Chromosomes and Sex Differentiation

  • Bohuslav Janoušek
  • Roman Hobza
  • Boris Vyskot


Plant species can be classified into two major groups: those that permit self-pollination (autogamy) and those that inhibit self-pollination. In mostly self-pollinating species, harmful recessive mutations with a large effect are efficiently eliminated by selection, while slightly deleterious mutations accumulate as a consequence of the reduced effective population size and effective recombination rates (Wright et al. 2008). In contrast, plants that prevent autogamy are able to mask and retain in their genomes harmful recessive mutations with large effects in spite of more efficient selection against slightly deleterious mutations in this group. In cosexual plants, various mechanisms, such as dichogamy, heterostyly or self-incompatibility, prevent self-pollination. Another mechanism is the evolution of unisexual flowers. Populations can be distinguished according to the localization of unisexual flowers: monoecious (male and female on the same plant), gynomonoecious (hermaphrodite and female flowers on the same plant), andromonoecious (male and hermaphrodite flowers on the same plant), dioecious (male and female flowers on different plants), gynodioecious (female and cosexual individuals), androdioecious (male and cosexual individuals), or trioecious (male, female, and cosexual individuals), as reviewed by Dellaporta and Calderon-Urrea (1993). Gymnosperms are mostly monoecious, but also comprise a relatively high percentage of dioecious species. There are c. 1,010 species of gymnosperms, of which 36 %, namely all 300 species of cycads, Ginkgo biloba, and approximately 80 Gnetales are dioecious (Ming et al. 2011). In contrast, dioecy has been reported in only about 6 % of angiosperm species (Renner and Ricklefs 1995). Interestingly, dioecy is more widespread in tropical species, and an exceptionally high percentage of the dominant woody species of tropical forests are dioecious (Matallana et al. 2005). New cases of dioecy continue to be found because of the phenomenon of cryptic dioecy (Mayer and Charlesworth 1991).


Female Flower Dioecious Species Hermaphrodite Flower Unisexual Flower Homosporous Fern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Grant Agency of the Czech Republic (grants P501/10/0102, 522/09/0083, and 521/08/0932).


  1. Abraham A, Mathew PM (1962) Cytological studies in the cycads: sex chromosomes in Cycas. Ann Bot 26:261–266Google Scholar
  2. Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265PubMedGoogle Scholar
  3. Ainsworth CC, Lu J, Winfield M, Parker JS (1999) Sex determination by X:autosome dosage: Rumex acetosa (sorrel). In: Ainsworth CC (ed) Sex determination in plants. Bios Scientific, Oxford, pp 121–136Google Scholar
  4. Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:34–39, 368Google Scholar
  5. Bergero R, Forrest A, Kamau E, Charlesworth D (2007) Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–1954PubMedGoogle Scholar
  6. Bianchi NO (2002) Akodon sex reversed females: the never ending story. Cytogenet Genome Res 96:60–65PubMedGoogle Scholar
  7. Blackburn KB (1923) Sex chromosomes in plants. Nature 112:687–688Google Scholar
  8. Blavet N, Charif D, Oger-Desfeux C, Marais GAB, Widmer A (2011) Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database. BMC Genomics 12:376PubMedGoogle Scholar
  9. Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295:1103–1112PubMedGoogle Scholar
  10. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari M, Collin F, Flowers JM, Pitrat M et al (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838PubMedGoogle Scholar
  11. Boualem A, Troadec C, Kovalski I, Sari M, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One 4:e6144PubMedGoogle Scholar
  12. Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KF, Palenchar PM, Runko SJ, Twigg RW, Dai G et al (2003a) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4:78–78Google Scholar
  13. Brenner ED, Katari MS, Stevenson DW, Rudd SA, Douglas AW, Moss WN, Twigg RW, Runko SJ, Stellari GM, McCombie WR et al (2005) EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics 6:143PubMedGoogle Scholar
  14. Browse J (2009) Jasmonate: preventing the maize tassel from getting in touch with his feminine side. Sci Signal 2:pe9PubMedGoogle Scholar
  15. Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435–441PubMedGoogle Scholar
  16. Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16:961–976PubMedGoogle Scholar
  17. Chailakhyan MK, Khryanin VN (1978) The influence of growth regulators absorbed by the root on sex expression in hemp plants. Planta 138:181–184Google Scholar
  18. Chailakhyan MK, Khryanin VN (1979) The role of leaves in sex expression in hemp and spinach. Planta 144:205–207Google Scholar
  19. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Natur 112:975–997Google Scholar
  20. Correns C (1928a) Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen. In: Baur E, Hartmann M (eds) Handbuch der Vererbungswissenschaft, vol 2. Borntraeger, Berlin, pp 56–58Google Scholar
  21. Correns C (1928b) Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen. In: Baur E, Hartmann M (eds) Handbuch der Vererbungswissenschaft, vol 2. Borntraeger, Berlin, pp 48–50Google Scholar
  22. Cousens MI, Lacey DG, Scheller JM (1988) Safe sites and the ecological life history of Lorinseria areolata. Am J Bot 75:797–807Google Scholar
  23. Daher A, Adam H, Chabrillange N, Collin M, Mohamed N, Tregear JW, Aberlenc-Bertossi F (2010) Cell cycle arrest characterizes the transition from a bisexual floral bud to a unisexual flower in Phoenix dactylifera. Ann Bot 106:255–266PubMedGoogle Scholar
  24. Dawson TE, Geber MA (1999) Dimorphism in physiology and morphology. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 175–215Google Scholar
  25. Delichere C, Veuskens J, Hernould M, Barbacar N, Mouras A, Negrutiu I, Monéger F (1999) SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein. EMBO J 18:4169–4179PubMedGoogle Scholar
  26. Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251PubMedGoogle Scholar
  27. Di Stilio VS, Kramer EM, Baum DA (2005) Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae)—a new model for the study of dioecy. Plant J 41:755–766PubMedGoogle Scholar
  28. Di Stilio VS, Kumar RA, Oddone AM, Tolkin TR, Salles P, McCarty K (2010) Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS One 5:e12064PubMedGoogle Scholar
  29. Dorken ME, Pannell JR (2008) Density-dependent regulation of the sex ratio in an annual plant. Am Nat 171:824–830PubMedGoogle Scholar
  30. Doust JL, O’Brien G, Doust LL (1987) Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). Am J Bot 74:40–46Google Scholar
  31. Eberle JR, Banks JA (1996) Genetic interactions among sex-determining genes in the fern Ceratopteris richardii. Genetics 142:973–985PubMedGoogle Scholar
  32. Eggens F, Popp M, Nepokroeff M, Wagner WL, Oxelman B (2007) The origin and number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae). Am J Bot 94:210–218PubMedGoogle Scholar
  33. Eppley SM, Taylor PJ, Jesson LK (2007) Self-fertilization in mosses: a comparison of heterozygote deficiency between species with combined versus separate sexes. Heredity 98:38–44PubMedGoogle Scholar
  34. Farbos I, Veuskens J, Vyskot B, Oliveira M, Hinnisdaels S, Aghmir A, Mouras A, Negrutiu I (1999) Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype. Genetics 151:1187–1196PubMedGoogle Scholar
  35. Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293Google Scholar
  36. Filatov DA (2005) Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 170:975–979PubMedGoogle Scholar
  37. Filatov DA, Monéger F, Negrutiu I, Charlesworth D (2000) Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404:388–390PubMedGoogle Scholar
  38. Floyd ME (1983) Dioecy in five Pinus edulis populations in the southwestern United States. Am Midl Nat 110:405–411Google Scholar
  39. Frohlich MW, Parker DS (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25:155–170Google Scholar
  40. Fujisawa M, Hayashi K, Nishio T, Bando T, Okada S, Yamato KT, Fukuzawa H, Ohyama K (2001) Isolation of X and Y chromosome-specific DNA markers from a liverwort, Marchantia polymorpha, by representational difference analysis. Genetics 159:981–985PubMedGoogle Scholar
  41. Givnish TJ (1980) Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34:959–972Google Scholar
  42. Gómez-Campo C, Casas-Builla M (1965) Radiation-induced sex reversal in Ecballium elaterium. Nature 208:805–805Google Scholar
  43. Grant S, Houben A, Vyskot B, Siroky J, Pan WH, Macas J, Saedler H (1994) Genetics of sex determination in flowering plants. Dev Genet 15:214–230Google Scholar
  44. Haga T (1934) Sex and chromosomes in Spinacia oleracea L. Jpn J Genet 10:218–222Google Scholar
  45. Haig D, Westoby M (1988) A model for the origin of heterospory. J Theor Biol 134:257–272Google Scholar
  46. Hall DW, Kirkpatrick M, West B (2000) Runaway sexual selection when female preferences are directly selected. Evolution 54:1862–1869PubMedGoogle Scholar
  47. Hamdi S, Teller G, Louis J (1987) Master regulatory genes, auxin levels, and sexual organogeneses in the dioecious plant Mercurialis annua. Plant Physiol 85:393–399PubMedGoogle Scholar
  48. Hamilton RG, Lloyd RM (1991) Antheridiogen in the wild: the development of fern gametophyte communities. Funct Ecol 5:804–809Google Scholar
  49. Hernould M, Glimelius K, Veuskens J, Bergman P, Mouras A (1997) Microdissection and amplification of coding sequences from a chromosome fragment restoring male fertility in alloplasmic male-sterile tobacco. Plant J 12:703–709PubMedGoogle Scholar
  50. Hickok LG, Warne TR, Slocum MK (1987) Ceratopteris richardii: applications for experimental plant biology. Am J Bot 74:1304–1316Google Scholar
  51. Hobza R, Lengerova M, Cernohorska H, Rubes J, Vyskot B (2004) FAST-FISH with laser beam microdissected DOP-PCR probe distinguishes the sex chromosomes of Silene latifolia. Chromosome Res 12:245–250PubMedGoogle Scholar
  52. Huang Y, Chou H, Chiou W (2004) Density affects gametophyte growth and sexual expression of Osmunda cinnamomea (Osmundaceae: pteridophyta). Ann Bot 94:229–232PubMedGoogle Scholar
  53. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281PubMedGoogle Scholar
  54. Hultquist JF, Dorweiler JE (2008) Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. Planta 229:99–113PubMedGoogle Scholar
  55. Iizuka M, Janick J (1962) Cytogenetic analysis of sex determination in Spinacia oleracea. Genetics 47:1225–1241PubMedGoogle Scholar
  56. Ishizaki K, Shimizu-Ueda Y, Okada S, Yamamoto M, Fujisawa M, Yamato KT, Fukuzawa H, Ohyama K (2002) Multicopy genes uniquely amplified in the Y chromosome-specific repeats of the liverwort Marchantia polymorpha. Nucleic Acids Res 30:4675–4681PubMedGoogle Scholar
  57. Jakse J, Stajner N, Kozjak P, Cerenak A, Javornik B (2008) Trinucleotide microsatellite repeat is tightly linked to male sex in hop (Humulus lupulus L.). Mol Breed 21:139–148Google Scholar
  58. Jamilena M, Mariotti B, Manzano S (2008) Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264PubMedGoogle Scholar
  59. Janick J, Stevenson E (1954) A genetic study of the heterogametic nature of the staminate plant in spinach (Spinacia oleracea L.). P Am Soc Hort Sci 63:444–446Google Scholar
  60. Janoušek B, Mrackova M (2010) Sex chromosomes and sex determination pathway dynamics in plant and animal models. Biol J Linn Soc 100:737–752Google Scholar
  61. Jones AG, Arguello JR, Arnold SJ (2002) Validation of Bateman’s principles: a genetic study of sexual selection and mating patterns in the rough-skinned newt. P Biol Sci 269:2533–2539Google Scholar
  62. Kamachi H, Iwasawa O, Hickok LG, Nakayama M, Noguchi M, Inoue H (2007) The effects of light on sex determination in gametophytes of the fern Ceratopteris richardii. J Plant Res 120:629–634PubMedGoogle Scholar
  63. Karlov GI, Danilova TV, Horlemann C, Weber G (2003) Molecular cytogenetics in hop (Humulus lupulus L.) and identification of sex chromosomes by DAPI-banding. Euphytica 132:185–190Google Scholar
  64. Kazama Y, Fujiwara MT, Koizumi A, Nishihara K, Nishiyama R, Kifune E, Abe T, Kawano S (2009) A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia. Plant Cell Physiol 50:1127–1141PubMedGoogle Scholar
  65. Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, Fukui K, Matsunaga S, Vyskot B (2006) Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica 128:167–175PubMedGoogle Scholar
  66. Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541PubMedGoogle Scholar
  67. Khadka DK, Nejidat A, Tal M, Golan-Goldhirsh A (2002) DNA markers for sex: molecular evidence for gender dimorphism in dioecious Mercurialis annua L. Mol Breed 9:251–257Google Scholar
  68. Khadka DK, Nejidat A, Tal M, Golan-Goldhirsh A (2005) Molecular characterization of a gender-linked DNA marker and a related gene in Mercurialis annua L. Planta 222:1063–1070PubMedGoogle Scholar
  69. Khattak JZK, Torp AM, Andersen SB (2006) A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148:311–318Google Scholar
  70. Kihara H, Ono T (1923) Cytological studies on Rumex L. I. Chromosomes of Rumex acetosa L. Bot Mag Tokyo 37:84–90Google Scholar
  71. Klekowski EJ Jr (1969) Reproductive biology of the pteridophyta. II. Theoretical considerations. Bot J Linn Soc 62:347–359Google Scholar
  72. Kocyan A, Zhang L, Schaefer H, Renner SS (2007) A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 44:553–577PubMedGoogle Scholar
  73. Koizumi A, Yamanaka K, Nishihara K, Kazama Y, Abe T, Kawano S (2010) Two separate pathways including SlCLV1, SlSTM and SlCUC that control carpel development in a bisexual mutant of Silene latifolia. Plant Cell Physiol 51:282–293PubMedGoogle Scholar
  74. Korpelainen H (1995) Growth and reproductive characteristics in artificially formed clonal gametophytes of Dryopteris filix-mas (Dryopteridaceae). Plant Syst Evol 196:195–206Google Scholar
  75. Korpelainen H (1998) Labile sex expression in plants. Biol Rev 73:157–180Google Scholar
  76. Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:350–356PubMedGoogle Scholar
  77. Kuhn E (1939) Selbstbestäubungen subdiözischer Blütenpflanzen, ein neuer Beweis für die genetische Theorie der Geschlechtsbestimmung. Planta 30:457–470Google Scholar
  78. Kumar LSS, Viseveshwaraiah S (1952) Sex mechanism in Coccinia indica Wight and Arn. Nature 170:330–331PubMedGoogle Scholar
  79. Lan T, Zhang S, Liu B, Li X, Chen R, Song W (2006) Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 114:175–177PubMedGoogle Scholar
  80. Laporte MM, Delph LF (1996) Sex-specific physiology and source-sink relations in the dioecious plant Silene latifolia. Oecologia 106:63–72Google Scholar
  81. Lebel-Hardenack S, Hauser E, Law TF, Schmid J, Grant SR (2002) Mapping of sex determination loci on the white campion (Silene latifolia) Y chromosome using amplified fragment length polymorphism. Genetics 160:717–725PubMedGoogle Scholar
  82. Lee CL (1954) Sex chromosomes in Ginkgo biloba. Am J Bot 41:545–549Google Scholar
  83. Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322Google Scholar
  84. Lengerova M, Vyskot B (2001) Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma 217:147–153PubMedGoogle Scholar
  85. Leyh TS, Vogt TF, Suo Y (1992) The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J Biol Chem 267:10405–10410PubMedGoogle Scholar
  86. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352PubMedGoogle Scholar
  87. Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436PubMedGoogle Scholar
  88. Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Monéger F, Hobza R, Widmer A, Charlesworth D (2008) Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 18:545–549PubMedGoogle Scholar
  89. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138PubMedGoogle Scholar
  90. Matallana G, Wendt T, Araujo DSD, Scarano FR (2005) High abundance of dioecious plants in a tropical coastal vegetation. Am J Bot 92:1513–1519PubMedGoogle Scholar
  91. Mather K (1949) Genetics of dioecy and monoecy in Ecballium. Nature 163:926PubMedGoogle Scholar
  92. Mathews S, Clements MD, Beilstein MA (2010) A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philos Trans Roy Soc Lond B Bio 365:383–395Google Scholar
  93. Matsunaga S, Kawano S, Michimoto T, Higashiyama T, Nakao S, Sakai A, Kuroiwa T (1999) Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia. Plant Cell Physiol 40:60–68PubMedGoogle Scholar
  94. Matsunaga S, Uchida W, Kawano S (2004) Sex-specific cell division during development of unisexual flowers in the dioecious plant Silene latifolia. Plant Cell Physiol 45:795–802PubMedGoogle Scholar
  95. Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6:320–325PubMedGoogle Scholar
  96. Menzel MY (1964) Meiotic chromosomes of monoecious Kentucky hemp (Cannabis sativa). Bull Torrey Bot Club 91:193–205Google Scholar
  97. Miller JH (1968) Fern gametophytes as experimental material. Bot Rev 34:361–440Google Scholar
  98. Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289:2335–2338PubMedGoogle Scholar
  99. Ming R, Wang J, Moore PH, Paterson AH (2007) Sex chromosomes in flowering plants. Am J Bot 94:141–150PubMedGoogle Scholar
  100. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedGoogle Scholar
  101. Ming RA, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Ann Rev Plant Biol 62:485–514Google Scholar
  102. Mohan Ram HY, Sett R (1982) Induction of fertile male flowers in genetically female Cannabis sativa plants by silver nitrate and silver thiosulphate anionic complex. Theor Appl Genet 62:369–375Google Scholar
  103. Moliterni VMC, Cattivelli L, Ranalli P, Mandolino G (2004) The sexual differentiation of Cannabis sativa L.: a morphological and molecular study. Euphytica 140:95–1, 06Google Scholar
  104. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200PubMedGoogle Scholar
  105. Mrackova M, Nicolas M, Hobza R, Negrutiu I, Monéger F, Widmer A, Vyskot B, Janoušek B (2008) Independent origin of sex chromosomes in two species of the genus Silene. Genetics 179:1129–1133PubMedGoogle Scholar
  106. Murray B (2013) Karyotype variation and evolution in gymnosperms. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 231–243Google Scholar
  107. Navajas-Pérez R, de la Herrán R, López González G, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2005) The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol Biol Evol 22:1929–1939PubMedGoogle Scholar
  108. Nicolas M, Marais G, Hykelova V, Janoušek B, Laporte V, Vyskot B, Mouchiroud D, Negrutiu I, Charlesworth D, Monéger F (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:e4PubMedGoogle Scholar
  109. Obbard DJ, Harris SA, Buggs RJA, Pannell JR (2006) Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution 60:1801–1815PubMedGoogle Scholar
  110. Okada S, Fujisawa M, Sone T, Nakayama S, Nishiyama R, Takenaka M, Yamaoka S, Sakaida M, Kono K, Takahama M et al. (2000) Construction of male and female PAC genomic libraries suitable for identification of Y-chromosome-specific clones from the liverwort, Marchantia polymorpha. Plant J 24:421–428PubMedGoogle Scholar
  111. Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato KT et al. (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459PubMedGoogle Scholar
  112. Oxelman B (2010) Sileneae biodiversity informatics project. Department of Plant and Environmental Sciences. Göteborg University. (
  113. Oyama RK, Volz SM, Renner SS (2009) A sex-linked SCAR marker in Bryonia dioica (Cucurbitaceae), a dioecious species with XY sex-determination and homomorphic sex chromosomes. J Evol Biol 22:214–224PubMedGoogle Scholar
  114. Pannell JR, Verdú M (2006) The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androdioecy. Evolution 60:660–673PubMedGoogle Scholar
  115. Parker J, Clark M (1991) Dosage sex-chromosome systems in plants. Plant Sci 80:79–92Google Scholar
  116. Parkinson SE, Gross SM, Hollick JB (2007) Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Dev Biol 308:462–473PubMedGoogle Scholar
  117. Peil A, Flachowsky H, Schumann E, Weber WE (2003) Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.). Theor Appl Genet 107:102–109PubMedGoogle Scholar
  118. Pfent C, Pobursky KJ, Sather DN, Golenberg EM (2005) Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism. Dev Genes Evol 215:132–142PubMedGoogle Scholar
  119. Pomiankowski A, Nöthiger R, Wilkins A (2004) The evolution of the Drosophila sex-determination pathway. Genetics 166:1761–1773PubMedGoogle Scholar
  120. Purrington CB, Schmitt J (1995) Sexual dimorphism of dormancy and survivorship in buried seeds of Silene latifolia. J Ecol 83:795–800Google Scholar
  121. Purrington CB, Schmitt J (1998) Consequences of sexually dimorphic timing of emergence and flowering in Silene latifolia. J Ecol 86:397–404Google Scholar
  122. Qvarnström A, Bailey RI (2009) Speciation through evolution of sex-linked genes. Heredity 102:4–15PubMedGoogle Scholar
  123. Raghavan V (1989) Developmental biology of fern gametophytes. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  124. Rautenberg A, Hathaway L, Oxelman B, Prentice HC (2010) Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 57:978–991PubMedGoogle Scholar
  125. Rejon RC, Jamilena M, Garrido Ramos M, Parker J, Ruiz Rejon M (1994) Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 72:209–215Google Scholar
  126. Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606Google Scholar
  127. Renner SS, Won H (2001) Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales). Syst Biol 50:700–712PubMedGoogle Scholar
  128. Renner SS, Beenken L, Grimm GW, Kocyan A, Ricklefs RE (2007) The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution 61:2701–2719PubMedGoogle Scholar
  129. Rensing SA, Beike AK, Lang D (2013) Evolutionary importance of generative polyploidy for genome evolution of haploid-dominant land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 295–305Google Scholar
  130. Rice WR (1984) Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742Google Scholar
  131. Rubin G, Paolillo DJ (1983) Sexual development of Onoclea sensibilis on agar and soil media without the addition of antheridiogen. Am J Bot 70:811–815Google Scholar
  132. Rubin G, Robson DS, Paolillo DJ (1985) Effects of population density on sex expression in Onoclea sensibilis L. on agar and ashed soil. Ann Bot 55:205–215Google Scholar
  133. Rutherford G, Tanurdzic M, Hasebe M, Banks JA (2004) A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes. BMC Plant Biol 4:e6Google Scholar
  134. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732PubMedGoogle Scholar
  135. Sano R, Juárez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 7:69–78PubMedGoogle Scholar
  136. Sather DN, York A, Pobursky KJ, Golenberg EM (2005) Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Planta 222:284–292PubMedGoogle Scholar
  137. Sather DN, Jovanovic M, Golenberg EM (2010) Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biol 10:e46Google Scholar
  138. Schneller JJ, Haufler CH, Ranker TA (1990) Antheridiogen and natural gametophyte populations. Am Fern J 80:143–152Google Scholar
  139. Schütt C, Nöthiger R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127:667–677PubMedGoogle Scholar
  140. Scutt CP, Kamisugi Y, Sakai F, Gilmartin PM (1997) Laser isolation of plant sex chromosomes: studies on the DNA composition of the X and Y sex chromosomes of Silene latifolia. Genome 40:705–715PubMedGoogle Scholar
  141. Shephard HL, Parker JS, Darby P, Ainsworth CC (2000) Sexual development and sex chromosomes in hop. New Phytol 148:397–411Google Scholar
  142. Siljak-Yakovlev S, Cerbah M, Sarr A, Benmalek S, Bounaga N, Coba de la Pena T, Brown SC (1996) Chromosomal sex determination and heterochromatin structure in date palm. Sex Plant Reprod 9:127–132Google Scholar
  143. Smith BW (1963) The mechanism of sex determination in Rumex hastatulus. Genetics 48:1265–1288PubMedGoogle Scholar
  144. Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still do not know about polyploidy. Taxon 59:1387–1403Google Scholar
  145. Spigler RB, Lewers KS, Main DS, Ashman T (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–517PubMedGoogle Scholar
  146. Steven JC, Delph LF, Brodie ED (2007) Sexual dimorphism in the quantitative-genetic architecture of floral, leaf, and allocation traits in Silene latifolia. Evolution 61:42–57PubMedGoogle Scholar
  147. Storey WB (1969) Pistillate papaya flower: a morphological anomaly. Science 163:401–405PubMedGoogle Scholar
  148. Strain E, Hass B, Banks JA (2001) Characterization of mutations that feminize gametophytes of the fern Ceratopteris. Genetics 159:1271–1281PubMedGoogle Scholar
  149. Talianova M (2009) Horizontal gene transfer—new cases in plants. In: Ninth international congress on plant molecular biology, St. Louis, Missouri, USA, 25–30 Oct 2009. Poster presentationGoogle Scholar
  150. Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511–521PubMedGoogle Scholar
  151. Tanurdzic M, Banks JA (2004) Sex-determining mechanisms in land plants. Plant Cell 16:S61–S71PubMedGoogle Scholar
  152. Tavares R, Cagnon M, Negrutiu I, Mouchiroud D (2010) Testing the recent theories for the origin of the hermaphrodite flower by comparison of the transcriptomes of gymnosperms and angiosperms. BMC Evol Biol 10:e240Google Scholar
  153. Telenius H, Carter NP, Bebb CE, Nordenskjodl M, Ponder BAJ, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725PubMedGoogle Scholar
  154. Theissen G, Becker A (2004) Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Crit Rev Plant Sci 23:129–148Google Scholar
  155. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedGoogle Scholar
  156. Veltsos P, Keller I, Nichols RA (2008) The inexorable spread of a newly arisen neo-Y chromosome. PLoS Genet 4:e1000082PubMedGoogle Scholar
  157. Vévodová J, Graham RM, Raux E, Schubert HL, Roper DI, Brindley AA, Ian Scott A, Roessner CA, Stamford NPJ, Elizabeth Stroupe M et al (2004) Structure/function studies on a S-adenosyl-l-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. J Mol Biol 344:419–433PubMedGoogle Scholar
  158. Volff J, Nanda I, Schmid M, Schartl M (2007) Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev 1:85–99PubMedGoogle Scholar
  159. Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438PubMedGoogle Scholar
  160. Waelti MO, Page PA, Widmer A, Schiestl FP (2009) How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evol Biol 9:e190Google Scholar
  161. Westergaard M (1946) Aberrant Y-chromosomes and sex expression in Melandrium album. Hereditas 32:419–443PubMedGoogle Scholar
  162. Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87:1–28PubMedGoogle Scholar
  163. Winge O (1923) On sex chromosomes, sex determination and preponderance of females in some dioecious plants. C R Trav Lab Carlsberg 15:1–26Google Scholar
  164. Wright SI, Ness RW, Foxe JP, Barrett SCH (2008) Genomic consequences of outcrossing and selfing in plants. Int J Plant Sci 169:105–118Google Scholar
  165. Wrigley F (1986) Taxonomy and chorology of Silene section Otites (Caryophyllaceae). Ann Bot Fenn 23:69–81Google Scholar
  166. Wu X, Knapp S, Stamp A, Stammers DK, Jörnvall H, Dellaporta SL, Oppermann U (2007) Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities. FEBS J 274:1172–1182PubMedGoogle Scholar
  167. Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M, Bando H, Yodoya K, Hayashi K, Bando T et al (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477PubMedGoogle Scholar
  168. Yu Q, Hou S, Hobza R, Feltus FA, Wang X, Jin W, Skelton RL, Blas A, Lemke C, Saw JH et al (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185PubMedGoogle Scholar
  169. Zhang L, Simmons MP, Kocyan A, Renner SS (2006) Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolution. Mol Phylogenet Evol 39:305–322PubMedGoogle Scholar
  170. Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943PubMedGoogle Scholar
  171. Zluvova J, Lengerova M, Markova M, Hobza R, Nicolas M, Vyskot B, Charlesworth D, Negrutiu I, Janoušek B (2005) The inter-specific hybrid Silene latifolia x S. viscosa reveals early events of sex chromosome evolution. Evol Dev 7:327–336PubMedGoogle Scholar
  172. Zluvova J, Nicolas M, Berger A, Negrutiu I, Monéger F (2006) Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proc Natl Acad Sci USA 103:18854–18859PubMedGoogle Scholar
  173. Zluvova J, Georgiev S, Janoušek B, Charlesworth D, Vyskot B, Negrutiu I (2007) Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics 177:375–386PubMedGoogle Scholar
  174. Zluvova J, Zak J, Janoušek B, Vyskot B (2010) Dioeciouos Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biol 10:e208Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Laboratory of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations