Mobile Tourism Services and Technology Acceptance in a Mature Domestic Tourism Market: The Case of Switzerland

  • Adrian Bader
  • Markus Baldauf
  • Sandra Leinert
  • Matthes Fleck
  • Andreas Liebrich


This paper presents a literature-based and survey-based investigation of a technology acceptance model (TAM) in order to better understand users’ acceptance of mobile services in a mature tourism market (Switzerland). Data from a survey (n=588) were used to estimate a conceptual model using structural equation modelling. Findings show that perceived usefulness followed by perceived ease of use, self-efficacy and social influence drive the behavioural intention to use mobile tourism services. The behavioural intention to use mobile tourism services strongly drive mobile tourism services usage, whereas cost decrease the effective usage. Based on the findings the paper concludes that service providers should overcome the negative impact of costs in order to provide the tourists a more convenient and efficient stay in their destination.


Technology Acceptance Model Mobile Services Swiss Domestic Tourists 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accenture. (2010). Mobile Web Watch — Studie 2010.Google Scholar
  2. Bandura, A. (1997). Self-efficacy: the exercise of control. W.H. Freeman.Google Scholar
  3. Baumann, T. & Schiess, U. (2008). Satellitenkonto Tourismus der Schweiz, 2001 und 2005, Grundlagen, Methodik und Ergebnisse. Neuchatel.Google Scholar
  4. Broos, A. (2005). Gender and information and communication technologies (ICT) anxiety: Male self-assurance and female hesitation. Cyberpsychology & Behavior 8(1): 21–31.CrossRefGoogle Scholar
  5. Browne, M. W. & Cudeck, R. (1993). Alternative ways of assessing model fit. Testing structural equation models 154: 136–162.Google Scholar
  6. Brozel, M. A. C. & Hiller, C. A. (2011). Nicht ohne mein Smartphone! Studienergebnisse zur Nutzung mobiler Technologien im Urlaub. Paper presented at the ITB.Google Scholar
  7. Constantinides, E. (2002). The 4S Web-marketing mix model. Electronic Commerce Research and Applications 1(1): 57–76.CrossRefGoogle Scholar
  8. Davis, F. D. & Arbor, A. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Mis Quarterly 13(3): 319–340.CrossRefGoogle Scholar
  9. Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science 35(8): 982–1003.CrossRefGoogle Scholar
  10. Fishbein, M. & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. California: Addison-Wesley Pub. Co.Google Scholar
  11. Gefen, D., Karahanna, E. & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. [Review]. Mis Quarterly 27(1): 51–90.Google Scholar
  12. He, D. & Lu, Y. (2007). An Integrated Framework for Mobile Business Acceptance. Sixth Wuhan International Conference on eBusiness, 14.Google Scholar
  13. Jones, A. J. I. (2002). On the concept of trust. Decision Support Systems 33(3): 225–232.CrossRefGoogle Scholar
  14. Legris, P., Ingham, J. & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management 40(3): 191–204.CrossRefGoogle Scholar
  15. Leo, H. (2010). Trends in Service Innovation enhanced by mobile services in the field of tourism in rural and mountain areas. Paper presented at the How can Service Innovations support Sustainable Tourism in Rural Regions?Google Scholar
  16. Liaw, S. S. (2002). An Internet survey for perceptions of computers and the World Wide Web: relationship, prediction, and difference. Computers in Human Behavior 18(1): 17–35.CrossRefGoogle Scholar
  17. Miller, J. B. (1986). Toward a new psychology of women. Beacon Pr.Google Scholar
  18. O’Connell, S. (2011). A round-up of the debate around the value of social networking. Retrieved May 31, 2011, from Scholar
  19. Paajarvi, M. (2004). Future Mobile Data Services for Tourism. Unpublished Examensarbhete. Lulea University of Technology.Google Scholar
  20. Rhodes, S. R. (1983). Age-Related Differences in Work Attitudes and Behavior: A Review and Conceptual Analysis. Psychological Bulletin 93(2): 328–367.CrossRefGoogle Scholar
  21. Schegg, R., Liebrich, A., Scaglione, M. & Syed, A. (2008). An Exploratory Field Study of Web 2.0 in Tourism. Proceedings of the ENTER Conference 2008 — “Information and Communication Technologies in Tourism 2008”. Innsbruck, Austria, Springer, Wien.Google Scholar
  22. Schotter, C. (2011). m-tourism — ein Leitfaden für Destinationen. Paper presented at the ITB 2011.Google Scholar
  23. Serenko, A. & Bontis, N. (2004). A model of user adoption of mobile portals. Quarterly Journal of Electronic Commerce 4(1): 69–98.Google Scholar
  24. Stevens, C. K. (2011). Questions to Consoder when Selecting Student Samples. Journal of Supply Chain Management 47(3): 19–21.CrossRefGoogle Scholar
  25. Tan, E. M.-Y., Goh, D. H.-L., Theng, Y.-L. & Foo, S. (2007). An analysis of services for the mobile tourist. Paper presented at the Proceedings of the 4th international conference on mobile technology, applications, and systems and the 1st international symposium on Computer human interaction in mobile technology.Google Scholar
  26. Thatcher, J. B. & Perrewe, P. L. (2002). An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy. Mis Quarterly 26(4): 381–396.CrossRefGoogle Scholar
  27. Venkatesh, V. & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences 27(3): 451–481.CrossRefGoogle Scholar
  28. Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science 46(2): 186–204.CrossRefGoogle Scholar
  29. Venkatesh, V., Morris, M. G. & Ackerman, P. L. (2000). A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes 83(1): 33–60.CrossRefGoogle Scholar
  30. Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Mis Quarterly 27(3): 425–478.Google Scholar
  31. Wang, Y. S., Wang, Y. M., Lin, H. H. & Tang, T. I. (2003). Determinants of user acceptance of Internet banking: an empirical study. International Journal of Service Industry Management 14(5): 501–519.CrossRefGoogle Scholar
  32. Wolfgang. (2010). Tourism 2010: three web trends for destination management organizations. Retrieved from Scholar
  33. Wong, S. L. & Hanafi, A. (2007). Gender differences in attitudes towards information technology among Malaysian student teachers: A case study at Universiti Putra Malaysia. Subscription Prices and Ordering Information 158.Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Adrian Bader
    • 1
  • Markus Baldauf
    • 1
  • Sandra Leinert
    • 1
  • Matthes Fleck
    • 2
  • Andreas Liebrich
    • 3
  1. 1.Lucerne School of BusinessSwitzerland
  2. 2.Lucerne School of BusinessInstitute of Marketing and CommunicationSwitzerland
  3. 3.Lucerne School of BusinessInstitute of TourismSwitzerland

Personalised recommendations