Skip to main content

Mechanisms of Miltefosine Resistance in Leishmania

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites

Summary

The use of miltefosine (hexadecylphosphocholine), the first oral drug for the treatment of visceral and cutaneous leishmaniasis, results in high cure rates in geographical areas where antimony resistance is prevalent. Miltefosine is a simple molecule which, if used correctly, is very stable, relatively safe and highly efficient, as shown by numerous clinical trials. However, the major drawbacks of miltefosine include its teratogenic potential and long half-life, which increases the chances of a rapid emergence of resistance. The mechanisms of miltefosine resistance have been studied in vitro using experimental resistant lines. Resistance is easily induced in vitro, with decreased miltefosine uptake being responsible for the resistance phenotype. In these resistant lines, there is inactivation of one of the two proteins known to be responsible for miltefosine uptake, namely the miltefosine transporter LdMT and its beta subunit LdRos3. Furthermore, miltefosine accumulation is reduced by the overexpression of the ABC (ATP-binding cassette) P-glycoprotein/MDR1 and ABC subfamily G members, multidrug exporters which pump the drug out of the cell, thereby mediating miltefosine resistance. Additionally, other factors, such as changes in the plasma membrane lipid composition and overexpression of Hsp80, calpain-like SKCRP14.1, 299 KDa protein, eIF4A or histone H2A have also been suggested to contribute to miltefosine resistance. The current challenge is therefore to identify drug-resistance markers to miltefosine to be implemented in the field as a policy to prevent drug resistance in leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvar J, et al (2004) Canine leishmaniasis. Adv Parasitol 57:1–88

    PubMed  Google Scholar 

  • Alvar J, et al (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–335

    PubMed  CAS  Google Scholar 

  • Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556

    PubMed  CAS  Google Scholar 

  • Araujo-Santos JM, et al (2005) The overexpression of an intracellular ABCA-like transporter alters phospholipid trafficking in Leishmania. Biochem Biophys Res Commun 330:349–355

    PubMed  CAS  Google Scholar 

  • Baburina I, Jackowski S (1998) Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem 273:2169–2173

    PubMed  CAS  Google Scholar 

  • Barratt G, Saint-Pierre-Chazalet M, Loiseau PM (2009) Cellular transport and lipid interactions of miltefosine. Curr Drug Metab 10:247–255

    PubMed  CAS  Google Scholar 

  • Beach DH, Holz GG Jr, Anekwe GE (1979) Lipids of Leishmania promastigotes. J Parasitol 65:201–216

    PubMed  CAS  Google Scholar 

  • Beach DH, Goad LJ, Holz GG (1988) Effects of antimytotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Mol Biochem Parasitol 31:149–162

    PubMed  CAS  Google Scholar 

  • Beckers T, Voegeli R, Hilgard P (1994) Molecular and cellular effects of hexadecylphosphocholine (miltefosine) in human myeloid leukaemia cell lines. Eur J Cancer 30A:2143–2150

    PubMed  CAS  Google Scholar 

  • Berkovic D, et al (2002) Effects of hexadecylphosphocholine on phosphatidylcholine and phosphatidylserine metabolism in human lymphoma cells. J Exp Ther Oncol 2:85–92

    PubMed  CAS  Google Scholar 

  • Berkovic D, Wernicke JH, Fleer EA (2003) Effects of etherlipid analogs on cell membrane functions. J Exp Ther Oncol 3:185–193

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, et al (2004) Efficacy and tolerability of miltefosine for childhood visceral leishmaniasis in India. Clin Infect Dis 38:217–221

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, et al (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196:591–598

    PubMed  CAS  Google Scholar 

  • Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    PubMed  CAS  Google Scholar 

  • Bryceson A (2001) A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health 6:928–934

    PubMed  CAS  Google Scholar 

  • Bull LN, et al (1998) A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 18:219–224

    PubMed  CAS  Google Scholar 

  • Burk K, et al (1994) Overview on the clinical development of miltefosine solution (Miltex) for the treatment of cutaneous breast cancer. Drugs Today 30:59–72

    Google Scholar 

  • Callaghan R, van Gorkom LC, Epand RM (1992) A comparison of membrane properties and composition between cell lines selected and transfected for multi-drug resistance. Br J Cancer 66:781–786

    PubMed  CAS  Google Scholar 

  • Calvopina M, et al (2006) Relapse of new world diffuse cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana after miltefosine treatment. Am J Trop Med Hyg 75:1074–1077

    PubMed  Google Scholar 

  • Castanys-Muñoz E, et al (2007) A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol 64:1141–1153

    PubMed  Google Scholar 

  • Castanys-Muñoz E, et al (2008) Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother 52:3573–3579

    PubMed  Google Scholar 

  • Chappuis F, et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    PubMed  CAS  Google Scholar 

  • Choudhury K, et al (2008) Identification of a Leishmania infantum gene mediating resistance to miltefosine and SbIII. Int J Parasitol 38:1411–1423

    PubMed  CAS  Google Scholar 

  • Chunge CN, et al (1985) Visceral leishmaniasis unresponsive to antimonial drugs. III. Successful treatment using a combination of sodium stibogluconate plus allopurinol. Trans R Soc Trop Med Hyg 79:715–718

    PubMed  CAS  Google Scholar 

  • Chunge CN, et al (1990) Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans R Soc Trop Med Hyg 84:221–225

    PubMed  CAS  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    PubMed  CAS  Google Scholar 

  • Croft SL, et al (1987) The activity of alkylphosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36:263–2636

    Google Scholar 

  • Croft SL, Snowdon D, Yardley V (1996) The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Antimicrob Chemother 38:1041–1047

    PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    PubMed  CAS  Google Scholar 

  • Cuenca-Estrella M (2004) Combinations of antifungal agents in therapy – what value are they? J Antimicrob Chemother 54:854–869

    PubMed  CAS  Google Scholar 

  • Cupolillo E, et al (2000) A revised classification for Leishmania and Endotrypanum. Parasitol Today 16:142–144

    PubMed  CAS  Google Scholar 

  • Cuvillier O, et al (1999) Liposomal ET-18-OCH(3) induces cytochrome c-mediated apoptosis independently of CD95 (APO-1/Fas) signaling. Blood 94:3583–3592

    PubMed  CAS  Google Scholar 

  • Das VN, et al (2009) Short report: development of post-kala-azar dermal leishmaniasis (PKDL) in miltefosine-treated visceral leishmaniasis. Am J Trop Med Hyg 80:336–338

    PubMed  Google Scholar 

  • den Boer ML, et al (2009) Developments in the treatment of visceral leishmaniasis. Expert Opin Emerg Drugs 14:395–410

    Google Scholar 

  • Ellard GA (1984) Rationale of the multidrug regimens recommended by a World Health Organization study group on chemotherapy of leprosy for control programs. Int J Lepr Other Mycobact Dis 52:395–401

    PubMed  CAS  Google Scholar 

  • Escobar P, et al (2002) Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop 81:151–157

    PubMed  CAS  Google Scholar 

  • Fleer EA, et al (1996) Induction of resistance to hexadecylphosphocholine in the highly sensitive human epidermoid tumour cell line KB. Eur J Cancer 32A:506–511

    PubMed  CAS  Google Scholar 

  • Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860–3863

    PubMed  CAS  Google Scholar 

  • Gajate C, Mollinedo F (2002) Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH(3) (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab 3:491–525

    PubMed  CAS  Google Scholar 

  • Gajate C, et al (1998) Involvement of c-Jun NH2-terminal kinase activation and c-Jun in the induction of apoptosis by the ether phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Mol Pharmacol 53:602–612

    PubMed  CAS  Google Scholar 

  • Gajate C, et al (2000a) Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int J Cancer 85:674–682

    PubMed  CAS  Google Scholar 

  • Gajate C, et al (2000b) Involvement of mitochondria and caspase-3 in ET-18-OCH(3)-induced apoptosis of human leukemic cells. Int J Cancer 86:208–218

    PubMed  CAS  Google Scholar 

  • Ganguly NK (2002) Oral miltefosine may revolutionize treatment of visceral leishmaniasis. TDR News 68: 2

    Google Scholar 

  • Geilen CC, et al (1994) Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells. Biochim Biophys Acta 1211:14–22

    PubMed  CAS  Google Scholar 

  • Goad L, Holz GG, Beach DH (1984) Sterols of Leishmania species. Implication for biosynthesis. Mol Biochem Parasitol 10:161–170

    PubMed  CAS  Google Scholar 

  • Grant AM, et al (2001) NBD-labeled phosphatidylcholine and phosphatidylethanolamine are internalized by transbilayer transport across the yeast plasma membrane. Traffic 2:37–50

    PubMed  CAS  Google Scholar 

  • Grogl T, Thomason N, Franke ED (1992) Drug resistance in leishmaniasis: its implication in systemic chemotherapy of cutaneous and mucocutaneous disease. Am J Trop Med Hyg 47:117–126

    PubMed  CAS  Google Scholar 

  • Hanson PK, et al (2003) Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem 278:36041–36050

    PubMed  CAS  Google Scholar 

  • Hilgard P, et al (1991) Investigation into the immunological effects of miltefosine, a new anticancer agent under development. J Cancer Res Clin Oncol 117:403–408

    PubMed  CAS  Google Scholar 

  • Hoffmann J, et al (1997) Resistance to the new anti-cancer phospholipid ilmofosine (BM41 440). Br J Cancer 76:862–869

    Google Scholar 

  • Jendrossek V, Handrick R (2003) Membrane targeted anticancer drugs: potent inducers of apoptosis and putative radiosensitisers. Curr Med Chem Anticancer Agents 3:343–353

    PubMed  CAS  Google Scholar 

  • Jha TK (2006) Drug unresponsiveness and combination therapy for kala-azar. Indian J Med Res 123:389–398

    PubMed  CAS  Google Scholar 

  • Jha TK, et al (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341:1795–1800

    PubMed  CAS  Google Scholar 

  • Jiménez-López JM, et al (2010) Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids. Lipids Health Dis 9:33

    PubMed  Google Scholar 

  • Johnson MD, et al (2004) Combination antifungal therapy. Antimicrob Agents Chemother 48:693–715

    PubMed  CAS  Google Scholar 

  • Kelley EE, et al (1993) Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem Pharmacol 45:2435–2439

    PubMed  CAS  Google Scholar 

  • Kuhlencord A, et al (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36:1630–1634

    PubMed  CAS  Google Scholar 

  • Kumar D, et al (2009) In vitro susceptibility of field isolates of Leishmania donovani to miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrob Agents Chemother 53:835–838

    PubMed  CAS  Google Scholar 

  • Lenoir G, et al (2009) Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. J Biol Chem 284:17956–17967

    PubMed  CAS  Google Scholar 

  • Luque-Ortega JR, Rivas L (2007) Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51:1327–1332

    PubMed  CAS  Google Scholar 

  • Manna L, et al (2008) Leishmania DNA quantification by real-time PCR in naturally infected dogs treated with miltefosine. Ann N Y Acad Sci 1149:358–360

    PubMed  CAS  Google Scholar 

  • Mateo M, et al (2009) Comparative study on the short term efficacy and adverse effects of miltefosine and meglumine antimoniate in dogs with natural leishmaniosis. Parasitol Res 105:155–162

    PubMed  Google Scholar 

  • McConville MJ, et al (2002) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154

    PubMed  CAS  Google Scholar 

  • Mollinedo F, et al (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 57:1320–1328

    PubMed  CAS  Google Scholar 

  • Moreno J, Alvar J (2002) Canine leishmaniasis: epidemiological risk and the experimental model. Trends Parasitol 18:399–405

    PubMed  Google Scholar 

  • Muñoz-Martínez F, et al (2008) The anti-tumour alkylphospholipid perifosine is not internalized by endocytosis, but by an ATP-dependent translocase activity across the plasma membrane of human KB carcinoma cells. Biochim Biophys Acta 1778:530–540

    PubMed  Google Scholar 

  • Murray HW, Delph-Etienne S (2000) Visceral leishmanicidal activity of hexadecylphosphocholine (miltefosine) in mice deficient in T cells and activated macrophage microbicidal mechanisms. J Infect Dis 181:795–799

    PubMed  CAS  Google Scholar 

  • Murray HW, Hariprashad J (1996) Activity of oral atovaquone alone and in combination with antimony in experimental visceral leishmaniasis. Antimicrob Agents Chemother 40:586–587

    PubMed  CAS  Google Scholar 

  • Neal RA, et al (1995) The sensitivity of Leishmania species to aminosidine. J Antimicrob Chemother 35:577–584

    PubMed  CAS  Google Scholar 

  • Pandey BD, et al (2009) Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg 80:580–582

    PubMed  Google Scholar 

  • Paris C, et al (2004) Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 48:852–859

    PubMed  CAS  Google Scholar 

  • Parodi-Talice A, et al (2003) The overexpression of a new ABC transporter in Leishmania is related to phospholipid trafficking and reduced infectivity. Biochim Biophys Acta 1612:195–207

    PubMed  CAS  Google Scholar 

  • Pérez-Victoria JM, et al (2001) Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother 45:2468–2474

    PubMed  Google Scholar 

  • Pérez-Victoria FJ, Castanys S, Gamarro F (2003a) Resistance to miltefosine in Leishmania donovani involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403

    PubMed  Google Scholar 

  • Pérez-Victoria FJ, et al (2003b) Functional cloning of the miltefosine transporter: a novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem 278:49965–49971

    PubMed  Google Scholar 

  • Pérez-Victoria JM, et al (2006a) Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to miltefosine by inhibiting drug efflux. Antimicrob Agents Chemother 50:3102–3110

    PubMed  Google Scholar 

  • Pérez-Victoria FJ, et al (2006b) Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem 281:23766–23775

    PubMed  Google Scholar 

  • Pomorski T, et al (2004) Tracking down lipid flippases and their biological functions. J Cell Sci 117:805–813

    PubMed  CAS  Google Scholar 

  • Quispe-Tintaya KW, et al (2005) Fluorogenic assay for molecular typing of the Leishmania donovani complex: taxonomic and clinical applications. J Infect Dis 192:685–692

    PubMed  CAS  Google Scholar 

  • Raggers RJ, et al (2000) Lipid traffic: the ABC of transbilayer movement. Traffic 1:226–234

    PubMed  CAS  Google Scholar 

  • Rakotomanga M, Saint-Pierre-Chazalet M, Loiseau PM (2005) Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrob Agents Chemother 49:2677–2686

    PubMed  CAS  Google Scholar 

  • Rakotomanga M, et al (2007) Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51:1425–1430

    PubMed  CAS  Google Scholar 

  • Ries UJ, et al (1992) In vitro and in vivo antitumoral activity of alkylphosphonates. Eur J Cancer 29A:96–101

    PubMed  CAS  Google Scholar 

  • Ritmeijer K, et al (2006) A comparison of miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis 43:357–364

    PubMed  CAS  Google Scholar 

  • Rybczynska M, et al (2001a) MDR1 causes resistance to the antitumour drug miltefosine. Br J Cancer 84:1405–1411

    PubMed  CAS  Google Scholar 

  • Rybczynska M, et al (2001b) Effects of miltefosine on various biochemical parameters in a panel of tumor cell lines with different sensitivities. Biochem Pharmacol 62:765–772

    PubMed  CAS  Google Scholar 

  • Saint-Pierre-Chazalet M, et al (2009) Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother 64:993–1001

    PubMed  CAS  Google Scholar 

  • Sánchez-Cañete MP, et al (2009) The low plasma membrane expression of the miltefosine transport complex renders Leishmania braziliensis refractory to the drug. Antimicrob Agents Chemother 53:1305–1313

    PubMed  Google Scholar 

  • Schraner C, et al (2005) Successful treatment with miltefosine of disseminated cutaneous leishmaniasis in a severely immunocompromised patient infected with HIV-1. Clin Infect Dis 40:120–124

    Google Scholar 

  • Seaman J, et al (1993) Epidemic visceral leishmaniasis in Sudan: a randomized trial of aminosidine plus sodium stibogluconate versus sodium stibogluconate alone. J Infect Dis 168:715–720

    PubMed  CAS  Google Scholar 

  • Seifert K, Croft SL (2006) In vitro and in vivo interactions between miltefosine and other anti-leishmanial drugs. Antimicrob Agents Chemother 50:73–79

    PubMed  CAS  Google Scholar 

  • Seifert K, et al (2001) Effects of miltefosine and other alkylphosphocholines on human intestinal parasite Entamoeba histolytica. Antimicrob Agents Chemother 45:1505–1510

    PubMed  CAS  Google Scholar 

  • Seifert K, et al (2003) Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int J Antimicrob Agents 22:380–387

    PubMed  CAS  Google Scholar 

  • Seifert K, et al (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Chemother 30:229–235

    CAS  Google Scholar 

  • Serrano-Martín X, et al (2009) Amiodarone and miltefosine act synergistically against Leishmania mexicana and can induce parasitological cure in a murine model of cutaneous leishmaniasis. Antimicrob Agents Chemother 53:5108–5113

    PubMed  Google Scholar 

  • Sindermann H, et al (2004) Oral miltefosine for leishmaniasis in immunocompromised patients: compassionate use in 39 patients with HIV infection. Clin Infect Dis 39:1520–1523

    PubMed  CAS  Google Scholar 

  • Singh G, Chavan HD, Dey CS (2008) Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). Int J Antimicrob Agents 31:584–586

    PubMed  CAS  Google Scholar 

  • Singh R, et al (2010) Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. Int J Antimicrob Agents 36:50–57

    PubMed  CAS  Google Scholar 

  • Soto J, et al (2001) Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clin Infect Dis 33:57–61

    Google Scholar 

  • Soto J, et al (2004) Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis 38:1266–1272

    PubMed  CAS  Google Scholar 

  • Soto J, et al (2007) Treatment of Bolivian mucosal leishmaniasis with miltefosine. Clin Infect Dis 44:350–356

    PubMed  CAS  Google Scholar 

  • Soto J, et al (2008) Efficacy of miltefosine for Bolivian cutaneous leishmaniasis. Am J Trop Med Hyg 78:210–211

    PubMed  Google Scholar 

  • Soto J, et al (2009) Short report: efficacy of extended (six weeks) treatment with miltefosine for mucosal leishmaniasis in Bolivia. Am J Trop Med Hyg 81:387–389

    PubMed  CAS  Google Scholar 

  • Storme GA, et al (1985) Antiinvasive effect of racemic 1-O-octadecyl-2-O-methlglycero-3-phosphocholine on MO4 mouse fibrosarcoma cells in vitro. Cancer Res 45:351–357

    PubMed  CAS  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–654

    PubMed  CAS  Google Scholar 

  • Sundar S, Murray HW (2005) Availability of miltefosine for the treatment of kala-azar in India. Bull World Health Organ 83:394–395

    PubMed  Google Scholar 

  • Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3:733–740

    PubMed  CAS  Google Scholar 

  • Sundar S, et al (2000) Short-course of oral miltefosine for treatment of visceral leishmaniasis. Clin Infect Dis 31:1110–1113

    PubMed  CAS  Google Scholar 

  • Sundar S, et al (2002) Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 347:1739–1746

    PubMed  CAS  Google Scholar 

  • Sundar S, et al (2003) Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis. Pediatr Infect Dis J 22:434–438

    PubMed  Google Scholar 

  • Sundar S, et al (2008) New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin Infect Dis 47:1000–1006

    PubMed  CAS  Google Scholar 

  • Sundar S, et al (2010) Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 362:504–512

    PubMed  CAS  Google Scholar 

  • Tang X, et al (1996) A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272:1495–1497

    PubMed  CAS  Google Scholar 

  • Thakur CP, et al (2000) A prospective randomized, comparative, open-label trial of the safety and efficacy of paromomycin (aminosidine) plus sodium stibogluconate versus sodium stibogluconate alone for the treatment of visceral leishmaniasis. Trans R Soc Trop Med Hyg 94:429–431

    PubMed  CAS  Google Scholar 

  • van der Luit AH, et al (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277:39541–39547

    PubMed  Google Scholar 

  • van Griensven J, et al (2010) Combination therapy for visceral leishmaniasis. Lancet Infect Dis 10:184–194

    PubMed  Google Scholar 

  • van Helvoort A, et al (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87:507–517

    PubMed  Google Scholar 

  • Vergnes B, et al (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6:88–101

    PubMed  CAS  Google Scholar 

  • Verma NK, Dey CS (2004) Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48:3010–3015

    PubMed  CAS  Google Scholar 

  • Wadhone P, et al (2009) Miltefosine promotes IFN-gamma-dominated anti-leishmanial immune response. J Immunol 182:7146–7154

    PubMed  CAS  Google Scholar 

  • Walochnik J, et al (2002) Cytotoxic activity of alkylphosphocholines against clinical isolates of Acanthamoeba spp. Antimicrob Agents Chemother 46:695–701

    PubMed  CAS  Google Scholar 

  • White NJ (1999) Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41:301–308

    PubMed  CAS  Google Scholar 

  • Woerly V, et al (2009) Clinical efficacy and tolerance of miltefosine in the treatment of canine leishmaniosis. Parasitol Res 105:463–469

    PubMed  Google Scholar 

  • Yardley V, et al (2005) The sensitivity of clinical isolates of Leishmania from Peru and Nepal to miltefosine. Am J Trop Med Hyg 73:272–275

    PubMed  CAS  Google Scholar 

  • Zeisig R, et al (1995) Influence of hexadecylphosphocholine on the release of tumor necrosis factor and nitroxide from peritoneal macrophages in vitro. J Cancer Res Clin Oncol 121:69–75

    PubMed  CAS  Google Scholar 

  • Zerpa O, et al (2007) Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol 156:1328–1335

    PubMed  CAS  Google Scholar 

  • Zoeller RA, Layne MD, Modest EJ (1995) Animal cell mutants unable to take up biologically active glycerophospholipids. J Lipid Res 36:1866–1875

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Gamarro or Santiago Castanys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Gamarro, F., Sánchez-Cañete, M.P., Castanys, S. (2013). Mechanisms of Miltefosine Resistance in Leishmania . In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_17

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics