Skip to main content

Mannose Receptor Family: R-Type Lectins

  • Chapter
  • First Online:

Abstract

R-type lectins exist ubiquitously in nature and mainly bind to galactose unit of sugar chains. Originally found in plant lectin, Ricin, the R-type lectin domain is found in several animal lectins, including the members of mannose receptor (MR) family, and in some invertebrate lectins (discussed in Chap. 14). The R-type domain contained in these proteins is the CRD, which is also termed a carbohydrate-binding module (CBM) and has been placed in the CBM13 family in the CAZy database (carbohydrate-active enzymes database). While the A chain in ricin has eight α-helices and eight β-strands, and is the catalytic subunit, the B chain contains R-type lectin domains, has two tandem CRDs that are about 35 Å apart and have a shape resembling a barbell, with one binding domain at each end. Each R-type domain has a three-lobed organization that is a β-trefoil structure (from the Latin trifolium meaning “three-leaved plant”). The β-trefoil structure probably arose evolutionarily through gene fusion events linking a 42-amino-acid peptide subdomain that has galactose-binding activity. The three lobes are termed α, β, and γ and are arranged around a threefold axis. Conceivably, each lobe could be an independent binding site, but in most R-type lectins only one or two of these lobes retain the conserved amino acids required for sugar binding. The R-type domain is also found in pierisin-1, which is a cytotoxic protein from the cabbage butterfly Pieris rapae, and in the homologous protein pierisin-2, from Pieris brassicae. Tandem R-type motifs are found in some other R-type family members. For example, Limulus horseshoe crab coagulation factor G has a central R-type lectin domain, which is flanked at the amino terminus by a xylanase Z-like domain and at the carboxyl terminus by a glucanase-like domain. In this chapter we will restrict our discussion to R-type lectins of mannose receptor family, which comprises also of endocytic receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akilov OE, Kasuboski RE, Carter CR, McDowell MA (2007) The role of mannose receptor during experimental leishmaniasis. J Leuk Biol 81:1188–1196

    Article  CAS  Google Scholar 

  • Ancian P, Lambeau G, Lazdunski M (1995a) Multifunctional activity of the extracellular domain of the M-type (180 kDa) membrane receptor for secretory phospholipases A2. Biochemistry 34:13146–13151

    Article  PubMed  CAS  Google Scholar 

  • Ancian P, Lambeau G, Mattéi MG, Lazdunski M (1995b) The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J Biol Chem 270:8963–8970

    Article  PubMed  CAS  Google Scholar 

  • Baetas-da-Cruz W, Alves L, Pessolani MC et al (2009) Schwann cells express the macrophage mannose receptor and MHC class II. Do they have a role in antigen presentation? J Peripher Nerv Syst 14:84–92

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Sett R, Das PK (1991) Down-regulation of mannose receptors on macrophages after infection with Leishmania donovani. Biochem J 277:451–456

    PubMed  CAS  Google Scholar 

  • Beck S, Beck G, Ostendorf T et al (2006) Upregulation of group IB secreted phospholipase A(2) and its M-type receptor in rat ANTI-THY-1 glomerulonephritis. Kidney Int 70:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Behrendt N, Jensen ON, Engelholm LH et al (2000) A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 275:1993–2002

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Schlunegger MP, Eisenberg D (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 4:2455–2468

    Article  PubMed  CAS  Google Scholar 

  • Biessen EA, van Teijlingen M, Vietsch H et al (1997) Antagonists of the mannose receptor and the LDL receptor-related protein dramatically delay the clearance of tissue plasminogen activator. Circulation 95:46–52

    Article  PubMed  CAS  Google Scholar 

  • Blum JS, Stahl PD, Diaz R, Fiani ML (1991) Purification and characterization of the D-mannose receptor from J774 mouse macrophage cells. Carbohydr Res 213:145–153

    Article  PubMed  CAS  Google Scholar 

  • Boilard E, Rouault M, Surrel F et al (2006) Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor. Biochemistry 45:13203–13218

    Article  PubMed  CAS  Google Scholar 

  • Bonifaz L, Bonnyay D, Mahnke K et al (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196:1627–1638

    Article  PubMed  CAS  Google Scholar 

  • Bonifaz LC, Bonnyay DP, Charalambous A et al (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824

    Article  PubMed  CAS  Google Scholar 

  • Boskovic J, Arnold JN, Stilion R et al (2006) Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor. J Biol Chem 28:8780–8787

    Article  CAS  Google Scholar 

  • Burgdorf S, Lukacs-Kornek V, Kurts C (2006) The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol 176:6770–6776

    PubMed  CAS  Google Scholar 

  • Burudi EM, Riese S, Stahl PD et al (1999) Identification and functional characterization of the mannose receptor in astrocytes. Glia 25:44–55

    Article  PubMed  CAS  Google Scholar 

  • Butler M, Morel AS, Jordan WJ et al (2007) Altered expression and endocytic function of CD205 in human dendritic cells, and detection of a CD205-DCL-1 fusion protein upon dendritic cell maturation. Immunology 120:362–371

    Article  PubMed  CAS  Google Scholar 

  • Camner P, Lundborg M, Lastbom L et al (2002) Experimental and calculated parameters on particle phagocytosis by alveolar macrophages. J Appl Physiol 92:2608–2616

    PubMed  Google Scholar 

  • Chavele KM, Martinez-Pomares L, Domin J et al (2010) Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. J Clin Invest 120:1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Claeys S, De Belder T, Holtappels G et al (2004) Macrophage mannose receptor in chronic sinus disease. Allergy 59:606–612

    Article  PubMed  CAS  Google Scholar 

  • Coste A, Dubourdeau M, Linas MD et al (2003) PPARγ promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13. Immunity 19:329–339

    Article  PubMed  CAS  Google Scholar 

  • Cupillard L, Mulherkar R, Gomez N et al (1999) Both group IB and group IIA secreted phospholipases A2 are natural ligands of the mouse 180-kDa M-type receptor. J Biol Chem 274:7043–7051

    Article  PubMed  CAS  Google Scholar 

  • Dan JM, Kelly RM, Lee CK et al (2008) Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect Immun 76:2362–2367

    Article  PubMed  CAS  Google Scholar 

  • deSchoolmeester ML, Martinez-Pomares L, Gordon S, Else KJ (2009) The mannose receptor binds Trichuris muris excretory/secretory proteins but is not essential for protective immunity. Immunology 126:246–255

    Article  PubMed  CAS  Google Scholar 

  • Drickamer K, Taylor ME (1993) Biology of animal lectins. Annu Rev Cell Biol 9:237–264

    Article  PubMed  CAS  Google Scholar 

  • Dupasquier M, Stoitzner P, Wan H et al (2006) The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J Leukoc Biol 80:838–849

    Article  PubMed  CAS  Google Scholar 

  • East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572:364–386

    Article  PubMed  CAS  Google Scholar 

  • East L, McCarthy A, Wienke D et al (2003) A targeted deletion in the endocytic receptor gene Endo180 results in a defect in collagen uptake. EMBO Rep 4:710–716

    Article  PubMed  CAS  Google Scholar 

  • Egan BS, Lane KB, Shepherd VL (1999) PU.1 and USF are required for macrophage-specific mannose receptor promoter activity. J Biol Chem 274:9098–9107

    Article  PubMed  CAS  Google Scholar 

  • Engelholm LH, List K, Netzel-Arnett S et al (2003) uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion. J Cell Biol 160:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Ezekowitz RA, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Feinberg H, Park-Snyder S, Kolatkar AR et al (2000) Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J Biol Chem 275:21539–21548

    Article  PubMed  CAS  Google Scholar 

  • Fernández N, Alonso S, Valera I et al (2005) Mannose-containing molecular patterns are strong inducers of cyclooxygenase-2 expression and prostaglandin E2 production in human macrophages. J Immunol 174:8154–8162

    PubMed  Google Scholar 

  • Fiete D, Beranek MC, Baenziger JU (1997) The macrophage/endothelial cell mannose receptor cDNA encodes a protein that binds oligosaccharides terminating with SO4-4 GalNAcβ1,4GlcNAcβ or Man at independent sites. Proc Natl Acad Sci USA 94:11256–11261

    Article  PubMed  CAS  Google Scholar 

  • Fiete DJ, Beranek MC, Baenziger JU (1998) A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci USA 95:2089–2093

    Article  PubMed  CAS  Google Scholar 

  • Frison N, Taylor ME, Soilleux E et al (2003) Oligolysine-based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J Biol Chem 278:23922–23929

    Article  PubMed  CAS  Google Scholar 

  • Gazi U, Martinez-Pomares L (2009) Influence of the mannose receptor in host immune responses. Immunobiology 214:554–561

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Feinberg H, Conroy E et al (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Gupta RK, Gupta GS (2009) Targeting cells for drug and gene delivery: emerging applications of mannans and mannan binding lectins. J Sci Ind Res 68:465–483

    CAS  Google Scholar 

  • Hawiger D, Inaba K, Dorsett Y et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    Article  PubMed  CAS  Google Scholar 

  • Howard MJ, Isacke CM (2002) The C-type lectin receptor Endo180 displays internalization and recycling properties distinct from other members of the mannose receptor family. J Biol Chem 277:32320–32331

    Article  PubMed  CAS  Google Scholar 

  • Howard MJ, Chambers MG, Mason RM et al (2004) Distribution of Endo180 receptor and ligand in developing articular cartilage. Osteoarthr Cartil 12:74–82

    Article  PubMed  CAS  Google Scholar 

  • Irache JM, Salman HH, Gamazo C, Espuelas S (2008) Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 5:703–724

    Article  PubMed  CAS  Google Scholar 

  • Irjala H, Alanen K, Grénman R, Heikkilä P, Joensuu H, Jalkanen S (2003) Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res 63:4671–4676

    PubMed  CAS  Google Scholar 

  • Jiang WP, Swiggard WJ, Heufler C et al (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375:151–155

    Article  PubMed  CAS  Google Scholar 

  • Kato M, McDonald KJ, Khan S et al (2006) Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol 18:857–869

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Neil TK, Clark GJ, Morris CM, Sorg RV, Hart DN (1998) cDNA cloning of human DEC-205, a putative antigen-uptake receptor on dendritic cells. Immunogenetics 47:442–450

    Article  PubMed  CAS  Google Scholar 

  • Keisari Y, Kabha K, Nissimov L, Schlepper-Schafer J, Ofek I (1997) Phagocyte-bacteria interactions. Adv Dent Res 11:43–49

    Article  PubMed  CAS  Google Scholar 

  • Keler T, Ramakrishna V, Fanger MW (2004) Mannose receptor-targeted vaccines. Expert Opin Biol Ther 4:1953–1962

    Article  PubMed  CAS  Google Scholar 

  • Kery V, Krepinsky JJ, Warren CD et al (1992) Ligand recognition by purified human mannose receptor. Arch Biochem Biophys 298:49–55

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Ruiz N, Bezouska K et al (1992) Organization of the gene encoding the human macrophage mannose receptor (MRC1). Genomics 14:721–727

    Article  PubMed  CAS  Google Scholar 

  • Kruskal BA, Sastry K, Warner AB et al (1992) Mannose receptor phagocytic chimeric receptors require both transmernbrane and cytoplasmic domains from the mannose receptor. J Exp Med 176:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Bernhard OK, Turville SG et al (2009) Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 284:11027–11038

    Article  PubMed  CAS  Google Scholar 

  • Lambeau G, Gelb MH (2008) Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 77:495–520

    Article  PubMed  CAS  Google Scholar 

  • Lambeau G, Lazdunski M (1999) Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci 20:162–170

    Article  PubMed  CAS  Google Scholar 

  • Lambeau G, Barhanin J, Lazdunski M (1991) Identification of different receptor types for toxic phospholipases A2 in rabbit skeletal muscle. FEBS Lett 293:29–33

    Article  PubMed  CAS  Google Scholar 

  • Lambeau G, Ancian P, Barhanin J et al (1994) Cloning and expression of a membrane receptor for secretory phospholipases A. J Biol Chem 269:1575–1578

    PubMed  CAS  Google Scholar 

  • Lambeau G, Ancian P, Nicolas JP et al (1995) Structural elements of secretory phospholipases A2 involved in the binding to M-type receptors. J Biol Chem 270:5534–5540

    Article  PubMed  CAS  Google Scholar 

  • Le Cabec V, Emorine LJ, Toesca I et al (2005) The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 77:934–943

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Zheng NY, Clavijo M et al (2003) Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 71:437–445

    Article  PubMed  CAS  Google Scholar 

  • Leteux C, Chai W, Loveless RW et al (2000) The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewisa and Lewisx types in addition to the sulfated N-glycans of lutropin. J Exp Med 191:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Linehan SA (2005) The mannose receptor is expressed by subsets of APC in non-lymphoid organs. BMC Immunol 6:4

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Arthur J, Chirino AJ et al (2000) Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J Expt Med 191:1105–1116

    Article  CAS  Google Scholar 

  • Liu Y, Liu H, Kim BO et al (2004) CD4-independent infection of astrocytes by human immuno deficiency virus type 1: requirement for the human mannose receptor. J Virol 78:4120–4133

    Article  PubMed  CAS  Google Scholar 

  • Llorca O (2008) Extended and bent conformations of the mannose receptor family. Cell Mol Life Sci 65:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Herrera A, Liu Y, Rugeles MT, He JJ (2005) HIV-1 interaction with human mannose receptor (hMR) induces production of matrix metalloproteinase 2 (MMP-2) through hMR-mediated intracellular signaling in astrocytes. Biochim Biophys Acta 1741:55–64

    Article  PubMed  CAS  Google Scholar 

  • Mahnke K, Guo M, Lee S et al (2000) The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151:673–684

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Kosco-Vilbois M, Darley E et al (1996) Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med 184:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Crocker PR, Da Silva R et al (1999) Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem 274:35211–35218

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Reid DM, Brown GD et al (2003) Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. J Leukoc Biol 73:604–613

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Hanitsch LG, Stillion R, Keshav S, Gordon S (2005) Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Lab Invest 85:1238–1249

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Wienke D, Stillion R et al (2006) Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur J Immunol 36:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Marttila-Ichihara F, Turja R, Miiluniemi M et al (2008) Macrophage mannose receptor on lymphatics controls cell trafficking. Blood 112:64–72

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Akiyama Y, Cheng J et al (2002) Hamster DEC-205, its primary structure, tissue and cellular distribution. Cancer Lett 181:223–232

    Article  PubMed  CAS  Google Scholar 

  • Marzolo MP, von Bernhardi R, Inestrosa NC (1999) Mannose receptor is present in a functional state in rat microglial cells. J Neurosci Res 58:387–395

    Article  PubMed  CAS  Google Scholar 

  • Miller JL, de Wet BJ, Martinez-Pomares L et al (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17

    Article  PubMed  CAS  Google Scholar 

  • Mullin NP, Hitchen PG, Taylor ME (1997) Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem 272:5668–5681

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Stahl P (1995) Bee venom phospholipase A2 is recognized by the macrophage mannose receptor. Arch Biochem Biophys 324:78–84

    Article  PubMed  CAS  Google Scholar 

  • Napper CE, Taylor ME (2004) The mannose receptor fails to enhance processing and presentation of a glycoprotein antigen in transfected fibroblasts. Glycobiology 14:7C–12C

    Article  PubMed  CAS  Google Scholar 

  • Napper CE, Dyson MH, Taylor ME (2001) An extended conformation of the macrophage mannose receptor. J Biol Chem 276:14759–14766

    Article  PubMed  CAS  Google Scholar 

  • Napper CE, Drickamer K, Taylor ME (2006) Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochem J 395:579–586

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DG, Hildreth JE (2003) Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol 33:483–493

    Article  PubMed  CAS  Google Scholar 

  • Nicolas JP, Lambeau G, Lazdunski M (1995) Identification of the binding domain for secretory phospholipases A2 on their M-type 180-kDa membrane receptor. J Biol Chem 270:28869–28873

    Article  PubMed  CAS  Google Scholar 

  • Nicolas JP, Lin Y, Lambeau G et al (1997) Localization of structural elements of bee venom phospholipase A2 involved in N-type receptor binding and neurotoxicity. J Biol Chem 272:7173–7181

    Article  PubMed  CAS  Google Scholar 

  • Noorman F, Braat EA, Barrett-Bergshoeff M et al (1997) Monoclonal antibodies against the human mannose receptor as a specific marker in flow cytometry and immunohistochemistry for macrophages. J Leukoc Biol 61:63–72

    PubMed  CAS  Google Scholar 

  • Otter M, Barrett-Bergshoeff MM, Rijken DC (1991) Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem 266:13931–13935

    PubMed  CAS  Google Scholar 

  • Otter M, Kuiper J, Bos R, Rijken DC, van Berkel TJ (1992) Characterization of the interaction both in vitro and in vivo of tissue-type plasminogen activator (t-PA) with rat liver cells. Effects of monoclonal antibodies to t-PA. Biochem J 284:545–550

    PubMed  CAS  Google Scholar 

  • Pack M, Trumpfheller C, Thomas D et al (2008) DEC-205/CD205+ dendritic cells are abundant in the white pulp of the human spleen, including the border region between the red and white pulp. Immunology 123:438–446

    Article  PubMed  CAS  Google Scholar 

  • Perrin-Cocon L, Agaugué S, Coutant F et al (2004) Secretory phospholipase A2 induces dendritic cell maturation. Eur J Immunol 34:2293–2302

    Article  PubMed  CAS  Google Scholar 

  • Reading PC, Miller JL, Anders EM (2000) Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 74:5190–5197

    Article  PubMed  CAS  Google Scholar 

  • Régnier-Vigouroux A (2003) The mannose receptor in the brain. Int Rev Cytol 226:321–342

    Article  PubMed  Google Scholar 

  • Rouault M, Le Calvez C, Boilard E et al (2007) Recombinant production and properties of binding of the full set of mouse secreted phospholipases A2 to the mouse M-type receptor. Biochemistry 46:1647–1662

    Article  PubMed  CAS  Google Scholar 

  • Schnack Nielsen B, Rank F, Engelholm LH et al (2002) Urokinase receptor-associated protein (uPARAP) is expressed in connection with malignant as well as benign lesions of the human breast and occurs in specific populations of stromal cells. Int J Cancer 98:656–664

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S, Blum JS, Chappel JC et al (1990) Prostaglandin E specifically upregulates the expression of the mannose-receptor on mouse bone marrow-derived macrophages. Cell Regul 1:403–413

    PubMed  CAS  Google Scholar 

  • Sheikh H, Yarwood H, Ashworth A, Isacke CM (2000) Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci 113(Pt 6):1021–1032

    PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  PubMed  CAS  Google Scholar 

  • Sturge J, Todd SK, Kogianni G, McCarthy A, Isacke CM (2007) Mannose receptor regulation of macrophage cell migration. J Leukoc Biol 82:585–593

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Bakker T, Harris J et al (2005) Glycosylation influences the lectin activities of the macrophage mannose receptor. J Biol Chem 280:32811–32820

    Article  PubMed  CAS  Google Scholar 

  • Swain SD, Lee SJ, Nussenzweig MC, Harmsen AG (2003) Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect Immun 71:6213–6221

    Article  PubMed  CAS  Google Scholar 

  • Sweet L, Singh PP, Azad AK et al (2010) Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun 78:518–526

    Article  PubMed  CAS  Google Scholar 

  • Szolnoky G, Bata-Csörgö Z, Kenderessy AS et al (2001) A mannose-binding receptor is expressed on human keratinocytes and mediates killing of Candida albicans. J Invest Dermatol 117:205–213

    Article  PubMed  CAS  Google Scholar 

  • Tachado SD, Zhang J, Zhu J, Patel N, Cushion M, Koziel H (2007) Pneumocystis-mediated IL-8 release by macrophages requires coexpression of mannose receptors and TLR2. J Leukoc Biol 81:205–211

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Donovan MJ, Rogers RA, Ezekowitz RAB (1998) Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell Tissue Res 292:311–323

    Article  PubMed  CAS  Google Scholar 

  • Taylor ME, Bezouska K, Drickamer K (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 267:1719–1726

    PubMed  CAS  Google Scholar 

  • Thomas EK, Nakamura M, Wienke D et al (2005) Endo180 binds to the C-terminal region of type I collagen. J Biol Chem 280:22596–22605

    Article  PubMed  CAS  Google Scholar 

  • Torrelles JB, Azad AK, Schlesinger LS (2006) Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol 177:1805–1816

    PubMed  CAS  Google Scholar 

  • Valentin E, Lambeau G (2000) Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. Biochim Biophys Acta 1488:59–70

    Article  PubMed  CAS  Google Scholar 

  • van Vliet SJ, van Liempt E, Saeland E et al (2005) Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Intern Immunol 17:661–669

    Article  CAS  Google Scholar 

  • Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA (1991) Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254:1608–1615

    Article  PubMed  CAS  Google Scholar 

  • Weis WI, Taylor ME, Drickamer K (1998) The C-type lectin superfamily in the immune system. Immunol Rev 163:19–34

    Article  PubMed  CAS  Google Scholar 

  • Wienke D, MacFadyen JR, Isacke CM (2003) Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Mol Biol Cell 14:3592–3604

    Article  PubMed  CAS  Google Scholar 

  • Witmer-Pack MD, Swiggard WJ, Mirza A et al (1995) Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell Immunol 163:157–162

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Yuan J, Lasky LA (1996) Characterization of a novel member of the macrophage mannose receptor type C lectin family. J Biol Chem 271:21323–21330

    Article  PubMed  CAS  Google Scholar 

  • Wu YZ, Manevich Y, Baldwin JL et al (2006) Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity. J Biol Chem 281:7515–7525

    Article  PubMed  CAS  Google Scholar 

  • Xaplanteri P, Lagoumintzis G, Dimitracopoulos G, Paliogianni F (2009) Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2. Eur J Immunol 39:730–740

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Xie Q, Shen Y et al (2010) Involvement of mannose receptor in the preventive effects of mannose in lipopolysaccharide-induced acute lung injury. Eur J Pharmacol 641:229–237

    Article  PubMed  CAS  Google Scholar 

  • Zamze S, Martinez-Pomares L, Jones H et al (2002) Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 277:41613–41623

    Article  PubMed  CAS  Google Scholar 

  • Zimmer H, Riese S, Regnier-Vigouroux A (2003) Functional characterization of mannose receptor expressed by immunocompetent mouse microglia. Glia 42:89–100

    Article  PubMed  Google Scholar 

  • Zvaritch E, Lambeau G, Lazdunski M (1996) Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2. J Biol Chem 271:250–257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, R.K., Gupta, G.S. (2012). Mannose Receptor Family: R-Type Lectins. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_15

Download citation

Publish with us

Policies and ethics