Skip to main content

I-Type Lectins: Sialoadhesin Family

  • Chapter
  • First Online:
  • 1473 Accesses

Abstract

Sialic acids are a family of α-keto acids with nine-carbon backbones. Sialic acids are acidic monosaccharides typically found at the outermost ends of the sugar chains of animal glycoconjugates. Sialic acids belong to most important molecules of higher animals and also occur in some microorganisms. Their structural diversity is high and, correspondingly, the mechanisms for their biosynthesis complex. Sialic acids are involved in a great number of cell functions. They are bound to complex carbohydrates and occupy prominent positions, especially in cell membranes. However, receptors or adhesion molecules mediating such functions between eukaryotic cells were unknown until 1985, when it was found that the members of the selectin family mediate adhesion of leukocytes to specific endothelia through binding to sialylated glycans like sialyl Lewis. Sialic acids are expressed abundantly in animals of deuterostome lineage (primarily in echinoderms and vertebrates), but their expression in another major group of animals, the protostomes (including nematodes, arthropods, and mollusks), is inconspicuous. They are found mostly at distal positions of oligosaccharide chains of glycoproteins and glycolipids and are thus exposed to the extracellular environment, allowing them to be recognized during initial contact of cells with various pathogenic agents such as viruses, bacteria, protozoa, and toxins. The marked structural complexity of sialic acids can thus be interpreted as a result of evolutionary arms race between the hosts and the pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboul-Enein F, Rauschka H, Kornek B et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33

    PubMed  CAS  Google Scholar 

  • Alphey MS, Attrill H, Crocker PR, Van Aalten DM (2003) High resolution crystal structures of Siglec-7. Insights into ligand specificity in the Siglec family. J Biol Chem 278:3372–3377

    PubMed  CAS  Google Scholar 

  • Angata T (2006) Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol Divers 10:555–566

    PubMed  CAS  Google Scholar 

  • Angata T, Brinkman-Van der Linden E (2002) I-type lectins. Biochim Biophys Acta 1572:294–316

    PubMed  CAS  Google Scholar 

  • Angata T, Varki NM, Varki A (2001) A second uniquely human mutation affecting sialic acid biology. J Biol Chem 276:40282–40287

    PubMed  CAS  Google Scholar 

  • Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA 101:13251–13256

    PubMed  CAS  Google Scholar 

  • Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17:838–846

    PubMed  CAS  Google Scholar 

  • Avichezer D, Silver PB, Chan CC et al (2000) Identification of a new epitope of human IRBP that induces autoimmune uveoretinitis in mice of the H-2b haplotype. Invest Ophthalmol Vis Sci 41:127–131

    PubMed  CAS  Google Scholar 

  • Avril T, Freeman SD, Attrill H et al (2005) Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem 280:19843–19851

    PubMed  CAS  Google Scholar 

  • Avril T, Wagner ER, Willison HJ, Crocker PR (2006) Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun 74:4133–4141

    PubMed  CAS  Google Scholar 

  • Bakker TR, Piperi C, Davies EA, Merwe PA (2002) Comparison of CD22 binding to native CD45 and synthetic oligosaccharide. Eur J Immunol 32:1924–1932

    PubMed  CAS  Google Scholar 

  • Barnes YC, Skelton TP, Stamenkovic I, Sgroi DC (1999) Sialylation of the sialic acid binding lectin sialoadhesin regulates its ability to mediate cell adhesion. Blood 93:1245–1252

    PubMed  CAS  Google Scholar 

  • Barton DE, Arquint M, Roder J et al (1987) The myelin-associated glycoprotein gene: mapping to human chromosome 19 and mouse chromosome 7 and expression in quivering mice. Genomics 1:107–112

    PubMed  CAS  Google Scholar 

  • Bartsch U (1996) Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein. J Neurocytol 25:303–313

    PubMed  CAS  Google Scholar 

  • Bartsch U, Montag D, Bartsch S, Schachner M (1995) Multiply myelinated axons in the optic nerve of mice deficient for the myelin-associated glycoprotein. Glia 14:115–122

    PubMed  CAS  Google Scholar 

  • Bartsch S, Montag D, Schachner M, Bartsch U (1997) Increased number of unmyelinated axons in optic nerves of adult mice deficient in the myelin-associated glycoprotein (MAG). Brain Res 762:231–234

    PubMed  CAS  Google Scholar 

  • Bhunia A, Jayalakshmi V, Benie AJ et al (2004) Saturation transfer difference NMR and computational modeling of a sialoadhesin-sialyl lactose complex. Carbohydr Res 339:259–267

    PubMed  CAS  Google Scholar 

  • Biedermann B, Gil D, Bowen DT, Crocker PR (2007) Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk Res 31:211–220

    PubMed  CAS  Google Scholar 

  • Biesen R, Demir C, Barkhudarova F et al (2008) Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum 58:1136–1145

    PubMed  CAS  Google Scholar 

  • Bjartmar C, Yin X, Trapp BD (1999) Axonal pathology in myelin disorders. J Neurocytol 28:383–395

    PubMed  CAS  Google Scholar 

  • Blixt O, Collins BE, van den Nieuwenhof IM et al (2003) Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 278:31007–31019

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    PubMed  CAS  Google Scholar 

  • Brinkman-Van der Linden EC, Sjoberg ER et al (2000) Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J Biol Chem 275:8633–8640

    PubMed  CAS  Google Scholar 

  • Bukrinsky JT, St Hilaire PM, Meldal M et al (2004) Complex of sialoadhesin with a glycopeptide ligand. Biochim Biophys Acta 1702:173–179

    PubMed  CAS  Google Scholar 

  • Burger D, Pidoux L, Steck AJ (1993) Identification of the glycosylated sequence of human myelin-associated glycoprotein. Biochem Biophys Res Commun 197:457–464

    PubMed  CAS  Google Scholar 

  • Campanero-Rhodes MA, Childs RA, Kiso M et al (2006) Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun 344:1141–1146

    PubMed  CAS  Google Scholar 

  • Chan CH, Wang J, French RR, Glennie MJ (1998) Internalization of the lymphocytic surface protein CD22 is controlled by a novel membrane proximal cytoplasmic motif. J Biol Chem 273:27809–27815

    PubMed  CAS  Google Scholar 

  • Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234

    PubMed  CAS  Google Scholar 

  • Collins BE, Kiso M, Hasegawa A et al (1997) Binding specificities of the sialoadhesin family of I-type lectins. Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J Biol Chem 272:16889–16895

    PubMed  CAS  Google Scholar 

  • Collins BE, Blixt O, Bovin NV et al (2002) Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 12:563–571

    PubMed  CAS  Google Scholar 

  • Collins BE, Smith BA, Bengtson P, Paulson JC (2006a) Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat Immunol 7:199–206

    PubMed  CAS  Google Scholar 

  • Collins BE, Blixt O, Han S et al (2006b) High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J Immunol 177:2994–3003

    PubMed  CAS  Google Scholar 

  • Courtney AH, Puffer EB, Pontrello JK et al (2009) Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc Natl Acad Sci USA 106:2500–2505

    PubMed  CAS  Google Scholar 

  • Crocker PR (2002) Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signaling. Curr Opin Struct Biol 12:609–615

    Google Scholar 

  • Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5:431–437

    PubMed  CAS  Google Scholar 

  • Crocker PR, Redelinghuys P (2008) Siglecs as positive and negative regulators of the immune system. Biochem Soc Trans 36:1467–1471

    PubMed  CAS  Google Scholar 

  • Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342

    PubMed  CAS  Google Scholar 

  • Crocker PR, Zhang J (2002) New I-type lectins of the CD 33-related siglec subgroup identified through genomics. Biochem Soc Symp 69:83–94

    PubMed  CAS  Google Scholar 

  • Crocker PR, Kelm S, Dubois C et al (1991) Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 10:1661–1669

    PubMed  CAS  Google Scholar 

  • Crocker PR, Mucklow S, Bouckson V et al (1994) Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J 13:4490–4503

    PubMed  CAS  Google Scholar 

  • Crocker PR, Freeman S, Gordon S, Kelm S (1995) Sialoadhesin binds preferentially to cells of the granulocytic lineage. J Clin Invest 95:635–643

    PubMed  CAS  Google Scholar 

  • Crocker PR, Hartnell A, Munday J, Nath D (1997) The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycocon J 14:601–609

    CAS  Google Scholar 

  • Crocker PR, Vinson M, Kelm S, Drickamer K (1999) Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis. Biochem J 341:355–361

    PubMed  CAS  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    PubMed  CAS  Google Scholar 

  • Cyster JG, Goodnow CC (1997) Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. Immunity 6:509–517

    PubMed  CAS  Google Scholar 

  • David S, Braun PE, Jackson DL et al (1995) Laminin overrides the inhibitory effects of peripheral nervous system and central nervous system myelin-derived inhibitors of neurite growth. J Neurosci Res 42:594–602

    PubMed  CAS  Google Scholar 

  • Delputte PL, Nauwynck HJ (2004) Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. J Virol 78:8094–8101

    PubMed  CAS  Google Scholar 

  • Delputte PL, Nauwynck HJ (2006) Porcine arterivirus entry in macrophages: heparan sulfate-mediated attachment, sialoadhesin-mediated internalization, and a cell-specific factor mediating virus disassembly and genome release. Adv Exp Med Biol 581:247–252

    PubMed  CAS  Google Scholar 

  • Delputte PL, Costers S, Nauwynck HJ (2005) Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin. J Gen Virol 86:1441–1445

    PubMed  CAS  Google Scholar 

  • DiJoseph JF, Armellino DC, Boghaert ER et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103:1807–1814

    PubMed  CAS  Google Scholar 

  • Dijoseph JF, Dougher MM, Armellino DC et al (2007) Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21:2240–2245

    PubMed  CAS  Google Scholar 

  • Dimasi N, Moretta A, Moretta L et al (2004) Structure of the saccharide-binding domain of the human natural killer cell inhibitory receptor p75/AIRM1. Acta Crystallogr Sect D Biol Crystallogr 60:401–403

    Google Scholar 

  • Domeniconi M, Filbin MT (2005) Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci 233:43–47

    PubMed  CAS  Google Scholar 

  • Domeniconi M, Zampieri N, Spencer T et al (2005) MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46:849–855

    PubMed  CAS  Google Scholar 

  • Doody GM, Justement LB, Delibrias CC et al (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–244

    PubMed  CAS  Google Scholar 

  • Doyle AG, Herbein G, Montaner LJ et al (1994) Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 24:1441–5

    Google Scholar 

  • Edwards AM, Arquint M, Braun PE et al (1988) Myelin-associated glycoprotein, a cell adhesion molecule of oligodendrocytes, is phosphorylated in brain. Mol Cell Biol 8:2655–2658

    PubMed  CAS  Google Scholar 

  • Engel P, Nojima Y, Rothstein D et al (1993) The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes. J Immunol 150:4719–4732

    PubMed  CAS  Google Scholar 

  • Engel P, Wagner N, Miller AS, Tedder TF (1995) Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181:1581–1586

    PubMed  CAS  Google Scholar 

  • Erb M, Flueck B, Kern F et al (2006) Unraveling the differential expression of the two isoforms of myelin-associated glycoprotein in a mouse expressing GFP-tagged S-MAG specifically regulated and targeted into the different myelin compartments. Mol Cell Neurosci 31:613–627

    PubMed  CAS  Google Scholar 

  • Fahrig T, Landa C, Pesheva P et al (1987) Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents. EMBO J 6:2875–2883

    PubMed  CAS  Google Scholar 

  • Filbin MT (1995) Myelin-associated glycoprotein: a role in myelination and in the inhibition of axonal regeneration? Curr Opin Neurobiol 5:588–595

    PubMed  CAS  Google Scholar 

  • Fiorina P, Vergani A, Dada S et al (2008) Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024

    PubMed  CAS  Google Scholar 

  • Floyd H, Ni J, Cornish AL et al (2000) Siglec-8: a novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem 275:861–866

    PubMed  CAS  Google Scholar 

  • Freeman SD, Kelm S, Barber EK et al (1995) Characterisation of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 84:2005–2012

    Google Scholar 

  • Fruttiger M, Montag D, Schachner M, Martini R (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J Neurosci 7:511–515

    PubMed  CAS  Google Scholar 

  • Fujita N, Sato S, Kurihara T et al (1989) cDNA cloning of mouse myelin-associated glycoprotein: a novel alternative splicing pattern. Biochem Biophys Res Commun 165:1162–1169

    PubMed  CAS  Google Scholar 

  • Fujita N, Kemper A, Dupree J et al (1998) The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper cns but not peripheral nervous system myelination. J Neurosci 18:1970–1978

    PubMed  CAS  Google Scholar 

  • Gabius HJ, Andre S, Kaltner H, Siebert HC (2002) The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177

    PubMed  CAS  Google Scholar 

  • Galioto AM, Hess JA, Nolan TJ et al (2006) Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Infect Immun 74:5730–5738

    PubMed  CAS  Google Scholar 

  • Genini S, Malinverni R, Delputte PL et al (2008) Gene expression profiling of porcine alveolar macrophages after antibody-mediated cross-linking of Sialoadhesin (Sn, Siglec-1). J Recept Signal Transduct Res 28:185–243

    PubMed  CAS  Google Scholar 

  • Ghosh S, Bandulet C, Nitschke L (2006) Regulation of B cell development and B cell signaling by CD22 and its ligands α2,6-linked sialic acids. Int Immunol 18:603–611

    PubMed  CAS  Google Scholar 

  • Gijbels MJ, van der Cammen M, van der Laan LJ et al (1999) Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice: an immunohistochemical study. Atherosclerosis 143:15–25

    PubMed  CAS  Google Scholar 

  • Grewal PK, Boton M, Ramirez K, Collins BE et al (2006) ST6Gal-I restrains CD22-dependent antigen receptor endocytosis and Shp-1 recruitment in normal and pathogenic immune signaling. Mol Cell Biol 26:4970–4981

    PubMed  CAS  Google Scholar 

  • Gupta R, Truong L, Bear D et al (2005) Shear stress alters the expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in Schwann cells. J Orthop Res 23:1232–1239

    PubMed  CAS  Google Scholar 

  • Han Y, Kelm S, Riesselman MH (1994) Mouse sialoadhesin is not responsible for Candida albicans yeast cell binding to splenic marginal zone macrophages. Infect Immun 62:2115–8

    Google Scholar 

  • Han S, Collins BE, Bengtson P, Paulson JC (2005) Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat Chem Biol 1:93–97

    PubMed  CAS  Google Scholar 

  • Hanasaki K, Powell LD, Varki A (1995a) Binding of human plasma sialoglycoproteins by the B cell-specific lectin CD22. Selective recognition of immunoglobulin M and haptoglobin. J Biol Chem 270:7543–7550

    PubMed  CAS  Google Scholar 

  • Hanasaki K, Varki A, Powell LD (1995b) CD22-mediated cell adhesion to cytokine-activated human endothelial cells. Positive and negative regulation by α2–6-sialylation of cellular glycoproteins. J Biol Chem 270:7533–7542

    PubMed  CAS  Google Scholar 

  • Hartnell A, Steel J, Turley H et al (2001) Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97:288–296

    PubMed  CAS  Google Scholar 

  • Hatta Y, Tsuchiya N, Matsushita M et al (1999) Identification of the gene variations in human CD22. Immunogenetics 49:280–286

    PubMed  CAS  Google Scholar 

  • Hennet T, Chui D, Paulson JC, Marth JD (1998) Immune regulation by the ST6Gal sialyltransferase. Proc Nat Acad Sci USA 95:4504–4509

    PubMed  CAS  Google Scholar 

  • Hitomi Y, Tsuchiya N, Hasegawa M et al (2007) Association of CD22 gene polymorphism with susceptibility to limited cutaneous systemic sclerosis. Tissue Antigens 69:242–249

    PubMed  CAS  Google Scholar 

  • Hughes EH, Schlichtenbrede FC, Murphy CC et al (2003) Generation of activated sialoadhesin-positive microglia during retinal degenera- tion. Invest Ophthalmol Vis Sci 44:2229–2234

    PubMed  Google Scholar 

  • Ikehara Y, Ikehara SK, Paulson JC (2004) Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 279:43117–43125

    PubMed  CAS  Google Scholar 

  • Ikezumi Y, Suzuki T, Hayafuji S et al (2005) The sialoadhesin (CD169) expressing a macrophage subset in human proliferative glomerulonephritis. Nephrol Dial Transplant 20:2704–2713

    PubMed  CAS  Google Scholar 

  • Inoue Y, Matsuwaki Y, Shin SH et al (2005) Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol 175:5439–5447

    PubMed  CAS  Google Scholar 

  • Inuzuka T, Fujita N, Sato S et al (1991) Expression of the large myelin-associated glycoprotein isoform during the development in the mouse peripheral nervous system. Brain Res 562:173–175

    PubMed  CAS  Google Scholar 

  • Ip CW, Kroner A, Crocker PR et al (2007) Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol Dis 25:105–111

    PubMed  CAS  Google Scholar 

  • Irving EA, Vinson M, Rosin C et al (2005) Identification of neuroprotective properties of anti-MAG antibody: a novel approach for the treatment of stroke? J Cereb Blood Flow Metab 25:98–107

    PubMed  CAS  Google Scholar 

  • Jaramillo ML, Afar DE, Almazan G, Bell JC (1994) Identification of tyrosine 620 as the major phosphorylation site of myelin-associated glycoprotein and its implication in interacting with signaling molecules. J Biol Chem 269:27240–27245

    PubMed  CAS  Google Scholar 

  • Jenner J, Kerst G, Handgretinger R, Müller I (2006) Increased alpha2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp Hematol 34:1212–1218

    PubMed  CAS  Google Scholar 

  • Jiang HR, Lumsden L, Forrester JV (1999) Macrophages and dendritic cells in IRBP-induced experimental autoimmune uveoretinitis in B10RIII mice. Invest Ophthalmol Vis Sci 40:3177–3185

    PubMed  CAS  Google Scholar 

  • Jiang HR, Hwenda L, Makinen K et al (2006) Sialoadhesin promotes the inflammatory response in experimental autoimmune uveoretinitis. J Immunol 177:2258–2264

    PubMed  CAS  Google Scholar 

  • Jin L, McLean PA, Neel BG, Wortis HH (2002) Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J Exp Med 195:1199–1205

    PubMed  CAS  Google Scholar 

  • John B, Herrin BR, Raman C et al (2003) The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J Immunol 170:3534–3543

    PubMed  CAS  Google Scholar 

  • Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysacch aride by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49:1213–1225

    PubMed  CAS  Google Scholar 

  • Kelm S, Schauer R, Manuguerra JC et al (1994) Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycocon J 11:576–585

    CAS  Google Scholar 

  • Kelm S, Brossmer R, Isecke R et al (1998) Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur J Biochem 255:663–672

    PubMed  CAS  Google Scholar 

  • Kelm S, Gerlach J, Brossmer R et al (2002) The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J Exp Med 195:1207–1213

    PubMed  CAS  Google Scholar 

  • Kimura N, Ohmori K, Miyazaki K et al (2007) Human B-lymphocytes express α2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. J Biol Chem 282:32200–32207

    PubMed  CAS  Google Scholar 

  • Kobsar I, Oetke C, Kroner A et al (2006) Attenuated demyelination in the absence of the macrophage-restricted adhesion molecule sialoadhesin (Siglec-1) in mice heterozygously deficient in P0. Mol Cell Neurosci 31:685–691

    PubMed  CAS  Google Scholar 

  • Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J 8:E532–E551

    PubMed  CAS  Google Scholar 

  • Kumamoto Y, Higashi N, Denda-Nagai K et al (2004) Identification of sialoadhesin as a dominant lymph node counter-receptor for mouse macrophage galactose-type C-type lectin 1. J Biol Chem 279:49274–49280

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Ruiz de Morales JM (1999) Sialoadhesin expression by bone marrow macrophages derived from Ehrlich-tumor-bearing mice. Cancer Immunol Immunother 48:493–498

    PubMed  CAS  Google Scholar 

  • Kusmartsev SA, Danilets MG, Bel’skaya NV et al (2003) Effect of individual and combination treatment with cytokines on expression of sialoadhesin by bone marrow macrophages. Bull Exp Biol Med 136:139–141

    PubMed  CAS  Google Scholar 

  • Lai PC, Cook HT, Smith J et al (2001) Interleukin-11 attenuates nephrotoxic nephritis in Wistar Kyoto rats. J Am Soc Nephrol 12:2310–2320

    PubMed  CAS  Google Scholar 

  • Law C-L, Sidorenko SP, Clark EA (1994) Regulation of lymphocyte activation by the cell-surface molecule CD22. Immunol Today 15:442–449

    PubMed  CAS  Google Scholar 

  • Law CL, Sidorenko SP, Chandran KA et al (1996) CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-γ1 upon B cell activation. J Exp Med 183:547–560

    PubMed  CAS  Google Scholar 

  • Lehmann F, Gathje H, Kelm S, Dietz F (2004) Evolution of sialic acid-binding proteins: molecular cloning and expression of fish siglec-4. Glycobiology 14:959–968

    PubMed  CAS  Google Scholar 

  • Leprince C, Draves KE, Geahlen RL et al (1993) CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc Natl Acad Sci USA 90:3236–3240

    PubMed  CAS  Google Scholar 

  • Li C, Tropak MB, Gerlai R et al (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369:747–750

    PubMed  CAS  Google Scholar 

  • Li M, Shibata A, Li C et al (1996) Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J Neurosci Res 46:404–414

    PubMed  CAS  Google Scholar 

  • Lo J, Lee S, Xu M et al (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466

    PubMed  Google Scholar 

  • Lock K, Zhang J, Lu J et al (2004) Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology 209:199–207

    PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Kosco-Vilbois M, Darley E et al (1996) Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med 184:1927–1937

    PubMed  CAS  Google Scholar 

  • Martini R, Schachner M (1997) Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 19:298–310

    PubMed  CAS  Google Scholar 

  • May AP, Robinson RC, Aplin RT et al (1997) Expression, crystallization, and preliminary X-ray analysis of a sialic acid-binding fragment of sialoadhesin in the presence and absence of ligand. Protein Sci 6:717–721

    PubMed  CAS  Google Scholar 

  • May AP, Robinson RC, Vinson M et al (1998) Crystal structure of the N-terminal domain of sialoadhesin in complex with 3' sialyllactose at 1.85 Å resolution. Mol Cell 1:719–728

    PubMed  CAS  Google Scholar 

  • McKerracher L, David S, Jackson DL et al (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811

    PubMed  CAS  Google Scholar 

  • McMillan SJ, Crocker PR (2008) CD33-related sialic-acid-binding immunoglobulin-like lectins in health and disease. Carbohydr Res 343:2050–2056

    PubMed  CAS  Google Scholar 

  • McWilliam AS, Tree P, Gordon S (1992) Interleukin 4 regulates induction of sialoadhesin, the macrophage sialic acid-specific receptor. Proc Natl Acad Sci USA 89:10522–6

    Google Scholar 

  • Mimura F, Yamagishi S, Arimura N et al (2006) Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem 281:15970–15979

    PubMed  CAS  Google Scholar 

  • Mingari MC, Vitale C, Romagnani C et al (2001) p75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells. Immunol Rev 181:260–268

    PubMed  CAS  Google Scholar 

  • Montag D, Giese KP, Bartsch U et al (1994) Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13:229–246

    PubMed  CAS  Google Scholar 

  • Monteiro VG, Lobato CS, Silva AR et al (2005) Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res 97:380–385

    PubMed  Google Scholar 

  • Mrkoci K, Kelm S, Crocker PR et al (1996) Constitutively hyposialylated human T-lymphocyte clones in the Tn-syndrome: binding characteristics of plant and animal lectins. Glycoconj J 13:567–573

    PubMed  CAS  Google Scholar 

  • Mucklow S, Hartnell A, Mattei MG et al (1995) Sialoadhesin (Sn) maps to mouse chromosome 2 and human chromosome 20 and is not linked to the other members of the sialoadhesin family, CD22, MAG, and CD33. Genomics 28:344–346

    PubMed  CAS  Google Scholar 

  • Muerkoster S, Rocha M, Crocker PR et al (1999) Sialoadhesin-positive host macrophages play an essential role in graft-versus-leukemia reactivity in mice. Blood 93:4375–4386

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay G, Doherty P, Walsh FS et al (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    PubMed  CAS  Google Scholar 

  • Munday J, Floyd H, Crocker PR (1999) Sialic acid binding receptors (siglecs) expressed by macrophages. J Leukoc Biol 66:705–711

    PubMed  CAS  Google Scholar 

  • Nakamura K, Yamaji T, Crocker PR et al (2002) Lymph node macrophages, but not spleen macrophages, express high levels of unmasked sialoadhesin: implication for the adhesive properties of macrophages in vivo. Glycobiology 12:209–216

    PubMed  CAS  Google Scholar 

  • Nath D, van der Merwe PA, Kelm S et al (1995) The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid binding site. Comparison with CD22. J Biol Chem 270:26184–26191

    PubMed  CAS  Google Scholar 

  • Nath D, Hartnell A, Happerfield L, Crocker PR et al (1999) Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98:213–219

    PubMed  CAS  Google Scholar 

  • Nguyen DH, Ball ED, Varki A (2006) Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol 34:728–735

    PubMed  CAS  Google Scholar 

  • Nitschke L (2009) CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev 230:128–143

    PubMed  CAS  Google Scholar 

  • Nitschke L, Carsetti R, Ocker B et al (1997) CD22 is a negative regulator of B-cell receptor signaling. Curr Biol 7:133–143

    PubMed  CAS  Google Scholar 

  • Nitschke L, Floyd H, Crocker PR (2001) New functions for the sialic acid-binding adhesion molecule CD22, a member of the growing family of Siglecs. Scand J Immunol 53:227–234

    PubMed  CAS  Google Scholar 

  • Oetke C, Vinson MC, Jones C, Crocker PR (2006) Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 26:1549–1557

    PubMed  CAS  Google Scholar 

  • O’Keefe TL, Williams GT, Davies SL et al (1996) Hyperresponsive B cells in CD22-Deficient mice. Science 274:798–801

    PubMed  Google Scholar 

  • O’Reilly MK, Paulson JC (2009) Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 30:240–248

    PubMed  Google Scholar 

  • Otipoby KL, Andersson KB, Draves KE et al (1996) CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384:634–637

    PubMed  CAS  Google Scholar 

  • Patel N, Brinkman-Van der Linden ECM, Altmann SW et al (1999) OB-BP1/Siglec-6—a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 274:22729–22738

    PubMed  CAS  Google Scholar 

  • Peaker CJ, Neuberger MS (1993) Association of CD22 with the B cell antigen receptor. Eur J Immunol 23:1358–1363

    PubMed  CAS  Google Scholar 

  • Pedraza L, Frey AB, Hempstead BL et al (1991) Differential expression of MAG isoforms during development. J Neurosci Res 29:141–148

    PubMed  CAS  Google Scholar 

  • Perry VH, Crocker PR, Gordon S (1992) The blood–brain barrier regulates the expression of a macrophage sialic acid-binding receptor on microglia. J Cell Sci 101:201–207

    PubMed  Google Scholar 

  • Pierce SK (2002) Lipid rafts and B-cell activation. Nat Rev Immunol 2:96–105

    PubMed  CAS  Google Scholar 

  • Powell LD, Varki A (1994) The oligosaccharide binding specificities of CD22b, a sialic acid-specific lectin of B cells. J Biol Chem 269:10628–10636

    PubMed  CAS  Google Scholar 

  • Powell LD, Jain RK, Matta KI et al (1995) Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. J Biol Chem 270:7523–7532

    PubMed  CAS  Google Scholar 

  • Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100:1431–1448

    PubMed  CAS  Google Scholar 

  • Quarles RH (2009) A hypothesis about the relationship of myelin-associated glycoprotein’s function in myelinated axons to its capacity to inhibit neurite outgrowth. Neurochem Res 34:79–86

    PubMed  CAS  Google Scholar 

  • Razi N, Varki A (1998) Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc Natl Acad Sci USA 95:7469–7474

    PubMed  CAS  Google Scholar 

  • Razi N, Varki A (1999) Cryptic sialic acid binding lectins on human blood leukocytes can be unmasked by sialidase treatment or cellular activation. Glycobiology 9:1225–1234

    PubMed  CAS  Google Scholar 

  • Rempel H, Calosing C, Sun B, Pulliam L (2008) Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3:e1967

    PubMed  Google Scholar 

  • Rossi EA, Goldenberg DM, Cardillo TM et al (2009) Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 113:6161–6171

    PubMed  CAS  Google Scholar 

  • Rudge EU, Cutler AJ, Pritchard NR, Smith KG (2002) Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and Fcγ RII-mediated B cell suppression. J Exp Med 195:1079–1085

    PubMed  CAS  Google Scholar 

  • Salzer JL, Holmes WP, Colman DR (1987) The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J Cell Biol 104:957–965

    PubMed  CAS  Google Scholar 

  • Sandvig A, Berry M, Barrett LB et al (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46:225–251

    PubMed  Google Scholar 

  • Sato S, Fujita N, Kurihara T et al (1989) cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Commun 163:1473–1480

    PubMed  CAS  Google Scholar 

  • Schachner M, Bartsch U (2000) Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29:154–165

    PubMed  CAS  Google Scholar 

  • Schadee-Eestermans IL, Hoefsmit EC, van de Ende M et al (2000) Ultrastructural localisation of sialoadhesin (siglec-1) on macrophages in rodent lymphoid tissues. Immunobiology 202:309–325

    PubMed  CAS  Google Scholar 

  • Schafer M, Fruttiger M, Montag D et al (1996) Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice. Neuron 16:1107–1113

    PubMed  CAS  Google Scholar 

  • Schauer R (2004) Victor Ginsburg’s influence on my research of the role of sialic acids in biological recognition. Arch Biochem Biophys 426:132–141

    PubMed  CAS  Google Scholar 

  • Schnaar RL, Collins BE, Wright LP et al (1998) Myelin-associated glycoprotein binding to gangliosides. Structural specificity and functional implications. Ann NY Acad Sci 845:92–105

    PubMed  CAS  Google Scholar 

  • Sgroi D, Nocks A, Stamenkovic I (1996) A single N-linked glycosylation site is implicated in the regulation of ligand recognition by the I-type lectins CD22 and CD33. J Biol Chem 271:18803–18809

    PubMed  CAS  Google Scholar 

  • Shan D, Press OW (1995) Constitutive endocytosis and degradation of CD22 by human B cells. J Immunol 154:4466–4475

    PubMed  CAS  Google Scholar 

  • Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    PubMed  CAS  Google Scholar 

  • Shi WX, Chammas R, Varki A (1996a) Regulation of sialic acid 9-O-acetylation during the growth and differentiation of murine erythroleukemia cells. J Biol Chem 271:31517–31525

    PubMed  CAS  Google Scholar 

  • Shi WX, Chammas R, Varki NM et al (1996b) Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J Biol Chem 271:31526–31532

    PubMed  CAS  Google Scholar 

  • Sicotte M, Tsatas O, Jeong SY et al (2003) Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol Cell Neurosci 23:251–263

    PubMed  CAS  Google Scholar 

  • Sjoberg ER, Powell LD, Klein A, Varki A (1994) Natural ligands of the B-cell adhesion molecule CD22β can be masked by 9-O-acetylation of sialic acids. J Cell Biol 126:549–562

    PubMed  CAS  Google Scholar 

  • Song H, Ming G, He Z et al (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–1518

    PubMed  CAS  Google Scholar 

  • Sonnenburg JL, Altheide TK, Varki A (2004) A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology 14:339–346

    PubMed  CAS  Google Scholar 

  • Spagnol G, Williams M, Srinivasan J et al (1989) Molecular cloning of human myelin-associated glycoprotein. J Neurosci Res 24:137–142

    PubMed  CAS  Google Scholar 

  • Stamenkovic I, Seed B (1990) The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature 345(6270):74–77

    PubMed  CAS  Google Scholar 

  • Steinfeld SD, Youinou P (2006) Epratuzumab (humanised anti-CD22 antibody) in autoimmune diseases. Expert Opin Biol Ther 6:943–949

    PubMed  CAS  Google Scholar 

  • Steiniger B, Barth P, Herbst B et al (1997) The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92:307–316

    PubMed  CAS  Google Scholar 

  • Stoddart A, Dykstra ML, Brown BK et al (2002) Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17:451–462

    PubMed  CAS  Google Scholar 

  • Stoddart A, Jackson AP, Brodsky FM (2005) Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell 16:2339–2348

    PubMed  CAS  Google Scholar 

  • Strenge K, Schauer R, Bovin N et al (1998) Glycan specificity of myelin-associated glycoprotein and sialoadhesin deduced from interactions with synthetic oligosaccharides. Eur J Biochem 258:677–685

    PubMed  CAS  Google Scholar 

  • Sun J, Shaper NL, Itonori S et al (2004) Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides. Glycobiology 14:851–857

    PubMed  CAS  Google Scholar 

  • Tang S, Shen YJ, DeBellard ME et al (1997) Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol 138:1355–1366

    PubMed  CAS  Google Scholar 

  • Tang S, Qiu J, Nikulina E, Filbin MT (2001) Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol Cell Neurosci 18:259–269

    PubMed  CAS  Google Scholar 

  • Tateno H, Li H, Schur MJ, Bovin N et al (2007) Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mole Cell Biol 27:5699–5710

    CAS  Google Scholar 

  • Tedder TF, Tuscano J, Sato S, Kehrl JH (1997) CD22, A B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15:481–504

    PubMed  CAS  Google Scholar 

  • Tedder TF, Poe JC, Haas KM (2005) CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88:1–50

    PubMed  CAS  Google Scholar 

  • Toda M, Akita K, Inoue M et al (2008) Down-modulation of B cell signal transduction by ligation of mucins to CD22. Biochem Biophys Res Commun 372:45–50

    PubMed  CAS  Google Scholar 

  • Trapp BD (1990) Myelin-associated glycoprotein. Location and potential functions. Ann NY Acad Sci 605:29–43

    PubMed  CAS  Google Scholar 

  • Tuscano JM, Engel P, Tedder TF et al (1996) Involvement of p72syk kinase, p53/56lyn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur J Immunol 26:1246–1252

    PubMed  CAS  Google Scholar 

  • Tuscano JM, O’Donnell RT, Miers LA et al (2003) Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90Y- DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101:3641–3647

    PubMed  CAS  Google Scholar 

  • Ulyanova T, Blasioli J, Woodford-Thomas TA et al (1999) The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol 29:3440–3449

    PubMed  CAS  Google Scholar 

  • Ulyanova T, Shah DD, Thomas ML (2001) Molecular cloning of MIS, a myeloid inhibitory siglec, that binds protein-tyrosine phosphatases SHP-1 and SHP-2. J Biol Chem 276:14451–14458

    PubMed  CAS  Google Scholar 

  • Umansky V, Beckhove P, Rocha M et al (1996) A role for sialoadhesin-positive tissue macrophages in host resistance to lymphoma metastasis in vivo. Immunology 87:303–309

    PubMed  CAS  Google Scholar 

  • Umemori H, Sato S, Yagi T et al (1994) Initial events of myelination involve Fyn tyrosine kinase signaling. Nature 367:572–576

    PubMed  CAS  Google Scholar 

  • Valent P, Ghannadan M, Akin C et al (2004) On the way to targeted therapy of mast cell neoplasms: identification of molecular targets in neoplastic mast cells and evaluation of arising treatment concepts. Eur J Clin Invest 34(Suppl 2):41–52

    PubMed  CAS  Google Scholar 

  • van den Berg TK, Breve JJ, Damoiseaux JG et al (1992) Sialoadhesin on macrophages: its identification as a lymphocyte adhesion molecule. J Exp Med 176:647–655

    PubMed  Google Scholar 

  • van den Berg TK, van Die I, de Lavalette CR et al (1996) Regulation of sialoadhesin expression on rat macrophages. Induction by glucocorticoids and enhancement by IFN-β, IFN-γ, IL-4, and lipopolysaccharide. J Immunol 157:3130–3138

    PubMed  Google Scholar 

  • van den Berg TK, Dopp EA, Dijkstra CD (2001a) Rat macrophages: membrane glycoproteins in differentiation and function. Immunol Rev 184:45–57

    PubMed  Google Scholar 

  • van den Berg TK, Nath D, Ziltener HJ et al (2001b) Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J Immunol 166:3637–3640

    PubMed  Google Scholar 

  • van der Merwe PA, Crocker PR, Vinson M et al (1996) Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. J Biol Chem 271:9273–9280

    PubMed  Google Scholar 

  • Vanderheijden N, Delputte PL, Favoreel HW et al (2003) Involvement of Sn in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 77:8207–8215

    PubMed  CAS  Google Scholar 

  • Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    PubMed  CAS  Google Scholar 

  • Vinson M, van der Merwe PA, Kelm S et al (1996) Characterization of the sialic acid-binding site in sialoadhesin by site-directed mutagenesis. J Biol Chem 271:9267–9272

    PubMed  CAS  Google Scholar 

  • Vinson M, Strijbos PJ, Rowles A et al (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b: a mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285

    PubMed  CAS  Google Scholar 

  • Vyas AA, Patel HV, Fromholt SE et al (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417

    PubMed  CAS  Google Scholar 

  • Vyas AA, Blixt O, Paulson JC et al (2005) Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro. J Biol Chem 280:16305–16310

    PubMed  CAS  Google Scholar 

  • Walter RB, Raden BW, Kamikura DM et al (2005) Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105:1295–1302

    PubMed  CAS  Google Scholar 

  • Wan C, Yang Y, Feng G et al (2005) Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci Lett 388:126–131

    PubMed  CAS  Google Scholar 

  • Wang KC, Kim JA, Sivasankaran R et al (2002a) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    PubMed  CAS  Google Scholar 

  • Wang KC, Koprivica V, Kim JA et al (2002b) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944

    PubMed  CAS  Google Scholar 

  • Wilson GL, Fox CH, Fauci AS, Kehrl JH (1991) cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J Exp Med 173:137–146

    PubMed  CAS  Google Scholar 

  • Wilson GL, Najfeld V, Kozlow E et al (1993) Genomic structure and chromosomal mapping of the human CD22 gene. J Immunol 150:5013–5024

    PubMed  CAS  Google Scholar 

  • Wong EV, David S, Jacob MH, Jay DG (2003) Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. J Neurosci 23:3112

    PubMed  CAS  Google Scholar 

  • Xiong YS, Zhou YH, Rong GH et al (2009) Siglec-1 on monocytes is a potential risk marker for monitoring disease severity in coronary artery disease. Clin Biochem 42:1057–1063

    PubMed  CAS  Google Scholar 

  • Yamaji T, Teranishi T, Alphey MS et al (2002) A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to α 2,8-disialyl and branched α 2,6-sialyl residues. A comparison with Siglec-9. J Biol Chem 277:6324–6332

    PubMed  CAS  Google Scholar 

  • Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157:565–570

    PubMed  CAS  Google Scholar 

  • Yang LJS, Zeller CB, Shaper NL et al (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93:814–818

    PubMed  CAS  Google Scholar 

  • Yang YF, Qin W, Shugart YY et al (2005) Possible association of the MAG locus with schizophrenia in a Chinese Han cohort of family trios. Schizophr Res 75:11–19

    PubMed  CAS  Google Scholar 

  • Yin X, Crawford TO, Griffin JW et al (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    PubMed  CAS  Google Scholar 

  • Yokoi H, Myers A, Matsumoto K et al (2006) Alteration and acquisition of Siglecs during in vitro maturation of CD34+ progenitors into human mast cells. Allergy 61:769–776

    PubMed  CAS  Google Scholar 

  • York MR, Nagai T, Mangini AJ et al (2007) A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and Toll-like receptor agonists. Arthritis Rheum 56:1010–1020

    PubMed  CAS  Google Scholar 

  • Yu Z, Lai CM, Maoui M et al (2001) Identification and characterization of S2V, a novel putative siglec that contains two V set Ig-like domains and recruits protein-tyrosine phosphatases SHPs. J Biol Chem 276:23816–23824

    PubMed  CAS  Google Scholar 

  • Zaccai NR, Maenaka K, Maenaka T et al (2003) Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure 11:557–567

    PubMed  CAS  Google Scholar 

  • Zaccai NR, May AP, Robinson RC et al (2007) Crystallographic and in Silico analysis of the sialoside-binding characteristics of the siglec sialoadhesin. J Mol Biol 365:1469–1479

    PubMed  CAS  Google Scholar 

  • Zhang M, Varki A (2004) Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. Glycobiology 14:939–949

    PubMed  CAS  Google Scholar 

  • Zhang JQ, Biedermann B, Nitschke L, Crocker PR (2004) The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol 34:1175–1184

    PubMed  CAS  Google Scholar 

  • Zhang J, Raper A, Sugita N et al (2006) Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107:3600–3608

    PubMed  CAS  Google Scholar 

  • Zhang M, Angata T, Cho JY et al (2007) Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109:4280–4287

    PubMed  CAS  Google Scholar 

  • Zhu C, Sato M, Yanagisawa T et al (2008) Novel binding site for Src homology 2-containing protein-tyrosine phosphatase-1 in CD22 activated by B lymphocyte stimulation with antigen. J Biol Chem 283:1653–1659

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). I-Type Lectins: Sialoadhesin Family. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_16

Download citation

Publish with us

Policies and ethics