Skip to main content

Abstract

The R-type lectins are members of a superfamily of proteins, all of which contain a carbohydrate-recognition domain (CRD) that is structurally similar to the CRD in Ricin. The R-type domain is an ancient type of protein fold that is found in many glycosyltransferases as well as in bacterial and fungal hydrolases. Interestingly, the R-type CRD is the only one conserved between animal and bacterial lectins (Sharon and Lis 2004). Ricin was the first lectin discovered and it is the prototypical lectin in this category. Two different lectins have been purified from R. communis seeds, and in the original nomenclature they were termed RCA-I and RCA-II. RCA-I is an agglutinin but a very weak toxin. RCA-II is commonly called ricin, and it is both an agglutinin and a very potent toxin. The designation RCA-II has now been dropped, but the original name for the agglutinin RCA-I has been retained. The molecular mass of RCA-I is approximately 120 kDa and that of ricin is approximately 60-kDa. Ricin is a type II ribosome-inactivating protein (RIP-II). Although one might predict that RCA-I also would be highly toxic, it has weak activity compared to ricin because it lacks a separate A chain (Fig. 14.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves F, Vogel W, Mossie K et al (1995) Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 10:609–618

    PubMed  CAS  Google Scholar 

  • Alves F, Saupe S, Ledwon M et al (2001) Identification of two novel, kinase-deficient variants of discoidin domain receptor 1: differential expression in human colon cancer cell lines. FASEB J 15:1321–1323

    PubMed  CAS  Google Scholar 

  • Amado M, Almeida R, Schwientek T, Clausen H (1999) Identification and characterization of large galactosyltransferase gene families: Galactosyltransferases for all functions. Biochim Biophys Acta 1473:35–53

    Article  PubMed  CAS  Google Scholar 

  • Aragão KS, Satre M, Imberty A, Varrot A (2008) Structure determination of Discoidin II from Dictyostelium discoideum and carbohydrate binding properties of the lectin domain. Proteins 73:43–52

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner S, Hofmann K, Chiquet-Ehrismann R, Bucher P (1998) The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci 7:1626–1631

    Article  PubMed  CAS  Google Scholar 

  • Bennett EP, Hassan H, Mandel U et al (1998) Cloning of a human UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyl transferase that complements other PpGalNAc-Ts in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273:30472–30481

    Article  PubMed  CAS  Google Scholar 

  • Boraston AB, Tomme P, Amandoron EA, Kilburn DG (2000) A novel mechanism of xylan binding by a lectin-like module from Streptomyces lividans xylanase 10A. Biochem J 350(Pt 3):933–941

    Article  PubMed  CAS  Google Scholar 

  • Carpusca I, Jank T, Aktories K (2006) Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases. Mol Microbiol 62:621–630

    Article  PubMed  CAS  Google Scholar 

  • Cummings RD (2009) Etzler ME. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • East L, Rushton S, Taylor ME, Isacke CM (2002) Characterization of sugar binding by the mannose receptor family member, Endo180. J Biol Chem 277:50469–50475

    Article  PubMed  CAS  Google Scholar 

  • Ensslin MA, Shur BD (2003) Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 114:405–417

    Article  PubMed  CAS  Google Scholar 

  • Freire T, Fernández C, Chalar C et al (2004) Characterization of a UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosa-minyltransferase with an unusual lectin domain from the platyhelminth parasite Echinococcus granulosus. Biochem J 382:501–510

    Article  PubMed  CAS  Google Scholar 

  • Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA (2004) The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase-T1. Proc Natl Acad Sci USA 101:15307–15312

    Article  PubMed  CAS  Google Scholar 

  • Fritz TA, Raman J, Tabak LA (2006) Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase-2. J Biol Chem 281:8613–8619

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Prior P, Fujikawa K, Pratt KP (2002) New insights into binding interfaces of coagulation factors V and VIII and their homologues lessons from high resolution crystal structures. Curr Protein Pept Sci 3:313–339

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Z, Kuno A, Kaneko S et al (2002) Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module. J Mol Biol 316:65–78

    Article  PubMed  CAS  Google Scholar 

  • Gamulin V, Skorokhod A, Kavsan V et al (1997) Experimental indication in favor of the introns-late theory: the receptor tyrosine kinase gene from the sponge Geodia cydonium. J Mol Evol 44:242–252

    Article  PubMed  CAS  Google Scholar 

  • Hagen FK, Nehrke K (1998) cDNA cloning and expression of a family of UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosa-minyltransferase sequence homologs from Caenorhabditis elegans. J Biol Chem 273:8268–8277

    Article  PubMed  CAS  Google Scholar 

  • Hagen FK, Hazes B, Raffo R et al (1999) Structure-function analysis of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalacto-saminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold. J Biol Chem 274:6797–6803

    Article  PubMed  CAS  Google Scholar 

  • Halling KC, Halling AC, Murray EE et al (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucleic Acids Res 1:8019–8033

    Article  Google Scholar 

  • Hassan H, Reis CA, Bennett EP et al (2000) The lectin domain of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyl -transferase-T4 directs its glycopeptide specificities. J Biol Chem 275:38197–38205

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama T, Unno H, Kouzuma Y, Uchida T, Eto S, Hidemura H, Kato N, Yonekura M, Kusunoki M (2007) C-type lectin-like carbohydrate recognition of the hemolytic lectin CEL-III containing ricin-type -trefoil folds. J Biol Chem 282:37826–37835

    Article  PubMed  CAS  Google Scholar 

  • Hazes B (1996) The (QxW)3 domain: a flexible lectin scaffold. Protein Sci 5:1490–1501

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Kuno A, Ito S et al (2009) NMR studies on the interaction of sugars with the C-terminal domain of an R-type lectin from the earthworm Lumbricus terrestris. FEBS J 276:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Imberty A, Piller V, Piller F, Breton C (1997) Fold recognition and molecular modeling of a lectinlike domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. Protein Eng 10:1353–1356

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Fujinaga Y, Honke K et al (1999) Characterization of haemagglutinin activity of Clostridium botulinum type C, D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145:2533–2542

    PubMed  CAS  Google Scholar 

  • Johnson JD, Edman JC, Rutter WJ (1993) A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain. Proc Natl Acad Sci USA 90:5677–5681

    Article  PubMed  CAS  Google Scholar 

  • Kamohara H, Yamashiro S, Galligan C, Yoshimura T (2001) Discoidin domain receptor 1 isoform-a (DDR1α) promotes migration of leukocytes in three-dimensional collagen lattices. FASEB J 15:2724–2726

    PubMed  CAS  Google Scholar 

  • Kanazawa T, Watanabe M, Matsushima-Hibiya Y et al (2001) Distinct roles for the N- and C-terminal regions in the cytotoxicity of pierisin-1, a putative ADP-ribosylating toxin from cabbage butterfly, against mammalian cells. Proc Natl Acad Sci USA 98:2226–2231

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa T, Kono T, Watanabe M et al (2002) Bcl-2 blocks apoptosis caused by pierisin-1, a guanine-specific ADP-ribosylating toxin from the cabbage butterfly. Biochem Biophys Res Commun 296:20–25

    Article  PubMed  CAS  Google Scholar 

  • Karn T, Holtrich U, Bräuninger A et al (1993) Structure, expression and chromosomal mapping of TKT from man and mouse: a new subclass of receptor tyrosine kinases with a factor VIII-like domain. Oncogene 8:3433–3440

    PubMed  CAS  Google Scholar 

  • Katzin BJ, Collins EJ, Robertus JD (1991) Structure of ricin A-chain at 2.5 A. Proteins 10:251–259

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi M, Matsukawa K, Kuraoka I et al (2007) Molecular evidence of the involvement of the nucleotide excision repair (NER) system in the repair of the mono(ADP-ribosyl)ated DNA adduct produced by pierisin-1, an apoptosis-inducing protein from the cabbage butterfly. Chem Res Toxicol 20:694–700

    Article  PubMed  CAS  Google Scholar 

  • Kiedzierska A, Smietana K, Czepczynska H, Otlewski J (2007) Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta 1774:1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Mlsna D, Monzingo AF et al (1992) The structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochembtry 31:3294–3296

    Article  CAS  Google Scholar 

  • Kono T, Watanabe M, Koyama K et al (1999) Cytotoxic activity of pierisin, from the cabbage butterfly, Pieris rapae, in various human cancer cell lines. Cancer Lett 137:75–81

    Article  PubMed  CAS  Google Scholar 

  • Kubota T, Shiba T, Sugioka S et al (2006) Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide α-N-Acetylgalactosa-minyltransferase (pp-GalNAc-T10). J Mol Biol 359:708–727

    Article  PubMed  CAS  Google Scholar 

  • Lai C, Lemke G (1994) Structure and expression of the tyro 10 receptor tyrosine kinase. Oncogene 9:877–883

    PubMed  CAS  Google Scholar 

  • Lee CC, Kreusch A, McMullan D et al (2003) Crystal structure of the human neuropilin-1 b1 domain. Structure 11:99–108

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Chirino AJ, Misulovin Z, Leteux C, Feizi T, Nussenzweig MC, Bjorkman PJ (2000) Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J Exp Med 191:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Llorca O (2008) Extended and bent conformations of the mannose receptor family. Cell Mol Life Sci 65:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208

    PubMed  CAS  Google Scholar 

  • Lord MJ, Jolliffe NA, Marsden CJ et al (2003) Ricin. Mechanisms of cytotoxicity. Toxicol Rev 22:53–64

    Article  PubMed  CAS  Google Scholar 

  • Macedo-Ribeiro S, Bode W, Huber R et al (1999) Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402:434–439

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Nakano T, Yamamoto M et al (2008) Distribution of cytotoxic and DNA ADP-ribosylating activity in crude extracts from butterflies among the family Pieridae. Proc Natl Acad Sci USA 105:2516–2520

    Article  PubMed  Google Scholar 

  • Matsushima-Hibiya Y, Watanabe M, Kono T et al (2000) Purification and cloning of pierisin-2, an apoptosis-inducing protein from the cabbage butterfly, Pieris brassicae. Eur J Biochem 267:5742–5750

    Article  PubMed  CAS  Google Scholar 

  • Matsushima-Hibiya Y, Watanabe M, Hidari KI et al (2003) Identification of glycosphingolipid receptors for pierisin-1, a guanine-specific ADP-ribosylating toxin from the cabbage butterfly. J Biol Chem 278:9972–9978

    Article  PubMed  CAS  Google Scholar 

  • Mlsna D, Monzingo AF, Katzin BJ et al (1993) Structure of recombinant ricin A chain at 2.3 A. Protein Sci 2:429–435

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Matsushima-Hibiya Y, Yamamoto M et al (2006) Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci USA 103:13652–13657

    Article  PubMed  CAS  Google Scholar 

  • Napper CE, Drickamer K, Taylor ME (2006) Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochem J 395:579–586

    Article  PubMed  CAS  Google Scholar 

  • Notenboom V, Boraston AB, Williams SJ, Kilburn DG, Rose DR (2002) High-resolution crystal structures of the Lectin-like Xylan binding domain from Streptomyces lividans Xylanase 10A with bound substrates reveal a novel mode of Xylan binding. Biochemistry 4:4246–4254

    Article  CAS  Google Scholar 

  • Perez JL, Jing SQ, Wong TW (1996) Identification of two isoforms of the Cak receptor kinase that are coexpressed in breast tumor cell lines. Oncogene 12:1469–1477

    PubMed  CAS  Google Scholar 

  • Playford MP, Butler RJ, Wang XC et al (1996) The genomic structure of discoidin receptor tyrosine kinase. Genome Res 6:620–627

    Article  PubMed  CAS  Google Scholar 

  • Poole S, Firtel RA, Lamar E, Rowekamp W (1981) Sequence and expression of the discoidin I gene family in Dictyostelium discoideum. J Mol Biol 153:273–289

    Article  PubMed  CAS  Google Scholar 

  • Pratt KP, Shen BW, Takeshima K et al (1999) Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature 402:439–442

    Article  PubMed  CAS  Google Scholar 

  • Raman J, Fritz TA, Gerken TA et al (2008) The catalytic and lectin domains of UDP-GalNAc:polypeptide α-N Acetylgalactosa-minyltransferase function in concert to direct glycosylation site selection. J Biol Chem 283:22942–22951

    Article  PubMed  CAS  Google Scholar 

  • Robertus JD, Ready MP (1984) Ricin B chain and discoidin I share a common primitive protein fold. J Biol Chem 259:13953–13956

    PubMed  CAS  Google Scholar 

  • Rosen SD, Kafka JA, Simpson DL et al (1973) Developmentally regulated, carbohydrate-binding protein in dictyostelium discoideum. Proc Nat Acad Sci USA 70:2554–2557

    Article  PubMed  CAS  Google Scholar 

  • Rutenber E, Robertus JD (1991) The structure of ricin B chain at 2.5 A resolution. Proteins Struct Funct Genet 10:260–269

    Article  PubMed  CAS  Google Scholar 

  • Rutenber E, Katzin BJ, Collins EJ et al (1991) The crystallographic refinement of ricin at 2.5 A resolution. Proteins Struct Funct Genet 10:240–250

    Article  PubMed  CAS  Google Scholar 

  • Sauer CG, Gehrig A, Warneke-Wittstock R et al (1997) Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 17:164–170

    Article  PubMed  CAS  Google Scholar 

  • Schärpf M, Connelly GP, Lee GM et al (2002) Site-specific characterization of the association of xylooligosaccharides with the CBM13 lectin-like xylan binding domain from Streptomyces lividans xylanase 10A by NMR spectroscopy. Biochemistry 41:4255–4263

    Article  PubMed  CAS  Google Scholar 

  • Schwientek T, Bennett EP, Flores C et al (2002) Functional conservation of subfamilies of putative UDP-N-acetylgalactosamine: polypeptide N-acetylgalacto-saminyltransferases in Drosophila, Caenorhabditis elegans, and mammals—One subfamily composed of l(2)35Aa is essential in Drosophila. J Biol Chem 277:22623–22638

    Article  PubMed  CAS  Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R

    Article  PubMed  CAS  Google Scholar 

  • Shiga A, Kakamu S, Sugiyama Y et al (2006) Acute toxicity of pierisin-1, a cytotoxic protein from Pieris rapae, in mouse and rat. J Toxicol Sci 31:123–137

    Article  PubMed  CAS  Google Scholar 

  • Shiotani B, Watanabe M, Totsuka Y et al (2005) Involvement of nucleotide excision repair (NER) system in repair of mono ADP-ribosylated dG adducts produced by pierisin-1, a cytotoxic protein from cabbage butterfly. Mutat Res 572:150–155

    Article  PubMed  CAS  Google Scholar 

  • Shiotani B, Kobayashi M, Watanabe M et al (2006) Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1. Mol Cancer Res 4:125–133

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology 10:405–412

    Article  PubMed  CAS  Google Scholar 

  • Stwora-Wojczyk MM, Dzierszinski F, Roos DS et al (2004) Functional characterization of a novel Toxoplasma gondii glycosyltransferase: UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T3. Arch Biochem Biophys 426:231–240

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Fujimoto Z, Kuno A et al (2004) Crystallization and preliminary X-ray crystallographic studies of the C-terminal domain of galactose-binding lectin EW29 from the earthworm Lumbricus terrestris. Acta Crystallogr D Biol Crystallogr 60(Pt 10):1895–1896

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Kuno A, Hasegawa T et al (2009) Sugar-complex structures of the C-half domain of the galactose-binding lectin EW29 from the earthworm Lumbricus terrestris. Acta Crystallogr D Biol Crystallogr 65(Pt 1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Takamura-Enya T, Watanabe M, Totsuka Y et al (2001) Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc Natl Acad Sci USA 98:12414–12419

    Article  PubMed  CAS  Google Scholar 

  • Takamura-Enya T, Watanabe M, Koyama K et al (2004) Mono(ADP-ribosyl)ation of the N2 amino groups of guanine residues in DNA by pierisin-2, from the cabbage butterfly, Pieris brassicae. Biochem Biophys Res Commun 323:579–582

    Article  PubMed  CAS  Google Scholar 

  • Ten Hagen KG, Tran DT (2002) A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is essential for viability in Drosophila melanogaster. J Bio Chem 277:22616–22622

    Article  CAS  Google Scholar 

  • Ten Hagen KG, Bedi GS, Tetaert D et al (2001) Cloning and characterization of a ninth member of the UDPGalNAc: polypeptide N-acetylgalactosaminyltransferase family, ppGalNAc-T-T9. J Biol Chem 276:17395–17404

    Article  PubMed  Google Scholar 

  • Ten Hagen KG, Fritz TA, Tabak LA (2003) All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyl- transferases. Glycobiology 13:1R–16R

    Article  PubMed  CAS  Google Scholar 

  • Tenno M, Saeki A, Kezdy FJ et al (2002) The lectin domain of UDPGalNAc: polypeptide N-acetylgalactosaminyltransferase 1 is involved in O-glycosylation of a polypeptide with multiple acceptor sites. J Biol Chem 277:47088–47096

    Article  PubMed  CAS  Google Scholar 

  • Topaz O, Shurman DI, Bergman R et al (2004) Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36:579–581

    Article  PubMed  CAS  Google Scholar 

  • Treiber N, Reinert DJ, Carpusca I, Aktories K, Schulz GE (2008) Structure and mode of action of a mosquitocidal holotoxin. J Mol Biol 381:150–159

    Article  PubMed  CAS  Google Scholar 

  • Uchida T, Yamasaki T, Eto S et al (2004) Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism. J Biol Chem 279:37133–37141

    Article  PubMed  CAS  Google Scholar 

  • Vogel W (1999) Discoidin domain receptors: structural relations and functional implications. FASEB J 13:S77–S82

    PubMed  CAS  Google Scholar 

  • Vogel WF (2001) Collagen-receptor signaling in health and disease. Eur J Dermatol 11:506–514

    PubMed  CAS  Google Scholar 

  • Vogel W, Gish GD, Alves F et al (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23

    Article  PubMed  CAS  Google Scholar 

  • Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18:1108–1116

    Article  PubMed  CAS  Google Scholar 

  • Wandall HH, Irazoqui F, Tarp MA et al (2007) The lectin domains of polypeptide PpGalNAc-Ts exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology 17:374–387

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kono T, Koyama K et al (1998) Purification of pierisin, an inducer of apoptosis in human gastric carcinoma cells, from cabbage butterfly, Pieris rapae. Jpn J Cancer Res 89:556–561

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kono T, Matsushima-Hibiya Y et al (1999) Molecular cloning of an apoptosis-inducing protein, pierisin, from cabbage butterfly: possible involvement of ADP-ribosylation in its activity. Proc Natl Acad Sci USA 96:10608–10613

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Takamura-Enya T, Kanazawa T et al (2002) Mono(ADP-ribosyl)ation of DNA by apoptosis-inducing protein, pierisin. Nucleic Acids Res Supp 2:243–244

    Google Scholar 

  • Watanabe M, Enomoto S, Takamura-Enya T et al (2004a) Enzymatic properties of pierisin-1 and its N-terminal domain, a guanine-specific ADP ribosyltransferase from the cabbage butterfly. J Biochem 135:471–477

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Nakano T, Shiotani B et al (2004b) Developmental stage-specific expression and tissue distribution of pierisin-1, a guanine-specific ADP-ribosylating toxin, in Pieris rapae. Comp Biochem Physiol A Mol Integr Physiol 139:125–131

    Article  PubMed  CAS  Google Scholar 

  • Wojczyk BS, Stwora-Wojczyk MM et al (2003) cDNA cloning and expression of UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyl -transferase T1 from Toxoplasma gondii. Mol Biochem Parasitol 131:93–107

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Nakano T, Matsushima-Hibiya Y et al (2009) Molecular cloning of apoptosis-inducing Pierisin-like proteins, from two species of white butterfly, Pieris melete and Aporia crataegi. Comp Biochem Physiol B Biochem Mol Biol 154:326–333

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Hollis T, Svinth M et al (1997) Structure-based identification of a ricin inhibitor. J Mol Biol 266:1043–1049

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, R.K., Gupta, G.S. (2012). R-Type Lectin Families. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_14

Download citation

Publish with us

Policies and ethics