Skip to main content

Abstract

Photobiological processes occur under the influence of light of ultraviolet (UV), visible, and near infrared spectral regions. Generally, values of light flux intensity, I, and wavelength, λ are used in optical measurements. The frequency index \( \bar{\nu } \) is also considered to characterize an absorbed light. Frequency is expressed in reciprocal seconds [c−1] and presents itself as the ratio of a radiation velocity c to a wavelength λ [cm or nm]:

$$ \bar{\nu } = c/\lambda = {3.10^{{17}}}/{\lambda_{\rm{nm}}}, $$

where c =3 × 1010 cm⋅c−1 or 3 × 1017 nm⋅c−1, the velocity of light. The frequently used index is the wavenumber \( \bar{\nu } \) equal to the number of waves in 1 cm. The wavenumber is a reciprocal wavelength expressed in reciprocal centimeters:

$$ [{\hbox{c}}{{\hbox{m}}^{{ - 1}}}]:\bar{\nu } = 1/{\lambda_{\rm{cm}}} = {10^7}/{\lambda_{\rm{nm}}} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid ME, Abdel-Khatek MM, Mahrous MS (1984) Application of difference and derivative ultraviolet spectrometry for the assay of some benzodiazepines. Anal Lett 17(B12):1353–1371

    Article  CAS  Google Scholar 

  • Aleksandrova NN, Mishchenko VT, Poluektov NS, Kucher AA (1982) The derivative spectrophotometry in studying of complex formation of ions of f-elements. Complex formation of Pr3+ with ethylene diamine tetra acetic acid (in Russian). Dokl AN USSR Ser B (9):23–26

    Google Scholar 

  • Almela L, Garcia AL, Navarro S (1983) Application of derivative spectroscopy to the quantitative-determination of chlorophylls and related pigments. 2. Simultaneous determination of pheophytins-A and pheophytins-B. Photosynthetica 17:216–222

    CAS  Google Scholar 

  • Aramu F, Rucci A (1966) Self modulated derivative densitometer. Rev Sci Instrum 37:1696–1698

    Article  CAS  Google Scholar 

  • Babushkin AA, Bazhulin PA, Korolev FA, Levshin LV (1962) Methods of the spectral analysis. (in Russian). M.: PH Mosk. un-ta, p 510

    Google Scholar 

  • Baranov AA, Dorokhov BL, Saakov VS (1974) Influence of unfavorable thermal conditions on the fine structure of pigment-lipoproteid complex of leaves. (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk (5):29–36

    Google Scholar 

  • Baranov AA, Saakov VS, Chunaev AA, Kvitko KV (1975) Reactions of chlorophyll formation and light protection in mutants of green algae studied by absorption spectrophotometry. (in Russian). Sov Physiol Rastenii 22:702–711

    CAS  Google Scholar 

  • Baranov AA, Saakov VS, Boyarshinova GS et al (1976) Analysis of absorption spectra of plastids in research of the reaction of plants resistance to extreme influences. (in Russian). Bull VIR im N I Vavilova (63):3–14

    Google Scholar 

  • Barkovskii VF, Ganopol’skii VI (1969) Difference spectrophotometrical analysis. (in Russian). Khimiya, Moscow, p 166

    Google Scholar 

  • Baslev I (1966) Influence of in axial stress on the indirect absorption in silicon and germanium. Phys Rev 143:636–647

    Article  Google Scholar 

  • Belikov VG (2002) Analysis of medicinal agents with help of photometrical methods. Work experience of domestic specialists. (in Russian). Zh Ros Khim Ob-va im D I Mendeleeva 46:52–56

    CAS  Google Scholar 

  • Bershtein IYa, Kaminskii YuL (1975) Spectrophotometrical analysis in organic chemistry. (in Russian). Khimiya, Leningrad, p 230

    Google Scholar 

  • Blank AB (1973) About errors of differential spectroscopy. (in Russian). Zhurn Analit Khim 28:1435–1436

    CAS  Google Scholar 

  • Blyum IA, Barkovskii VF, Ganopol’skii VI (1972) About conditions of effectivity of diferential spectrophotometry application. (in Russian). Zhurn Analit Khim 27:831–833

    Google Scholar 

  • Boger DL, Patel M (1988) Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigiosin – Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium(II)-promoted 2,2′-bipyrrole coupling procedure. J Org Chem 53:1405–1415

    Article  CAS  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Öquist C et al (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field. A review of current instrumentation. Funct Ecol 3:497–514

    Article  Google Scholar 

  • Bonfiglioli G, Brovetto P (1964a) Improved optical spectroscopy technique. Phys Lett (Amst) 5(4):248–251

    Google Scholar 

  • Bonfiglioli G, Brovetto P (1964b) Principles of self-modulated derivative optical spectroscopy. Appl Opt 12:1417–1427

    Article  Google Scholar 

  • Bonfiglioli G, Brovetto P, Busca O et al (1967) Self modulating optical spectroscopy. P. II. Experiment. Appl Opt 6:44

    Article  Google Scholar 

  • Borisov AYu, Larionov VN, Mokhova EN (1970) Difference spectrophotometers, application in biology. (in Russian). NDVSH Biol Nauk 8:118–128

    Google Scholar 

  • Borisov AYu, Mokhova EN (1964) Spectrophotometer for registration of small difference in absorptions. (in Russian). Prib Tekh Eksp 2:145–147

    Google Scholar 

  • Bosch Ojeda C, Sanchez Rojas F, Cano Pavon JM (1995) Resent developments in derivate ultraviolet-visible absorption spectrophotometry. Talanta 42:1195–1214

    Article  Google Scholar 

  • Brandt DJ, Eglinton G (1979) Application of spectroscopy in organic chemistry (translated in Russian). Mir, Moscow, p 279

    Google Scholar 

  • Brandts JE, Kaplan LJ (1973) Derivative spectroscopy applied to tyrosil chromophores. Studies on ribonuclease, lima bean inhibitors, insulin and pancreatic trypsin inhibitor. Biochemistry 12:2011–2024

    Article  PubMed  CAS  Google Scholar 

  • Braude EA, Fawcett JS, Timmons CJ (1950) Fluorescence and the Beer-Lambert-Law: a note on the technique of absorption spectrophotometry. J Chem Soc 3:1019–1021

    Google Scholar 

  • Brice BA, Swain ML (1945) Ultraviolet absorption method for the determination of polyunsaturated constituents in fatty materials. J Opt Soc Am 35:532–544

    Article  CAS  Google Scholar 

  • Brode WR, Gould JH, Whitney JE, Wyman GM (1953) A comparative survey of spectrophotometers in the 210–760 mμ region. J Opt Soc Am 43:862–865

    Article  CAS  Google Scholar 

  • Bückert H, Raffaele J (1963) Die photometrische Meßgenauigkeit der Spektralphotometer. Chem Rundsch 16:323–325

    Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM et al (1999) Unusual carotenoid composition ans a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 97:1135–1139

    Article  Google Scholar 

  • Burke RW, Deardorff ER, Menis O (1972) Liquid absorbance standarts. J Res Nat Bur Stand Sec A 76:469–482

    Article  CAS  Google Scholar 

  • Burnett RW (1973) Errors in ultraviolet and visible spectrophotometric measurements caused by multiple reflections in the cell. Anal Chem 45:383–385

    Article  CAS  Google Scholar 

  • Butler WL, Hopkins DW (1970) Higher derivative analysis of simplex absorption spectra. Photochem Photobiol 12:439–456

    Article  Google Scholar 

  • Calder AB (1969) Photometric. Methods of analysis. Hilger, London, p 312

    Google Scholar 

  • Cannon CG, Butterworth JSC (1953) Beer’s Law and spectrophotometer linearity. Anal Chem 25(1):168–170

    Article  CAS  Google Scholar 

  • Chadburn BP (1982) Derivative spectroscopy in the laboratory: advantages and trading rules. Anal Proc (Lond) 19:42–43

    CAS  Google Scholar 

  • Challise JS, Williams AH (1964) Resolution of complex ultra-violet spectra by an incremental derivative method. Spectrochim. Acta. 20:765–770

    Google Scholar 

  • Chance B (1951) Rapid and sensitive spectrophotometry. III. A double beam apparatus. Rev Sci Instrum 22:634–663

    Article  CAS  Google Scholar 

  • Clayton AW, Thiers RE (1966) Direct spectrophotometric determination of salicylic acid, acetylsalicylic acid, salicylamide, caffeine, and phenacetin in tablets or powders. J Pharm Sci 55:404–407

    Article  PubMed  CAS  Google Scholar 

  • Collier GL, Panting AC (1959) The use of derivative spectroscopy for determining methyl groups in polythene. Spectrochim Acta 14:104–118

    Article  CAS  Google Scholar 

  • Cottrell GF (1982) Extending the application of derivative spectrophotometry. Anal Proc (Lond) 19:43–45

    CAS  Google Scholar 

  • Cuellar RE, Ford G, Briggs WR, Thompson WF (1978) Application of higher derivative techniques to analysis of high-resolution thermal denaturation profiles of reassciated repetitive DNA. Proc Natl Acad Sci USA 75:6026–6030

    Article  PubMed  CAS  Google Scholar 

  • Davidson AG, Elsheikh H (1982) Assay of ephedrine or pseudoephedrine in pharmaceutical prparations by second and fourth derivative ultraviolet spectrophotometry. Analyst 107:879–884

    Article  PubMed  CAS  Google Scholar 

  • Demchenko AP, Sandrovskii AK, Korobkov ME (1978) Derivative spectrophotometry of aromatic aminoacids and proteins. (in Russian). Molek Biol 20:3–12, Kiev: Naukova dumka

    CAS  Google Scholar 

  • Diaz-Riuz C, Montaner B, Perez-Tomas R (2001) Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol Histopathol 16:415–421

    Google Scholar 

  • Dodd CX, West TW (1961) Spectral transmittance properties of rare-earth glasses. J Opt Soc Am 51:915–916

    Article  CAS  Google Scholar 

  • Drews RE (1967) Wavelength-modulated differential reflectivity. Bull Am Phys Soc 12:384

    Google Scholar 

  • Dubrovkin IM (1983) On the theory of quntitative multicomponent analysis with difference spectra. (in Russian). Zhurn Prikl Spektrosk 38:947–951

    CAS  Google Scholar 

  • Dubrovkin IM (1989) Spectrometry with application of the method of derivative registration. (in Russian). Zhurn Prikl Spektrosk 39:885–889

    Google Scholar 

  • Dubrovkin IM, Belikov VG (1988) Derivative spectrophotometry, theory, technique, application. (in Russian). Rostov University, p 144

    Google Scholar 

  • Dubrovkin IM, Sobolev AS (1976) Differentiating attachment to the infra-red spectrometer. (in Russian). Zavodskaya Lab 42:945–947

    CAS  Google Scholar 

  • Dubrovkin IM, Sagdeev RS, Sobolev AS (1978) Quantitative analysis using the first derivative of UV-spectrum obtained with help of RC-device. (in Russian). Zavodskaya Lab 44:685–686

    CAS  Google Scholar 

  • Duysens LNM (1954) Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120:353–354

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM (1956) Energy transformations in photosynthesis. Ann Rev Plant Physio 7:25–50

    Article  CAS  Google Scholar 

  • Dymond EG (1924) On the measurement of the critical potentials of gases. P Camb Philos Soc 22:405–408

    Article  CAS  Google Scholar 

  • Einor LO (1970) Cytochromes in photosynthesizing tissues of Petroselinum sativim. (in Russian). Mineral’noe pitanie rastenii i fotosintez SIFIBR SO AN SSSR. Irkutsk 242–253

    Google Scholar 

  • Einor LO (1973) Reconstruction of energetic mechanisms of photosynthesis. (in Russian). Naukova dumka, Kiev, p 236

    Google Scholar 

  • Eliseev AA, Morozova YuL, Kozinskaya VA et al (2000) Application of computer and innovative technologies in medicine. Computer spectrophotometry in medical diagnostics. (in Russian). Vest. Tomskogo gos. un-ta 269:113–117

    Google Scholar 

  • Engelhardt VA (1955) Resumes and prospects of application of radioactive isotopes in biochemistry. (in Russian). In: Proceedings of the session AN SSSR on peaceful application of atomic energy, 1–5 July 1955. Plenary meeting. M.: Izd-vo AN SSSR

    Google Scholar 

  • Epel BL, Butler WL (1972) A spectroscopic analysis of a light fluorescent mutant of Chlemydomonas reinhardii. Biophys. J. 12:922–929

    Google Scholar 

  • Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV Spectrum. Group Bull. 8:5

    Google Scholar 

  • Fell AF, Smith G (1982) Higher derivative methods in ultraviolet–visible and infrared spectrophotomety. Anal Proc (Lond) 19:28–33

    CAS  Google Scholar 

  • Fog J, Osnes E (1962) Calibration of the wavelength scale on spectrophotometers by samarium and neodymium chlorides. Analyst 87:760–761

    Article  CAS  Google Scholar 

  • Fowler WK, Knapp DO, Winefordner JD (1974) Double modulation atomic fluorescence flame spectrometry. Anal Chem 46:601–602

    Article  CAS  Google Scholar 

  • Fraifelder D (1980) In: Shabarova ZA (ed) Physical biochemistry. (translated in Russian). Mir, Moscow, p 582

    Google Scholar 

  • Frei YF (1960) The deivative absorption spectra of chlorophyll in algae and leaves at low temperature. Annual report of the director of the department of plant biology, vol 59. YBK, Stanford, pp 333–335

    Google Scholar 

  • French CS (1957a) Preprint of a paper for the “Symposium on instrumentation and control” sponsored by North Calif. Section of Instrum. Soc. Amer., Berkeley, pp 1–29

    Google Scholar 

  • French CS (1957b) Derivative spectrophotometry. In: Proceedings of instrument society of America, instrumentation and control symposium, vol 1 Berkely,pp 83–94

    Google Scholar 

  • French CS, Church AB (1955) Derivative spectrophotometry: apparatus. Carnegie I Wash 54:162–165

    Google Scholar 

  • French CS, Church AB, Eppley RWA (1954) A derivative spectrophotometer. Carnegie I Wash 53:182–184

    Google Scholar 

  • Gans P (1982) Numerical methods for generating derivative spectra. Anal Proc (Lond) 19:33–35

    Google Scholar 

  • Gaudillere JP (1974) Improvement of the spectrophotometric determination of chlorophyll a and b and total carotenoids in leaf extracts. Physiol Veg 12:585–599

    CAS  Google Scholar 

  • Giese AT, French CS (1955) The analysis of overlapping spectral absorption bands by derivative spectrophotometry. Appl Spectrosc 9:78–96

    Article  CAS  Google Scholar 

  • Gilgore A, Stoller PJ, Fowler A (1967) Optical wavelength wobbler. Rev Sci Instrum 38:1535–1536

    Article  Google Scholar 

  • Goldstein JM (1970) Study of biological pigments by single specimen derivative spectrophotometry. Biophys J 10:445–461

    Article  PubMed  CAS  Google Scholar 

  • Golovachev AF (1976) Change of the difference spectrometer SP-10 for registration of absorption spectra of pigments in biological objects. (in Russian). S/kh Biologiya 11:917–919

    CAS  Google Scholar 

  • Gonopol’skii VI (1969) About calibrating graphs D=f(c) when measuring using the method of complete difference spectrophotometry. (in Russian). Zhurn Analit Khim 24:654–660

    Google Scholar 

  • Green GL (1974) Derivative luminescence spectrometry. Anal Chem 46(14):2191–2196

    Article  CAS  Google Scholar 

  • Grum F, Paine D, Zoeller L (1972) Derivative absorption and emission spectrophotometry. Appl Optics 11:93–98

    CAS  Google Scholar 

  • Gulyaev BA, Litvin FF (1970) First and second derivatives of absorption spectrum of chlorophyll and of accompanying pigments in cells of higher plants and algae at 200 C. (in Russian). Biophyzika 15:670–680

    CAS  Google Scholar 

  • Gulyaev BA, Litvin FF, Vedeneev VA (1971) Expansion of complex spectral curves of biological objects in components with help of derived spectra. (in Russian). NDVSH Biol Nauk (4):49–57

    Google Scholar 

  • Gunders E, Kaplan B-Z (1965) Comparative analysis of derivative spectrophotometric methods. J Opt Soc Am 55:1094–1097

    Article  Google Scholar 

  • Gurinovich GP, Sevchenko AN, Solov’ev KN (1968) Spectroscopy of chlorophyll and relative compounds. (in Russian). Nauka i tekhnika, Minsk, p 520

    Google Scholar 

  • Habermann HM (1960a) Allagochrome: a new pigment from leaves. Annual report of the director of the department of plant biology, vol 59. YBK, Stanford, 345–347

    Google Scholar 

  • Habermann HM (1960b) A new leaf pigment. In: Allen M (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 73–82

    Google Scholar 

  • Hager RN Jr (1971) Application of derivative spectrometry to the analysis of trace gases. American Institute of Aeronautics and Austronautics, Paper No 71–1045, Joint Conference on sending environmental pollutants. Paolo Alto, pp 1–6

    Google Scholar 

  • Hager RN Jr (1973) Derivative spectroscopy with emphasis on trace gas analysis. Anal Chem 45:1131A–1137A

    CAS  Google Scholar 

  • Hager RN Jr, Anderson RC (1970) Theory of the derivative spectrometer. J Opt Soc Am 60:1444–1448

    Article  Google Scholar 

  • Hagris LG, Howell JA, Sutton RE (1996) Ultraviolet and light absorption spectrometry. Anal. Chem. 68:169R–183R

    Article  Google Scholar 

  • Hammond VI, Price WC (1953) A new system for the elimination of scattered light effects in spectrophotometers. J Opt Soc Am 43:924

    Article  Google Scholar 

  • Hassan SM, Davidson AG (1984) The assay of tropane derivatives in formulations by 2nd derivative ultraviolet spectrophotometry. J Pharm Pharmacol 36(1):7–10

    Article  PubMed  CAS  Google Scholar 

  • Hearn WR, Medina-Castro J, Elson MK et al (1968) Colour change of prodigiosin. Nature 220:170–171

    Article  PubMed  CAS  Google Scholar 

  • Heat OVS (1969–1972) The physiological aspects of photosynthesis. Stanford University Press, Stanford, 315p

    Google Scholar 

  • Howell JA, Hargis LG (1986) Ultraviolet and light-absorption spectrometry. Anal Chem Fundam Rev 58:R108–R124

    Google Scholar 

  • Hubbard R, Rimington C (1950) The biosynthesis of prodigiosin, the tripyrrylmethene pigment from bacillus prodigiosus (Serratia marcescens). Biochem J 46:220–225

    PubMed  CAS  Google Scholar 

  • Inoue Y, Matsushima A, Shibata K (1975) Difference-derivative absorbance spectrophotometry as a technique to measure state of phenylalanine residues in protein. Biochim Biophys Acta 379:653–657

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Ogawa T, Kawai T, Shibata K (1973) Analysis if rice mutants by low temperature-derivative spectrophotometry in relation to pigment compositions and photochemical activities. Physiol Plantarum 29:390–395

    Article  CAS  Google Scholar 

  • Ioffe BK, Zenkevich IG, Kuznetsov MA, Bershtein I (1984) New physical and physical-chemical methods of study of organic compounds. (in Russian). Izd-vo Leningr. un-ta, Leningrad, p 240

    Google Scholar 

  • Ishii H, Satoh K (1982) Determination of micro amounts of samarium and europium by analogue derivative spectrophotometry. Fresen J Anal Chem 312:114–120

    Article  CAS  Google Scholar 

  • Ishii H, Odoshima T, Imamura T (1982) Synthesis and chromogenic properties of phtalazinhydrazones and spectrophotometric and analogue derivative spectrophotometric determination of micro-amounts of nicl with 5-methylfurfural-1-phthalazinohydrazone. Analyst (Lond) 107:885–895

    Article  CAS  Google Scholar 

  • Ismail M, Glenn AL (1964) Reproducibility of extinctions measured on the slopes of absorption curves. J Pharm Pharmacol 16(S1):150T–155T

    Article  Google Scholar 

  • Kaler VL, Sergeev AA, Skachkov NM (1967) Derivative spectrophotometry of biological objects with the spectrophotometer SP-10. In: Bioenergetics and biological spectrophotometry (in Russian). Nauka, Moscow, pp 123–126

    Google Scholar 

  • Kataoka T, Muroi M, Ohkuma S (1995) Prodigiosin 25-C uncouples vacuolar-type H+-atpase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett 359:53–59

    Article  PubMed  CAS  Google Scholar 

  • Khit O (1972) Photosynthesis (in Russian). Mir, Moscow, p 315 (Heat OVS (1969) Physiological aspects of photosynthesis. Stanford Univer. Press, Sanford)

    Google Scholar 

  • Kitamura K, Majima R (1983) Determination of salicylic-acid in aspirin powder by 2nd derivative ultraviolet spectrometry. Anal Chem 55:54–56

    Article  PubMed  CAS  Google Scholar 

  • Klein MP, Dratz EA (1968) Derivative spectroscopy with recording spectrometers. Rev Sci Instrum 39:397–399

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1959) Light induced absorption changes in photosynthetic organisms. II: A split-beam difference spectrophotometr. Plant. Physiol. 34:184–192

    Google Scholar 

  • Kok B (1961) Partial purification and determination of oxidation-reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48:527–533

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1969) Photosynthesis. In: Wilkins MB (ed) Physiology of plant growth and development. McCraw-Hill, London, pp 335–379

    Google Scholar 

  • Komar’ NP, Samoilov VP (1963) Errors of spectrophotometric measurement (in Russian). Zhurn Analit Khim 18:1284–1290

    Google Scholar 

  • Komar’ NP, Samoilov VP (1967) Influence of errors caused by preliminary adjustment of the device and by indication of transmission on results of spectrophotometric measurement. (in Russian). Zhurn Analit Khim 22:1285–1296

    Google Scholar 

  • Komar’ NP, Samoilov VP (1969) About influence of some conditions on accuracy of spectrophotometric measurement. (in Russian). Zhurn Analit Khim 24:1133–1137

    Google Scholar 

  • Konev SV, Volotovskii IV (1974) Photobiology. (in Russian). Izd-vo BGU, Minsk, p 348

    Google Scholar 

  • Korablev IV (1967) Instrumental error of spectrophotometer and errors of the difference method of spectrophotometry. (in Russian). Zhurn Analit Khim 28:837–847

    Google Scholar 

  • Korany MA, Wahbi AM, Elsayed MA, Mandour S (1984) First derivative spectrophotometric determination of certain drugs in two-component mixtures. Anal Lett 17:1373–1389

    Article  CAS  Google Scholar 

  • Korobkov ME (1975) Inaccuracy of the derivative spectrophotometry method when using the spectrophotometer SP-10. (in Russian). Physiol Biokhim Kul’t Rasten 7:211–213

    CAS  Google Scholar 

  • Kucher AA, Poluektov NS, Mishchenko VT, Aleksandrova NN (1983) Differentiating attachment for spectrophotometer “Specord” and its usage for the analysis of samarium and europium mixture (in Russian). Zavodskaya Lab 49:11–13

    CAS  Google Scholar 

  • Kvaratskheli YuK, Demin YuV (1983) About appropriateness of choice of 2-nd order derivatives of optical density in spectrophotometry (in Russian). Zhurn Analit Khim 38:1427–1433

    CAS  Google Scholar 

  • Kvaratskheli YuK, Pchelkin VA, Demin YuV et al (1981) About one variant of the first derivative spectrophotometry method. (in Russian). Zhurn Analit Khim 36:2054–2058

    CAS  Google Scholar 

  • Kvaratskeheli ZuK, Demin ZuV, Pchelkin VA et al (1983) The detection of zirconium in presence of hafnium by picrin amine E using method of the first derivative. (in Russian). Zhurn. Analit. Khimii. 38:1334–1338

    Google Scholar 

  • Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1976) Fine structure of absorption spectra of Scenedesmus obliguus (Tuerp) Krueger mutants with changed pigment composition (in Russian). In: Proceedings of the scientific symposium 11th scientific-coordinator Meeting on Theme 1–184 SEV. L.: Izd-vo Leningrad un-ta, pp 49–73

    Google Scholar 

  • Kvitko KV, Boyadzhiev PKh, Chunaev AS et al. (1977) Research of absorption spectran of Chlamydomonas reinhardii 137C mutants with changed reaction to light. (in Russian). Eksperiment. al gologiya: Tr. Petergof. biolog. in-ta pri LGU.25:106–132

    Google Scholar 

  • Lawrence AH, Kovar J (1984) Analysis of heroin morphine mixtures by zero order and 2nd derivative ultraviolet spectrometry. J Anal Chem 56:1731–1734

    Article  CAS  Google Scholar 

  • Lebedeva VV (1977) Technique of optical spectroscopy. Izd-vo Mosk. un-ta, Moscow, p 383

    Google Scholar 

  • Leclerc JC, Hoarau J, Guerin-Dumatrait E (1975) An analysis of DIV Porphyridium absorption bands with a digital spectrophotometer. Photochem Photobiol 22:41–48

    Article  PubMed  CAS  Google Scholar 

  • Lester D (1970) Computerized resolution of overlapping bands in UV spectra using Gaussian profile approximations. Anal Biochem 36:253–267

    Article  PubMed  CAS  Google Scholar 

  • Lewis D, Mervell PB, Hamill WH (1970) Low energy electron reflection spectrometry for thin films of aromatic and aliphatic molecules at 77°K. J Chem Phys 53:2750–2756

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (ed) (1988) Application of chlorophyll fluorescence. Kluwer, Dordrecht, 366p

    Google Scholar 

  • Litvin FF, Gulyaev BA (1969) Derivative spectrophotometry and mathematical analysis of absorption spectra in a plant cell. (in Russian). NDVSH Biol Nauk 2:118–135

    Google Scholar 

  • Litvin FF, Belyaeva OB, Gulyaev BA et al (1973a) System of chlorophyll native forms, its role in primary products of photosynthesis and development in process of plant leaves greening. (in Russian). In: Shlyk AA (ed) Chlorophyll. Nauka i tekhnika, Minsk, pp 215–231

    Google Scholar 

  • Litvin FF, Belyaeva OB, Gulyaev BA, Sineshchekov VA (1973b) Organization of pigment system of photosynthetic organisms and its connection with primary photoprocesses. (in Russian). Problemy biofotokhimii: Tr. MOIP. M.: Nauka, pp 132–147

    Google Scholar 

  • Magomedov IM, Saakov VS (1973) The second derivative of absorption spectra of two types of chloroplasts from Zea mays L. leaves. (in Russian). Bot Zhurn 58:1201–1204

    Google Scholar 

  • Magomedov IM, Saakov VS (1978) Research of chlorophyll forms in plant chloroplasts of various ecological groups. (in Russian). Questions of ecology, anatomy and physiology of plants. Vopr. ekologii, anatomii i fiziologii rastenii: Tr. Petergof. biol. in-ta. L.: Izd-vo Leningr. un-ta, 27:134–142

    Google Scholar 

  • Magomedov IM, Stepanova AM, Saakov VS (1974) Research of activity of 1 and 2 photochemical systems of corn chloroplasts. Photosynthesis and corn. (in Russian). Photosintez i kukuruza, In-t fotosinteza AN SSSR. Pushchino Oke, pp 65–71

    Google Scholar 

  • Mahrous MS, Abdel-Khalek MM, Abdel-Hamid ME (1985) Quantitation of indomethacin, naproxen, and ibuprofen in pharmaceutical dosage forms by 1st and 2nd derivative ultraviolet spectrometry. J Assoc Off Anal Chem USA 68:535–539

    CAS  Google Scholar 

  • Maiorov RV (1956) Electron regulators. (in Russian). Izd-vo tekhn.-teor. lit, Moscow, p 236

    Google Scholar 

  • Marenko VA, Saakov VS (1973) Derivative spectrophotometry on the basis of recording spectrophotometr SP-10. (in Russian). Sov Physiol Rastenii 20:637–645

    CAS  Google Scholar 

  • Marenko VA, Saakov VS, Dorokhov BL, Shpotakovskii VS (1972) Experience of application of the recording spectrophotometer SP-10 for registration of spectra of the first and second derivatives of absorption. (in Russian). Izv AN MSSR Ser Biol Khim Nauk 4:30–35

    Google Scholar 

  • Martin AE (1957) Difference and derivative spectra. Nature 180:231–233

    Article  CAS  Google Scholar 

  • Martin AE (1959) Multiple differentiation as a meansof band sharpening. Spectrochim Acta 14:97–103

    Article  CAS  Google Scholar 

  • Matsushima A, Inoue Y, Shibata K (1975) Derivative absorption spectrophotometry of native proteins. Anal Biochem 65:362–368

    Article  PubMed  CAS  Google Scholar 

  • McKay HAC, Scargill D (1968) The resolution of complex spectra. J Inorg Nucl Chem 30:3095–3098

    Article  CAS  Google Scholar 

  • McWilliam IG (1959) An oscillation-plate differentiator for spectrophotometry. J Sci Instrum 36:51–52

    Article  Google Scholar 

  • McWilliam IG (1969) Derivative spectroscopy and its application to the analysis of unesolved bands. Anal Chem 41:674–676

    Article  CAS  Google Scholar 

  • Meal L (1983) Identification of ketones by 2nd derivative ultraviolet spectrometry. Anal Chem 55:2448–2450

    Article  CAS  Google Scholar 

  • Meister A (1966a) Ein registrierendes Spectrophotometer zur Aufzeichung der Extintion, ihrer 1. und 2. Ableitung nach der Wellenlänge. Exp Tech Phys 14:168–173

    CAS  Google Scholar 

  • Meister A (1966b) Zur Untersuchung der verschiedenen Formen von Chlorophyl in der lebenden Pflanzen durch Anwendung der Derivativ-Spektrophotomerie. Kulturpflanze 14:235–255

    Article  CAS  Google Scholar 

  • Melvin MS, Tomlinson JT, Park G et al (2002) Influence of the A-ring on the proton affinity and anticancer properties of the prodigiosins. Chem Res Toxicol 15:734–741

    Article  PubMed  CAS  Google Scholar 

  • Mikhailyuk IK (2003) Development and application of high order derivative spectrophotometry methods for detection of the fine structure of optical spectra of photosynthetic pigment-protein complexes. (in Russian). Dissertation, Ph.D. in phys-math. sciences. Moscow State University

    Google Scholar 

  • Miller JN, Ahmad TA, Fell AF (1982) Derivative fluorescence spectroscopy. Anal Proc (Lond) 19:37–41

    CAS  Google Scholar 

  • Mishchenko VT, Poluektov NS, PerfilevVA, Aleksandrova NN (1987) Application of the derivative spectrophotometry inanalysis of biologically active substances. (in Russian). In: Spectroscopic methods of research in physiology and biochemistry. Nauka, Leningrad, pp 72–75

    Google Scholar 

  • Montaner B, Perez-Tomas R (2001) Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci 68:2025–2036

    Article  PubMed  CAS  Google Scholar 

  • Moos RA, Loomis WE (1952) Absorption spectra of leaves. I. The visible spectrum. Plant Physiol 27:370–391

    Article  Google Scholar 

  • Morelli B (1983) Determination of ruthenium(III) and palladium(II) in mixtures by derivative spectrophotometry. Analyst (Lond) 108:1506–1510

    Article  CAS  Google Scholar 

  • Morton RA (1975) Biochemical spectroscopy. Adam Hilger, Bristol. 1: 1–380; 2: 381–383

    Google Scholar 

  • Moskvin AF, Doktorova LN, Shukshina EN (1973) Spectrophotometrical method of determination of abietinic acid in galipot. (in Russian). Zavodskaya Lab 39:1327–1329

    CAS  Google Scholar 

  • Mukhtarov RN, Nikolaev AN (1979) About application of radiation frequency modulation in laser gas analyzers. (in Russian). Zhurn Prikl Spektrosk 70:1008–1010

    Google Scholar 

  • Nagibina IM, Prokof’ev VK (1961) Spectral instruments and spectroscopy technique. (in Russian). Mashinostroenie, Leningrad, p 211

    Google Scholar 

  • Navarro S, Verdu J, Costa F, Carpena O (1972) Method for the quantitation of carotenoid pigments. An Quim Real Soc Esp Fis 68:1125–1131

    CAS  Google Scholar 

  • Nazarenko NA, Poluektov NS, Mishchenko VT et al (1982) Fine structure of absorption spectra of gadolinium ions in solutions of chloride and of some complexes. (in Russian). Dokl Akad Nauk SSSR 266:399–402

    CAS  Google Scholar 

  • O’Haver TC (1976) Modulation and derivative techniques in luminescence spectroscopy. In: Wehry EL (ed) Modern fluorescence spectroscopy, vol 1. Plenum Press, New York, pp 65–81

    Google Scholar 

  • O’Haver TC (1978) Wavelength modulation spectroscopy. In: Hercules DM (ed) Contemporary topics in analytical and clinical chemistry, vol 2. Plenum Press, New York/London, pp 1–28

    Chapter  Google Scholar 

  • O’Haver TC (1979) Derivative and wavelength modulation spectrometry. Anal Chem 51:91A–100A

    Google Scholar 

  • O’Haver TC (1982) Derivative spectroscopy and its application in analysis. Anal Proc (Lond) 19:22–28

    Google Scholar 

  • O’Haver TC, Green GL (1976) Numerical error analysis of derivative spectrometry for the quantitativeanalysis of mixtures. Anal Chem 48:312–318

    Article  Google Scholar 

  • Olson EC, Alway CD (1960) Automatic recording of derivative ultra-violet spectra. Anal Chem 32:370–373

    Article  CAS  Google Scholar 

  • Ostrovskaja LK (ed) (1975) Photochemical systems of chloroplasts (in Russian). Naukova dumka, Kiev, 207p, See Fig. 2.6

    Google Scholar 

  • Parks J, Worth HG (1985) Carboxyhemoglobin determination by 2nd-derivative spectroscopy. Clin Chem 31:279–281

    PubMed  CAS  Google Scholar 

  • Pemsler JP (1957) Method of obtaining derivative spectra. Rev Sci Instrum 28:274–275

    Article  CAS  Google Scholar 

  • Perfilev VA, Mishchenko VT, Poluektov NS (1983a) Derived absorption spectra of some complex compounds of uranyl ion. (in Russian). Dokl AN USSR Ser B 2:41–44

    Google Scholar 

  • Perfilev VA, Mishchenko VT, Poluektov NS, Kucher AA (1983b) Derivative spectrophotometry in study of complex formation of f-elements ions. Complex formation of U(IV) with ethylendiaminetetraacetic and oxalic acids. (in Russian). Dokl Akad Nauk SSSR 271:1436–1439

    CAS  Google Scholar 

  • Perfilev VA, Mishchenko VT, Poluektov NS (1985) Usage of derivative spectrophotometry for study and analysis of substances in solutions of complex composition (review). (in Russian). Zhurn Analit Khim 40:1349–1363

    CAS  Google Scholar 

  • Perregaux A, Ascarelli G (1968) A simple technique for wavelength modulation of optical spectra. Appl Opt 7:2131–2035

    Article  Google Scholar 

  • Phyllips JP (1962) Reproducibility of electronic spectral data in the literature. Anal Chem 34:171

    Article  Google Scholar 

  • Platonova NV, Popov KR, Shamolina II, Smirnov LV (1970) Spectroscopical investigation of binding of phenthiazine dyes with polyvinyl alcohol: Electron spectra. (in Russian). Opt Spektrosk 29(3):473–476

    CAS  Google Scholar 

  • Popov KR, Smirnov LV (1971) Electron transitions in absorption spectra of elementary monoazodyes. (in Russian). Opt Spektrosk 3:628–632

    Google Scholar 

  • Porro TJ (1972) Double-wavelength spectroscopy. Anal Chem 44:93A–103A

    CAS  Google Scholar 

  • Pronkin AA, Saakov VS (1997) Application of thermodynamic methods at research of reaction mechanisms, proceeding in system aromatic aminoacids at gamma-irradiation. In: Abstract of the 10th conference international society for biology calorimetry: from human beings to molecules, Monte Verita 27–30 april, Ascona, Switzerland, p 15

    Google Scholar 

  • Rabinovich E.( 1953) Photosynthesis. (in Russian), vol 2. Izd-vo inostr. lit., Moscow, pp 9–21; 45–49; 81–91; 116–126

    Google Scholar 

  • Rapoport H, Holden KG (1962) The synthesis of prodigiosin. J Am Chem Soc 84:635–642

    Article  Google Scholar 

  • Ren Y, Liu Z, Zhou H (1985) Higher derivative absorption spectra of the complexes of rare earths. II. Determination of neodymium, holmium, erbium, and thulium in rare earth mixtures by third derivative spectrophotometry with thenoyltrifluoroacetone. Fenxi Huaxue. 13:6–11. (Cite: Chem. Abstracts V. 103, 98003W.)

    Google Scholar 

  • Rozengart EV, Saakov VS (2002) The chelating ability of the anti-coccidial drug 1,3 – bis(p-chlorbensilidenoamino)guanidine: the Complexes with Ca2+ and La3+. Dokl Biochem Biophys 385:219–223.Translated from Russian Dokl RAN 385:699–703

    Google Scholar 

  • Rozengart EV, Saakov VS (2003) The characteristics of the interaction of Ca2+ with anticoccidial bis(chlorobenzylideneamino)guanidine derivatives in dependence on the position of the chlorine atom, determined by derived spectrophotometry. Dokl Biochem Biophys 393:315–320. Translated from Dokl Akad Nauk 393:263–268

    Google Scholar 

  • Rubin AB (ed) (1974) Modern methods of investigation of photobiological processes (in Russian). Izd-vo Mosk. un-ta, Moscow, p 160

    Google Scholar 

  • Rubin AB (ed) (1975) Biophysics of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow, p 224

    Google Scholar 

  • Rutman GI, Saakov VS (1978) To procedure of derivative spectra registration in photobiological researches. (in Russian). Trudy Prikl Bot Genet Selektsii 61:140–143

    Google Scholar 

  • Rutman GI, Saakov VS, Drapkin VZ, Makarov YuA (1976a) Derivative spectrophotometry in biological studies. Practical schemes and recommendations. (in Russian). Bull VIR im N I Vavilova 63:70–79

    Google Scholar 

  • Rutman GI, Saakov VS, Drapkin VZ, Makarov YuA (1976b) Methods of molecular spectrophotomtry in study of the plastid apparatus. (in Russian). Trudy Prikl Bot Genet Selektsii 57:130–147

    Google Scholar 

  • Ryasantseva IN, Saakov VS, Andreeva IN, Ogorodnikova TI, Zuev YF (2012) Response of pigment Serratia marcescens to the illumination. J Photoch Photobio B 106:18–23

    Article  CAS  Google Scholar 

  • Saakov VS (1971a) Action of ATP, inhibitors and photophosphorylation entcouplers on xanthophyll transformation in leaf. (in Russian). Dokl Akad Nauk SSSR 198:966–969

    CAS  Google Scholar 

  • Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron-transport chain of photosynthesis. (in Russian). Sov Physiol Rastenii 18:1088–1097

    CAS  Google Scholar 

  • Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis. (in Russian). Dokl Akad Nauk SSSR 201:1257–1260

    CAS  Google Scholar 

  • Saakov VS (1987) Spectrophotometrical methods in study of reactions of plant plastid apparatus under extremal influences. (in Russian). In: Spectrophotometrical research methods in physiology and biochemistry. Svidersky VL, Saakov VS (eds), Nauka, Leningrad, pp 115–126

    Google Scholar 

  • Saakov VS (1990) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll-Protein Komplex der Chloroplasten. Colloq Pflanzenphysiologie der Humboldt-Universitaet zu Berlin 14:163–170

    Google Scholar 

  • Saakov VS (1993) The effect of gamma-radiation on the stability of energetics and pigment system of the photosynthetic apparat. (in Russian). Dokl Akad Nauk 328:520–523

    CAS  Google Scholar 

  • Saakov VS (1994) Assessment ways of reparation abilities of photosynthesizing apparatus of plants in cenoses exposured to ionizing radiation influence. Proc. Int. Symp. “Theory and practice of complex ecological expertise” SPb-Saint Petersburg. Publ. Acad. Sci.- Nauka. 31 May–2 June, pp 83–84

    Google Scholar 

  • Saakov VS (1996a) Application of PAM-method for estimating the damage of photosynthetic apparatus of chloroplasts during gamma-irradiation. In: Abstracts of international conference on spectroscopy and optical Techniques. in animal and plant biology. Muenster, Uni., Germany, p 96

    Google Scholar 

  • Saakov VS (1996b) The use of derivative and difference derivative spectra of the absorption for estimation the state of chloroplasts under the influence of stress factors (SF). In: Abstracts of international conference on spectroscopy and optical techniques in animal and plant biology. Muenster, Uni., Germany p 97

    Google Scholar 

  • Saakov VS (1998a) Specific changes of modulated fluorescence F-o and F-m under dithiothreitol influence on zeaxanthin content. (in Russian). Dokl Akad Nauk 361:830–833

    CAS  Google Scholar 

  • Saakov VS (1998b) Some mechanisms of adaptation to stress in plant ans animal cells. Doklady Biologic. Sciences. 361:371–375. Translated from Doklady Akad. Nauk 361:568–572

    Google Scholar 

  • Saakov VS (2000a) A coupling between albumin high orders derivative spectra changes and the precision of detection of albumin globulin coefficient under gamma-irradiation shock. (in Russian). Dokl Akad Nauk 371:548–552

    CAS  Google Scholar 

  • Saakov VS (2000b) Specific features of gamma-globulin denaturation under exposure to thermal and radiation factors. Dokl Biochem Biophys 373:167–172. Translated from Doklady Akad. Nauk 373:561–566

    Google Scholar 

  • Saakov VS (2000c) The features of change of light harvesting complex of photosystem-2 under gamma-radiation influence. International conference in honor of 100 jubilee of NV Timofeev-Ressovskyi “Modern Problems of Radiobiology, radioecology and Evolution”. Joint Inst. Nucl. Resch. Dubna, Abstract, 6–9 Sept, p 149

    Google Scholar 

  • Saakov VS (2000d) The application of high orders (DVIII–DXVI) derivative spectrophotometry for the fine analysis of UV-spectra structure under estimation of purity criteria of aromatic amino acids, globulins and albumin. Fast definition of cleanliness criteria at a number physiological neurotransmitters and secondary products with use of analytical opportunities of the high orders derivative spectrophotometry. Abstracts of Posters. Addenda. Biosynthesis and accumulation of secondary products. Halle Saale Septemb. 2427, Martin-Luther Univer. Halle-Wittenberg. Deutsche Pharmaz. Gesellsch.: 11–14

    Google Scholar 

  • Saakov VS (2001a) New aspects of the concept of energy mechanisms determining stability of prokaryotic and eukaryotic green cells. Effects of negative temperature on kinetic parameters of modulated pulse fluorescence (F0, Fmax, and Fv). Dokl Biochem Biophys 381:378–383. Translated from Doklady. Akad. Nauk. 381:126–131

    Google Scholar 

  • Saakov VS (2001b) Application of pulse amplitude modulation fluorescence method for the estimation the localisation of damage influences in electron transport chain of water oxygen oxidation under gamma-irradiation. In: Proceedings of the 2nd international conference instrumentation and method analysis. Greece, Joannina, Sept.:117

    Google Scholar 

  • Saakov VS (2001c) Materials to reasoning of energetic bases of the theory of resistance of the photosynthetic apparatus of Procaryota and Eucaryota cells. (in Russian). Vest. Bashkir. un-ta. Spets. vyp. Ufa: Izd-vo Bashkir. un-ta, 2:73–76

    Google Scholar 

  • Saakov VS (2002a) Evaluation of the heterogeneity and specifity of promising antitumoral preparations by means of high-order derivative spectroscopy. Dokl Biol Sci 386:440–444. Translated from Doklady Akad. Nauk 385:821–829

    Google Scholar 

  • Saakov VS (2002b) Aplication of pulse amplitude modulation fluorescence for estimation the inhibition of charged transfer in the system R680 PheoQA. Progr. In: Abstracts of scientific contributions. Euroanalysys-12. Dortmund, Germany. Poster P2-100: 531

    Google Scholar 

  • Saakov VS (2002c) High-temperature stress-related changes in the harmonics F0, Fm, and FV of pulse-amplitude modulated fluorescence signals: locating thermal damage in reaction centers of photosystem II. Dokl Biochem Biophys 382:4–9. Translated from Doklady. Akad. Nauk 382:118–123

    Google Scholar 

  • Saakov VS (2002d) Specific effects of gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the character of disturbances in vivo using high-order derivative spectrophotometry. Dokl Biochem Biophys 387:313–319. Translated from Doklady Akad. Nauk. 387:265–271

    Google Scholar 

  • Saakov VS (2002e) Effect of Na+, Cl, and SO 24 ions on changes in the kinetic parameters of modulated pulse fluorescence: the characteristics of the phototrophic function tolerance of photosystem 2 under the conditions of salinization. Dokl Biochim Biophys 385:228–234. Translated from Doklady Akad Nauk 385:121–125

    Google Scholar 

  • Saakov VS (2003a) Specific effects induced by gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the pattern of changes in the high-order derivative spectra of a green leaf in vivo in the red spectral region. Dokl Biochem Biophys 388:22–28. Translated from Doklady. Akad. Nauk. 388:265–271

    Google Scholar 

  • Saakov VS (2003b) Association of the mechanisms of green cell resistance with changes in the parameters of modulated pulse fluorescence under the exposure to atmospheric drought: localization of damage in the link P680QA. Dokl Biochem Biophys 388:8–14.Translated from Doklady Akad. Nauk. 388:123–130

    Google Scholar 

  • Saakov VS (2003c) Energetical theory of plant green cells resistance by Procaryota and Eucaryota to extreme environmental influences. Fourth European Meeting on Environmental Chemistry. Plymouth. England. Ref. 1785

    Google Scholar 

  • Saakov VS (2003d) The particularities of light harvesting complex of photosystem-2 changes under gamma-radiation influence evaluated by means of high order derivative spectrophotometry and PAM-methods. Colloquium. Spectroscopicum Internationale. No 560. Cranada, Spain

    Google Scholar 

  • Saakov VS (2004a) The substantiation of the energy foundations of the theory of resistance of phototrophic prokaryotic and eucaryotic cells to abiotic environmental factors: problems of resistance of the chloroplast. Dokl Biochem Biophys 395:64–68. Translated from Doklady Akad. Nauk 395:121–125

    Google Scholar 

  • Saakov VS (2004b) Development of knowledge about energetical nature of resistance of photosynthetic apparatus to influence of extreme factors of environment. (in Russian). Annual meeting of Russian Plant Physiology Society and International scientific conference “Physiological problems of North plants”. Tez. dokl. Petrozavodsk, p 158

    Google Scholar 

  • Saakov VS (2004c) Coupling of electron transport damage in the link of primary acceptor with change of coefficients of amplitude-modulated fluorescence quenching under influence of short-time frost on phototrophic tissues. (in Russian). Annual meeting of Russian Plant Physiology Society and International scientific conference “Physiological problems of North plants”. Tez. dokl. Petrozavodsk, p 157

    Google Scholar 

  • Saakov VS (2004d) Significance of the energetical theory of phototrophical cells resistance for the investigation of stress environmental influences. 5th Europe Meeting of Ecological Chemistry, Bari, Italy. PB 31

    Google Scholar 

  • Saakov VS (2005a) Dynamics of pulse amplitude-modulated fluorescence coefficients under long-term exposure to soil drought and high temperature. Dokl Biochem Biophys 403:275–280. Translate from Doklady. Akad. Nauk. 403:265–270

    Google Scholar 

  • Saakov VS (2005b) Application of derivative spectrophotometry of high orders (DIV-DVIII-DXII) as one of criteria at radiochemical purification and concentration of pigments. Proc. 2nd Int, Conference “Separation and concentration in analytical chemistry and radiochemistry” Krasnodar, 25–30 Sept. 2005

    Google Scholar 

  • Saakov VS (2011) Ways of functional and structural diagnostic of stability phototrophical cells to extreme effects. In: “Actual probems of biology and ecology. (in Russian) SPb, PH Forestry Engineering Academy, pp. 312–325

    Google Scholar 

  • Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Stud Biophys 70:129–142

    CAS  Google Scholar 

  • Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik des Pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Stud Biophys 70:163–173

    CAS  Google Scholar 

  • Saakov VS, Barashkova EA, Kozhushko NN et al (1975) The centres of localization of harmful unfluences of extreme factors in chloroplasts. Abstr. of XII Intern. Botan. Congr.Leningrad. II: 478

    Google Scholar 

  • Saakov VS, Danilov AF, Leontjev VG (1987) Spectrophotometrical analysis of aromatic aminoacids, proteins and biologically active substances with the method of second derivative. (in Russian). In: Spectroscopic methods of research in physiology and biochemistry. Svidersky VL, Saakov VS (eds). Nauka, Leningrad, pp 76–96

    Google Scholar 

  • Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment. (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 2:73–82

    Google Scholar 

  • Saakov VS, Drapkin VZ, Makarov YuA et al (1976) Application of the derivative spectroscopy for study of optical properties of a plastid apparatus under extreme influences. (in Russian). In: Methods of assessment of plant resistance to unfavorable factors of environment. Kolos, Leningrad, pp 287–301

    Google Scholar 

  • Saakov VS, Drapkin VZ, Janchurov VA et al (1987) Ways of differentiation of spectral curves when realizing the method of derivative spectrophotometry (in Russian). In: Spectroscopic methds of research in physiology and biochemistry. Svidersky VL, Saakov VS (eds), Leningrad: Nauka, Leningrad, p. 59–71

    Google Scholar 

  • Saakov VS, Drapkin VY, Krivchenko AI et al (2010) Derivative spectrophotometry and spectroscopy EPR for solving ecological and biological problems. SPb, Technolit, 407p

    Google Scholar 

  • Saakov VS, Hoffmann P (1974) Zur Bedeutung der Karotinoide fuer die Photosynthese unter besonderer Beruecksichtigung der Photophosphorylierung. Wiss. Zt. d. Humboldt-Univer. zu Berlin Math-Nat. Reihe.. Bd. XXIII, 6:577–580

    Google Scholar 

  • Saakov VS, Lang M, Schindler C, Lichtenthaler HK (1993) Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation. Photosynthetica 27:369–383

    Google Scholar 

  • Saakov VS, Leontjev VG (1988) Untersuchungen ueber die molekularspektrophotometrische Reaktion des pflanzliche Photosynthese-apparates auf Stressbedingungen. Colloquia Pflanzenphysiologie der Humbildt Univer. zu Berlin.12:143–156

    Google Scholar 

  • Saakov VS, Moshkov AV (2003) Specificity of physicochemical state of antibiotic prodigiosin analysed by fourth-eighth order derivative adsorption spectrophotometry. Colloquium. Spectroscopicum Internationale. Cranada. Spain, p 585

    Google Scholar 

  • Saakov VS, Moshkov AV, Petrova TA (1998) The application of derivative high orders (D2-D8) spectrophotometry for estimation the purity of vitamins and hormones. In: Abstracts of the 3rd international congress on vitamins and related biofactors. Coslar. Germany, p 60

    Google Scholar 

  • Saakov VS, Petrova TA (1996) The application of derivative high-orders spectrophotometry (D4-D8) for aromatic amino acids and proteins analysis in UV-region. In: Abstracts of international conference on spectroscopy and optical techniques in animal and plant biology. Muenster, Univ. Germany, p 98

    Google Scholar 

  • Saakov VS, Rozengart EV (2005) Application of high-order derivative spectrophotometry for studying the interaction of calcium ions with various anticoccidial aminoguanidine derivatives. Dokl Biochem Biophys 402:214–219. Translated from Doklady Akad. Nauk. 402:409–414

    Google Scholar 

  • Saakov VS, Rutman GI, Drapkin VZ, Serdyuk AS (1977) Registration of the first and the second derivatives of absorption spectra with serial spectrophotometers. (in Russian). The second All-USSR conference on spectrophotometry. Moscow. Tez. dokl. M.: 14

    Google Scholar 

  • Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma-irradiation on energetic of chloroplasts. (in Russian). Dokl Akad Nauk 371:280–285

    CAS  Google Scholar 

  • Saakov VS, Spotakovskii VS (1973) The method of derivative spectrophotometry in study of structure of photosynthesizing apparatus. (in Russian). In: Methods of complex study of photosynthesis. VIR im. N. I. Vavilova. L. 2:280–295

    Google Scholar 

  • Saakov VS, UdovenkoGV, Barashkova EA et al (1975) The centres of localization of harmful influences of extreme factors in chloroplasts. In: Abstracts of the 12th international botanical congress, vol 2. Leningrad, 478p

    Google Scholar 

  • Saakov VS, Zhukovskii YuG (2001) Analysis of charge transport in the system R680PheoQA with the pulse-modulated fluorescence method under influence of extremal environmental factors. (in Russian). Povolzh. conference on analitical chemistry. Tez. dokl. Kazan’, 20–22 Nov, p 41

    Google Scholar 

  • Samsonova NS, Gak GA (1971) Usage of calculational method for identification of UV-spectra of mixtures of derivatives of xanthogenic acid. (in Russian). Isvest Akad Nauk KazSSR Ser Chim 5:61–66

    Google Scholar 

  • Sato T, Konno H, Tanaka Y et al (1998) Prodigiosins as a new group of H+ Cl- symporters that uncouple proton translocators. J Biol Chem 273:21455–21462

    Article  PubMed  CAS  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Schmitt A (1977) Derivativspektroskopie: Eine Einführung mit praktischen Beispielen Angewandte UV-Spektroskopie Bodenseewerk Perkin-Elmer. Überlingen 1977. H. 1:3–7

    Google Scholar 

  • Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4:361–373

    CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. NATO ASI Ser. Plant response to stress. Bln. – Heidelberg: Springer: G15: 27–53

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1997) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336

    Google Scholar 

  • Semenov IN, Perfilova IL (2000) Chemistry ( in Russian – Khimiya). Khimizdat, SPb., P 656

    Google Scholar 

  • Shabalin II, Petrova LP (1969) Comparison of absorption spectra measured in different devices SP-4. (in Russian). Zavodskaya Lab 30:551–552

    Google Scholar 

  • Shaklee KL, Rowe JE (1970) Wavelength modulation spectrometer for studying the optical properties of solids. Appl. Optics. 9:627–632

    Google Scholar 

  • Sharma VK, Aulakh JS, Malik AK (2003) Fourth derivative spectrophotometric determination of fungicide thiram tetramethyldithiocarbamate in commercial sample and wheat grains using copper (II)sulphate. Electron J Environ Agr Food Chem 2:570–573

    Google Scholar 

  • Shibata S, Furukawa M, Goto K (1969) Dual-wavelength spectrophotometry. Part 1. General method. Anal Chim Acta 46:271–279

    Article  CAS  Google Scholar 

  • Shibata S, Furukawa M, Goto K (1973) Dual-wavelength spectrophotometry.Part IV. Qualitative and quantitative analysis by means of first-derivative spectra. Anal Chim Acta 65:49–58

    Article  CAS  Google Scholar 

  • Shibata S, Furukawa M, Nakashima R (1976) Dual-wavelength spectrophotometry. Part VI. Determination of phenol in industrial waste and the determination of 2,4-dichlorophenol and 2,4,6-tri-chlorophenol in mixtures by first derivative spectra. Anal Chim Acta 81:206–210

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Goto K, Ishiguro Y (1972) Dual-wavelength spectrophotometry. Part III. Determination of arsenazo I in arsenazo III. Anal Chim Acta 62:305–310

    Article  CAS  Google Scholar 

  • Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves. (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170

    Google Scholar 

  • Shtern E, Timmonis K (1974) Electronic absorption spectroscopy in organic chemistry. (in Russian). In: Pentin YuA (ed) Mir, Moscow, p 296

    Google Scholar 

  • Siek TJ, Rieders F (1984) Determination of carboxyhemoglobin in the presence of other blood hemoglobin pigments by visible spectrophotometry. J Forensic Sci 1:39–54

    Google Scholar 

  • Singleton F, Collier GL (1956) Infra-red analysis by the derivative method. J. Appl. Chem. 6:495–510

    Google Scholar 

  • Skujins S (1986a) UV Instruments at work. Varian AG. No UV-31. Pt. 2:1–52

    Google Scholar 

  • Skujins S (1986b) UV Instruments at work. Varian AG.. No UV-31. Pt. 1:1–33

    Google Scholar 

  • Smirnov BS, Badu EI (1967) The way of differentiation of random time functions with given accuracy at electron modeling machines. (in Russian). Trudy Leningr mekhanich in-ta Technical cybernetics 62:142–150

    Google Scholar 

  • Sneddon J, Bezur L, Michel RG, Ottaway JM (1982) Square-wave wavelength modulation system for use in atomicspectrometry. Anal Proc (Lond) 19:35–37

    CAS  Google Scholar 

  • Snellman W (1968) An a scanning method with increases sensitivity in atomic absorption analysis using a continuum primary source. Spectrochim Acta 23B:403–411

    Google Scholar 

  • Snellman W, Pains TC, Yee KW et al (1970) Flame emission spectrometry with repetitive optical scanning in the derivative mode. Anal Chem 42:394–398

    Article  Google Scholar 

  • Spitsyn PK, Korepanov VE (1980) Modernization of registrating spectrophotometer SP-8. (in Russian). Zhurn Analit Khim 35:2441–2444

    CAS  Google Scholar 

  • Spitsyn PK, L’vov ON (1985) Derivative spectrophotometry of rare-earth elements. (in Russian). Zhurn Analit Khim 40:1241–1248

    CAS  Google Scholar 

  • Stauffer FR, Sakai H (1968) Derivative spectroscopy. Appl. Optics. 7:61–65

    Google Scholar 

  • Such V, Traveset J, Gonzalo R, Gelpi E (1980) Stability assays of aged pharmaceutical formulas for thiamine and pyridoxine by high performance thin-layer chromatography and derivative ultraviolet spectrometry. Anal Chem 52:412–419

    Article  PubMed  CAS  Google Scholar 

  • Sverdlova OV (1973) Electron spectra in organic chemistry. (in Russian). Khimiya, Leningrad, p 248

    Google Scholar 

  • Talsky G (1994) Derivative spectrophotometry. Law and high orders. VCH Verlaggesellsch. GmbH, Weinheim, p 228

    Book  Google Scholar 

  • Talsky G, Mayring L (1978) Über die analoge – Differentiation höher Ordnung zur Feinlauflösung von UV-Visible-Spektren und anderen elektrischen Meßsignalen. Fresenius Y Analyt Chem 292:233–235

    Article  CAS  Google Scholar 

  • Talsky G, Mayring L, Kreuzer H (1978a) High-resolution, higher-order UV VIS –derivative spectrophotometry. Angew Chem 17:785–799

    Article  Google Scholar 

  • Talsky G, Mayring L, Kreuzer H (1978b) Derivativespektrophotometrie höher Ordnung zur Feinauflösung von UV–VIS-Spektren. Angew Chem 9:563–564

    Article  Google Scholar 

  • Tarasov KI (1968) Spectral devices. (in Russian). Mashinostroenie, Leningrad, p 237

    Google Scholar 

  • Taulier A, Levillain P, Lemonnier A (1986) Advantage of spectrophotometry in derivative for the dosage plasma and urinary hemoglobin – Comparison with the method using Allen’s correction. Comparison with the method using Allen’s correction. Ann Biol Clin (Paris) 44:242–248

    CAS  Google Scholar 

  • Tereshin GS (1959a) Accuracy of spectrophotometry. Communication 1. Errors when measuring in spectrophotometer. (in Russian). Zhurn Analit Khim 14:388–395

    CAS  Google Scholar 

  • Tereshin GS (1959b) Accuracy of spectrophotometry. Communication 2. Difference method and optimal spectrophotometric conditions. (in Russian). Zhurn Analit Khim 14:516–522

    CAS  Google Scholar 

  • Twyman F, Lothian GF (1933) Conditions for securing accuracy in spectrophotometry. Proc Phys Soc 45:643–662

    Article  Google Scholar 

  • Udovenko GV, Baranov AA, Rutman GI, Saakov VS et al (1974) Method of derivative spectrophotometry as the way of assessment of plastid apparatus reaction on extremal influence. (in Russian). In: Proceedings of the 1st All-USSR symposium on molecular and applied biophysics. Krasnodar, 10–13 Sept, pp 185–186

    Google Scholar 

  • Udovenko GV, Saakov VS (1976) Resistenz der getreidepflanzen gegen unguenstige Bedingungen des Milieus: physiologische und genetische Aspekte. Wissenschaftl. Zeit. der Humboldt Univer. zu Berlin, Math Naturwiss Reihe 25:776–786

    Google Scholar 

  • Vierordt K (1873) Die Anwendung des Spektralapparates zur Photometrie der Absorptionsspectren und zur quantitativen chemischen Analyse. Tuebingen, p 170

    Google Scholar 

  • Wahbi AM, Ebel S (1974) The use of the first-derivative curves of absorption spectra in quantitative analysis. Anal Chim Acta 70:57–63

    Article  CAS  Google Scholar 

  • Whitten WB, Nairn JA, Pearlstein RMW (1978) Derivative absorption spectroscopy from 5—300 K of bacteriochlorophyll a-protein from Prosthecochloris aestuarii. Biochim Biophys Acta Bioenerg 503:251–262

    Article  CAS  Google Scholar 

  • Williams JGM (1959) An oscillating-plate differentiator for spectrophotometry. J. Scientific Instrum. 36:51–52

    Google Scholar 

  • Williams DT, Hager RN Jr (1970) The derivative spectrometer. Appl Optics 9:370–373

    Article  Google Scholar 

  • Williams BL, Willson K (eds) (1975) Principles and techniques of practical biochemistry. Edward Arnold, London, 268p

    Google Scholar 

  • Willis HA, Miller RGJ (1959) Difference spectroscopy in the near infra-red. J. Appl. Chem. 3:119–126

    Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4:365–377

    Article  CAS  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of electric field. Biochim Biophys Acta 505:355–427

    Article  PubMed  CAS  Google Scholar 

  • Witt HT, Müller A, Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191:194–195

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto D, Kiyozuka Y, Uemura Y et al (2000) Cycloprodigiosin hydrochloride, a H+/Cl- symporter, induces apoptosis in human breast cancer cell lines. J Cancer Res Clin 126:191–197

    Article  CAS  Google Scholar 

  • Yamamoto C, Takemoto H, Kuno K et al (1999) Cycloprodigiosin hydrochloride, a new H(+) Cl(−) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology 30:894–902

    Article  PubMed  CAS  Google Scholar 

  • Zaidel’ AN, Ostrovskaya GV, Ostrovskii YuI (1972) Technique and practice of spectroscopy. (in Russian). Nauka, Moscow, p 375

    Google Scholar 

  • Zeinalov Y (1974) Obtaining of the first and the second derivatives of absorption spectrum with the spectrophotometer “Unicam SP-800”. Fiziol Rasteniyata Sofiya 1:17–21

    Google Scholar 

  • Zucca R, Shen YR (1973) Wide-range wavelength modulation spectrometer. J Appl Optics 12:1293–1298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Saakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Saakov, V.S., Drapkin, V.Z., Krivchenko, A.I., Rozengart, E.V., Bogachev, Y.V., Knyazev, M.N. (2013). Basis of Derivative Spectrophotometry. In: Derivative Spectrophotometry and Electron Spin Resonance (ESR) Spectroscopy for Ecological and Biological Questions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1007-2_2

Download citation

Publish with us

Policies and ethics