rev 75:96–109CrossRefGoogle Scholar
  71. Hipp AL, Rothrock PE, Whitkus R, Weber JA (2010) Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Mol Ecol 19:3124–3138PubMedCrossRefGoogle Scholar
  72. Hoshino T (1981) Karyomorphological and cytological studies on aneuploidy in Carex. J Sci Hiroshima Univ B 2(217):155–238Google Scholar
  73. Hoshino T (1987) Karyomorphological studies on 6 taxa of Eleocharis in Japan. Bull Okayama Univ Sci 22A:305–312Google Scholar
  74. Hoshino T, Waterway MJ (1994) Cytogeography and meiotic chromosome configurations of six intraspecific aneuploids of Carex conica Boott (Cyperaceae) in Japan. J Plant Res 107:131–138CrossRefGoogle Scholar
  75. Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants: a dynamic affair. Biochim Biophys Acta 1769:308–315PubMedCrossRefGoogle Scholar
  76. Hughes-Schrader S, Ris H (1941) The diffuse spindle attachment of Coccids, verified by the mitotic behaviour of induced chromosome fragments. J Exp Zool 87:429–456CrossRefGoogle Scholar
  77. Jiang JM, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575PubMedCrossRefGoogle Scholar
  78. Kandul NP, Lukhtanov VA, Dantchenko AV, Coleman JW, Sekercioglu CH, Haig D, Pierce NE (2004) Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-a: karyotype diversification and species radiation. Syst Biol 53:278–298PubMedCrossRefGoogle Scholar
  79. King GC (1960) The cytology of the desmids: the chromosomes. New Phytol 59:65–72CrossRefGoogle Scholar
  80. Kirschner J (1992) Karyological differenciation of Luzula sect. Luzula in Europe. Thaiszia 2:11–39Google Scholar
  81. Kirschner J (1995) Allozyme analysis of Luzula sect. Luzula (Juncaceae) in Ireland: evidence of the origin of tetraploids. Folia Geobot 30:283–290CrossRefGoogle Scholar
  82. Knowlton AL, Lan W, Stukenberg PT (2006) Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Current Biol 16:1705–1710CrossRefGoogle Scholar
  83. Kondo K, Sheikh SA, Hoshi Y (1994) New finding of another 2n = 6 species in the angiosperm, Drosera roseana Marchant. Chrom Inf Service 57:3–4Google Scholar
  84. Krahulcová A, Papoušková S, Krahulec F (2004) Reproduction mode in the allopolyploid facultatively apomictic hawkweed Hieracium rubrum (Asteraceae, H. subgen. Pilosella). Hereditas 141:19–30PubMedCrossRefGoogle Scholar
  85. Kuta E, Bohanec B, Dubas E, Vižintin L, Przywara L (2004) Chromosome and nuclear DNA study on Luzula: a genus with holokinetic chromosomes. Genome 47:246–256PubMedCrossRefGoogle Scholar
  86. La Cour LF (1953) The Luzula system analysed by x-rays. Heredity Suppl 6:77–81Google Scholar
  87. Li X, Dawe RK (2009) Fused sister kinetochores initiate the reductional division in meiosis I. Nat Cell Biol 11:1103–1108PubMedCrossRefGoogle Scholar
  88. Luceño M (1992) Cytotaxonomic studies in Iberian and Macaronesian species of Carex (Cyperaceae). Willdenowia 22:149–165Google Scholar
  89. Luceño M (1994) Cytotaxonomic studies in Iberian, Balearic, North African, and Macaronesian species of Carex (Cyperaceae). II. Can J Bot 72:587–596CrossRefGoogle Scholar
  90. Luceño M, Castroviejo S (1991) Agmatoploidy in Carex laevigata (Cyperaceae). Fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Plant Syst Evol 177:149–159CrossRefGoogle Scholar
  91. Luceño M, Guerra M (1996) Numerical variation in species exhibiting holocentric chromosomes: a nomenclatural proposal. Caryologia 49:301–309Google Scholar
  92. Luceño M, Vanzela A, Guerra M (1998) Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can J Bot 76:440–449Google Scholar
  93. Lukhtanov VA, Dantchenko AD (2002) Principles of the highly ordered arrangement of metaphase I bivalents in spermatocytes of Agrodiaetus (Insecta, Lepidoptera). Chromosome Res 10:5–20PubMedCrossRefGoogle Scholar
  94. Lukhtanov VA, Vila R, Kandul NP (2006) Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data. Insect Syst Evol 37:325–334CrossRefGoogle Scholar
  95. Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 137–147Google Scholar
  96. Ma JX, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139PubMedCrossRefGoogle Scholar
  97. Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12:641–653PubMedCrossRefGoogle Scholar
  98. Madej A, Kuta E (2001) Holokinetic chromosomes of Luzula luzuloides (Juncaceae) in callus culture. Acta Biol Cracov Ser Bot 43:33–43Google Scholar
  99. Malheiros N, De Castro D, Camara A (1947) Cromosomas sem centrómero localizado. O caso da Luzula purpurea Link. Agron Lusitana 9:51–71Google Scholar
  100. Malheiros-Garde N, de Castro D (1947) Chromosome number and behavior in Luzula purpurea Link. Nature 160:156CrossRefGoogle Scholar
  101. Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138:1067–1082PubMedCrossRefGoogle Scholar
  102. Manzanero S, Arana P, Puertas MJ, Houben A (2000) The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma 109:308–317PubMedCrossRefGoogle Scholar
  103. Marec F, Sahara K, Traut W (2009) Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR, Marec F (eds) Molecular biology and genetics of the Lepidoptera. CRC Press, Boca Raton/London/New York, pp 49–63Google Scholar
  104. Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM (2008) Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 22:2886–2901PubMedCrossRefGoogle Scholar
  105. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford, UKGoogle Scholar
  106. Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144PubMedCrossRefGoogle Scholar
  107. McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, dePamphilis CW (2007) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Plant Biol 5:55Google Scholar
  108. Meneely PM, Farago AF, Kauffman TM (2002) Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans. Genetics 162:1169–1177PubMedGoogle Scholar
  109. Mola LM, Papeschi AG (2006) Holokinetic chromosomes at a glance. J Basic Appl Genet 17:17–33Google Scholar
  110. Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255PubMedCrossRefGoogle Scholar
  111. Nabeshima K, Villeneuve AM, Colaiacovo MP (2005) Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J Cell Biol 168:683–689PubMedCrossRefGoogle Scholar
  112. Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang JM (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225PubMedGoogle Scholar
  113. Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893PubMedCrossRefGoogle Scholar
  114. Nemetschke L, Eberhardt AG, Hertzberg H, Streit A (2010) Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides. Curr Biol 20:1687–1696PubMedCrossRefGoogle Scholar
  115. Niedermaier J, Moritz KB (2000) Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and breakdown of compound chromosomes. Chromosoma 109:439–452PubMedCrossRefGoogle Scholar
  116. Nijalingappa BH, Tejavathi DH (1984) Reports. In: Löve Á (ed) Chromosome number reports LXXXIII. Taxon vol 33, pp 352–353Google Scholar
  117. Nishikawa K, Furuta Y, Ishitobi K (1984) Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. Jpn J Genet 59:465–472CrossRefGoogle Scholar
  118. Nokkala S, Kuznetsova VZ, Maryanska-Nadachowska A, Nokkala C (2004) Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Res 12:733–739PubMedCrossRefGoogle Scholar
  119. Nordenskiöld H (1951) Cytotaxonomical studies in the genus Luzula. I. Somatic chromosome and chromosome numbers. Hereditas 37:325–355CrossRefGoogle Scholar
  120. Nordenskiöld H (1961) Tetrad analysis and the course of meiosis in three hybrids of Luzula campestris. Hereditas 47:203–238CrossRefGoogle Scholar
  121. Nordenskiöld H (1962) Studies of meiosis in Luzula purpurea. Hereditas 48:503–519CrossRefGoogle Scholar
  122. Nordenskiöld H (1963) A study of meiosis in the progeny of X-irradiated Luzula purpurea. Hereditas 49:33–47CrossRefGoogle Scholar
  123. Nordenskiöld H (1964) The effect of irradiation on diploid and polyploid Luzula. Hereditas 51:344–374CrossRefGoogle Scholar
  124. Ohkawa T, Yokota M, Hoshino T (2000) Aneuploidal population differentiation in Carex sociata Boott (Cyperaceae) of the Ryukyu Islands, Japan. Bot J Linn Soc 132:337–358Google Scholar
  125. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121PubMedCrossRefGoogle Scholar
  126. Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308PubMedCrossRefGoogle Scholar
  127. Östergren G (1949) Luzula and the mechanism of chromosome movements. Hereditas 4:445–468Google Scholar
  128. Papeschi AG, Bressa MJ (2006) Evolutionary cytogenetics in Heteroptera. J Biol Res 5:3–21Google Scholar
  129. Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360PubMedCrossRefGoogle Scholar
  130. Pazy B (1997) Supernumerary chromosomes and their behaviour in meiosis of the holocentric Cuscuta babylonica Ghoisy. Bot J Linn Soc 123:173–176Google Scholar
  131. Pazy B, Plitmann U (1987) Persisting demibivalents: a unique meiotic behavior in Cuscuta babylonica Choisy. Genome 29:63–66CrossRefGoogle Scholar
  132. Pazy B, Plitmann U (1994) Holocentric chromosome behavior in Cuscuta. Plant Syst Evol 191:105–109CrossRefGoogle Scholar
  133. Pazy B, Plitmann U (2002) New perspectives on the mechanisms of chromosome evolution in parasitic flowering plants. Bot J Linn Soc 138:117–122CrossRefGoogle Scholar
  134. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15CrossRefGoogle Scholar
  135. Pérez R, Panzera F, Page J, Suja JA, Rufas JS (1997) Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosome Res 5:47–56PubMedCrossRefGoogle Scholar
  136. Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315PubMedCrossRefGoogle Scholar
  137. Ramsey J (2007) Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143–150PubMedCrossRefGoogle Scholar
  138. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  139. Ranz JM, Casals F, Ruiz A (2001) How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Res 11:230–239PubMedCrossRefGoogle Scholar
  140. Rath SP, Patnaik SN (1978) Cytological studies in Cyperaceae. Proc Indian Sci Congr Assoc 65:107–108Google Scholar
  141. Ray JH, Venketeswaran S (1978) Constitutive heterochromatin distribution in monocentric and polycentric chromosomes. Chromosoma 66:341–350CrossRefGoogle Scholar
  142. Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58PubMedCrossRefGoogle Scholar
  143. Rivadavia F, Kondo K, Kato M, Hasebe M (2003) Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. Am J Bot 90:123–130PubMedCrossRefGoogle Scholar
  144. Roalson EH (2008) A synopsis of chromosome number variation in the Cyperaceae. Bot Rev 74:209–393CrossRefGoogle Scholar
  145. Roalson E, McCubbin AG, Whitkus R (2007) Chromosome evolution in Cyperales. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution of Poales. Allen, Claremont, pp 62–71Google Scholar
  146. Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R (2002) The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 157:219–229PubMedCrossRefGoogle Scholar
  147. Rooks F (2008) The Juncus bufonius polyploid complex in central Europe. Ph.D. thesis, Charles University, PragueGoogle Scholar
  148. Rotreklová O, Bureš P, Řepka R, Grulich V, Šmarda P, Hralová I, Zedek F, Koutecký T (2011) Chromosome numbers in Carex. Preslia 83:25–58Google Scholar
  149. Rutkowska J, Badyaev AV (2008) Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philos Trans Roy Soc Lond B Bio 363:1675–1686CrossRefGoogle Scholar
  150. Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858PubMedCrossRefGoogle Scholar
  151. Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103PubMedCrossRefGoogle Scholar
  152. Schrader F (1935) Notes on the mitotic behaviour of long chromosomes. Cytologia 6:422–430CrossRefGoogle Scholar
  153. Schwarzstein M, Wignall SM, Villeneueve AM (2010) Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev 24:219–228CrossRefGoogle Scholar
  154. Sheikh SA, Kondo K (1995) Differential staining with orcein, Giemsa, CMA and DAPI for comparative chromosome study of 12 species of Australian Drosera (Droseraceae). Am J Bot 82:1278–1286CrossRefGoogle Scholar
  155. Sheikh SA, Kondo K, Hoshi Y (1995) Study of diffused centromeric nature of Drosera chromosomes. Cytologia 60:43–47CrossRefGoogle Scholar
  156. Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am J Bot 90:1071–1086PubMedCrossRefGoogle Scholar
  157. Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433PubMedCrossRefGoogle Scholar
  158. Stack MS, Anderson LK (2001) A model for chromosome structure during the mitotic and meiotic cell cycle. Chromosome Res 9:175–198PubMedCrossRefGoogle Scholar
  159. Stear JH, Roth MB (2002) Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes Dev 16:1498–1508PubMedCrossRefGoogle Scholar
  160. Stephan W (2007) Evolution of genome organization. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0001699.pub2 Google Scholar
  161. Strandhede S-O (1965a) Chromosome studies in Eleocharis, subser. Palustres. I. Meiosis in some forms with 15 chromosomes. Hereditas 53:47–62CrossRefGoogle Scholar
  162. Strandhede S-O (1965b) Chromosome studies in Eleocharis, subser. Palustres. III. Observations on Western European taxa. Opera Bot 9(2):1–86Google Scholar
  163. Strandhede S-O (1965c) Chromosome studies in Eleocharis, subser. Palustres. IV. A possible case of an extra, reductional division giving rise to hemi-haploid pollen nuclei. Bot Not 118:243–253Google Scholar
  164. Strandhede S-O (1966) Morphologic variation and taxonomy in European Eleocharis, subser. Palustres. Opera Bot 10(2):1–187Google Scholar
  165. Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596PubMedCrossRefGoogle Scholar
  166. Sutherland GR, Baker E, Richards RI (1998) Fragile sites still breaking. Trends Genet 14:501–506PubMedCrossRefGoogle Scholar
  167. Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. BMC Biol 3:18Google Scholar
  168. Talbert PB, Bayes JJ, Henikoff S (2009) Evolution of centromeres and kinetochores: a two-part fugue. In: De Wulf P, Earnshaw WC (eds) The kinetochore: from molecular discoveries to cancer therapy. Springer, New York, pp 193–229Google Scholar
  169. Tanaka N (1940) Chromosome studies in Cyperaceae. VIII. Meiosis in diploid and tetraploid forms of Carex siderosticta Hance. Bot Mag (Tokyo) 10:282–310Google Scholar
  170. Tanaka N (1941) Chromosome studies in Cyperaceae. XIII. Aneuploid plants of Carex podogyna Franch et Sav. with special reference to an abnormal pollen. Bot Mag (Tokyo) 55:181–186Google Scholar
  171. Tanaka N (1949) Chromosome studies in the genus Carex with special reference to aneuploidy and polyploidy. Cytologia 15:15–29CrossRefGoogle Scholar
  172. Tanaka N, Tanaka N (1979) Chromosome studies in Chionographis (Liliaceae). II. Morphological characteristics of the somatic chromosomes of four Japanese members. Cytologia 44:935–949CrossRefGoogle Scholar
  173. Tanaka N, Tanaka N (1980) Chromosome studies in Chionographis (Liliaceae). III. The mode of meiosis. Cytologia 45:809–817CrossRefGoogle Scholar
  174. Tejavathi DH (1988) Somatic instability in the populations of Cyperus cyperoides (L.) O. Kuntze (Cyperaceae). Current Sci 57:724–728Google Scholar
  175. Tobler H, Müller F (2001) Chromatin diminution. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1038/npg.els.0001181 Google Scholar
  176. Toivonen H (1981) Spontaneous Carex hybrids of Heleonastes and related sections in Fennoscandia. Acta Bot Fenn 116:1–51Google Scholar
  177. Underkoffler LA, Mitchell LE, Abdulali ZS, Collins JN, Oakey RJ (2005) Transmission ratio distortion in offspring of mouse heterozygous carriers of a (7.18) Robertsonian translocation. Genetics 169:843–848PubMedCrossRefGoogle Scholar
  178. Vaarama A (1954) Cytological observations on Pleurozium schreberi, with special reference to centromere evolution. Ann Bot Soc Vanamo 28:1–59Google Scholar
  179. Vanzela ALL, Colaço W (2002) Mitotic and meiotic behavior of γ irradiated holocentric chromosomes of Rhynchospora pubera (Cyperaceae). Acta Sci Maringá 24:611–614Google Scholar
  180. Vanzela ALL, Guerra M (2000) Heterochromatin differenciation in holocentric chromosomes of Rhynchospora (Cyperaceae). Genet Mol Biol 23:453–546CrossRefGoogle Scholar
  181. Vanzela ALL, Guerra M, Luceño M (1996) Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios 88:219–228Google Scholar
  182. Vanzela ALL, Cuadrado A, Jouve N, Luceño M, Guerra M (1998) Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Res 6:345–349PubMedCrossRefGoogle Scholar
  183. Vanzela ALL, Luceño M, Guerra M (2000) Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot J Linn Soc 134:557–566CrossRefGoogle Scholar
  184. Vanzela ALL, Cuadrado A, Guerra M (2003) Localization of 45 S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet Mol Biol 26:199–201CrossRefGoogle Scholar
  185. Villasante A, Abad JP, Méndez-Lago M (2007) Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci USA 104:10542–10547PubMedCrossRefGoogle Scholar
  186. Wahl HA (1940) Chromosome numbers and meiosis in the genus Carex. Am J Bot 27:458–470CrossRefGoogle Scholar
  187. Waterway MJ, Hoshino T, Masaki T (2009) Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Bot Rev 75:138–159CrossRefGoogle Scholar
  188. White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  189. Yano O, Hoshino T (2006) Phylogenetic relationships and chromosomal evolution of Japanese Fimbristylis (Cyperaceae) using nrDNA ITS and ETS 1f sequence data. Acta Phytotax Geobot 57:205–217Google Scholar
  190. Yano O, Katsuyama T, Tsubota H, Hoshino T (2004) Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. J Plant Res 117:409–419PubMedCrossRefGoogle Scholar
  191. Záveská-Drábková L, Vlček Č (2010) Molecular phylogeny of the genus Luzula DC. (Juncaceae, Monocotyledones) based on plastome and nuclear ribosomal regions: a case of incongruence, incomplete lineage sorting and hybridisation. Mol Phylogenet Evol 57:536–551PubMedCrossRefGoogle Scholar
  192. Zedek F, Smerda J, Smarda P, Bureš P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Petr Bureš
    • 1
  • František Zedek
    • 2
  • Michaela Marková
    • 2
  1. 1.Department of Botany & ZoologyMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations