Skip to main content

Aluminium-dependent human diseases and chelating properties of aluminium chelators for biomedical applications

  • Chapter
  • First Online:
Metal Ions in Neurological Systems

Abstract

The aim of this chapter is to give a general view on the current status of the role of aluminium in human health and disease. The main aspects of aluminium metabolism in humans are covered, summarizing the state of knowledge on the absorption, transport, tissue distribution, and excretion of aluminium, giving particular emphasis to the main metabolic pathways of this metal ion in the bones and in the brain. Some features concerning the solution chemistry of aluminium are considered, giving special care to the speciation of aluminium hydroxides in municipal water and in water for dialysis. The function of different chelators utilized in clinical practice in the therapy of aluminium-depending diseases is discussed, providing some insight on the chelators recently proposed. As a last point the crystal structures of selected Al(III) complexes are presented and thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macdonald TL, Martin RB (1988) Aluminum ion in biological-systems. Trends Biochem Sci 13:15–19

    Article  PubMed  CAS  Google Scholar 

  2. Exley C (2003) A biogeochemical cycle for aluminium? J Inorg Biochem 97:1–7

    Article  PubMed  CAS  Google Scholar 

  3. Humphreys S, Bolger M (1997) In: Zatta PF, Alfrey AC (eds) A public health analysis of dietary aluminium. World Scientific, Singapore

    Google Scholar 

  4. Yokel RA, Hicks CL, Florence RL (2008) Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol 46:2261–2266

    Article  PubMed  CAS  Google Scholar 

  5. Hem SL (2002) Elimination of aluminum adjuvants. Vaccine 20:S40–S43

    Article  PubMed  CAS  Google Scholar 

  6. Greger JL, Sutherland JE (1997) Aluminum exposure and metabolism. Crit Rev Clin Lab Sci 34:439–474

    Article  PubMed  CAS  Google Scholar 

  7. Martin RB (1986) The chemistry of aluminum as related to biology and medicine. Clin Chem 32:1797–1806

    PubMed  CAS  Google Scholar 

  8. Exley C (2009) Aluminium and medicine. In: Mercè ALR, Felcman J, Cecio J (eds) Molecular and supramolecular bioinorganic chemistry, Applications in medical sciences. Nova Biomedical Books, Hauppauge, NY

    Google Scholar 

  9. Exley C (2009) Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends Biochem Sci 34:589–593

    Article  PubMed  CAS  Google Scholar 

  10. Jorgensen SE, Jensen A (1984) Met Ions Biol Syst 18:61–74

    Google Scholar 

  11. Kopacek J, Hejzlar J, Kana J, Norton SA, Porcal P, Turek J (2009) Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. J Inorg Biochem 103:1439–1448

    Article  PubMed  CAS  Google Scholar 

  12. Martin RB (1994) Aluminum – a neurotoxic product of acid-rain. Acc Chem Res 27:204–210

    Article  CAS  Google Scholar 

  13. Nicolini M, Zatta PF, Corain B (Eds.) (1991) Aluminum in Chemistry, Biology and Medicine, Cortina International-Raven Press, Verona, New York

    Google Scholar 

  14. Aramini JM, Saponja JA, Vogel HJ (1996) Spectroscopic studies of the interaction of aluminum(III) with transferrins. Coord Chem Rev 149:193–229

    CAS  Google Scholar 

  15. Berthon G (1996) Chemical speciation studies in relation to aluminium metabolism and toxicity. Coord Chem Rev 149:241–280

    CAS  Google Scholar 

  16. Harris WR (1996) Binding and transport of aluminum by serum proteins. Coord Chem Rev 149:347–365

    CAS  Google Scholar 

  17. Kiss T, Zatta P, Corain B (1996) Interaction of aluminium (III) with phosphate-binding sites: biological aspects and implications. Coord Chem Rev 149:329–346

    CAS  Google Scholar 

  18. Martell AE, Hancock RD, Smith RM, Motekaitis RJ (1996) Coordination of Al(III) in the environment and in biological systems. Coord Chem Rev 149:311–328

    CAS  Google Scholar 

  19. Berthon G (2002) Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  20. Bodor A, Banyai I, Toth I (2002) Slow dynamics of aluminium-citrate complexes studied by 1H- and 13C-NMR spectroscopy. Coord Chem Rev 228:163–173

    Article  CAS  Google Scholar 

  21. Crichton RR, Florence A, Ward RJ (2002) Aluminium and iron in the brain-prospects for chelation. Coord Chem Rev 228:365–371

    Article  CAS  Google Scholar 

  22. Rubini P, Lakatos A, Champmartin D, Kiss T (2002) Speciation and structural aspects of interactions of Al(III) with small biomolecules. Coord Chem Rev 228:137–152

    Article  CAS  Google Scholar 

  23. Santos MA (2002) Hydroxypyridinone complexes with aluminium. In vitro/vivo studies and perspectives. Coord Chem Rev 228:187–203

    Article  Google Scholar 

  24. Yokel RA (2002) Aluminum chelation principles and recent advances. Coord Chem Rev 228:97–113

    Article  CAS  Google Scholar 

  25. Yokel RA (2002) Brain uptake, retention, and efflux of aluminum and manganese. Environ Heal Perspect 110:699–704

    Article  CAS  Google Scholar 

  26. Crisponi G, Nurchi VM, Faa G, Remelli M (2011) Human diseases related to aluminium overload. Mon Chem 142:331–340

    Article  CAS  Google Scholar 

  27. Crisponi G, Nurchi VM, Bertolasi V, Remelli M, Faa G (2012) Chelating agents for human diseases related to aluminium overload. Coord Chem Rev 256:89–104

    Google Scholar 

  28. Exley C, Pinnegar JK, Taylor H (1997) Hydroxyaluminosilicates and acute aluminium toxicity in fish. J Theor Biol 189:133–139

    Article  PubMed  Google Scholar 

  29. Exley C, Schneider C, Doucet FJ (2002) The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium? Coord Chem Rev 228:127–135

    Article  CAS  Google Scholar 

  30. Arenas MD, Malek T, Gil MT, Moledous A, Nunez C, Alvarez-Ude F (2008) Use of the aluminium phosphate-binders in hemodialysis in the ultrapure water era. Nefrologia 28:168–173

    PubMed  Google Scholar 

  31. Yokel RA, Florence RL (2008) Aluminum bioavailability from tea infusion. Food Chem Toxicol 46:3659–3663

    Article  PubMed  CAS  Google Scholar 

  32. Malik J, Szakova J, Drabek O, Balik J, Kokoska L (2008) Determination of certain micro and macroelements in plant stimulants and their infusions. Food Chem 111:520–525

    Article  CAS  Google Scholar 

  33. Milacic R (2005) In: Cornelis R, Caruso J, Crews H, Heumann K (ed) Handbook of elemental speciation II – species in environment, food, medicine and occupational health. Wiley, New York

    Google Scholar 

  34. Froment DP, Molitoris BA, Buddington B, Miller N, Alfrey AC (1989) Site and mechanism of enhanced gastrointestinal absorption of aluminum by citrate. Kidney Int 36:978–984

    Article  PubMed  CAS  Google Scholar 

  35. Yokel RA, McNamara PJ (2001) Aluminium toxicokinetics: an updated MiniReview. Pharmacol Toxicol 88:159–167

    Article  PubMed  CAS  Google Scholar 

  36. Varner JA, Jensen KF, Horvath W, Isaacson RL (1998) Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784:284–298

    Article  PubMed  CAS  Google Scholar 

  37. Frankova A, Drabek O, Havlik J, Szakova J, Vanek A (2009) The effect of beverage preparation method on aluminium content in coffee infusions. J Inorg Biochem 103:1480–1485

    Article  PubMed  CAS  Google Scholar 

  38. Aspenstrom-Fagerlund B, Sundstrom B, Tallkvist J, Ilback NG, Glynn AW (2009) Fatty acids increase paracellular absorption of aluminium across Caco-2 cell monolayers. Chem Biol Interact 181:272–278

    Article  PubMed  CAS  Google Scholar 

  39. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10:1–269

    PubMed  CAS  Google Scholar 

  40. Exley C, Ahmed U, Polwart A, Bloor RN (2007) Elevated urinary aluminium in current and past users of illicit heroin. Addict Biol 12:197–199

    Article  PubMed  CAS  Google Scholar 

  41. Yong RL, Holmes DT, Sreenivasan GM (2006) Aluminum toxicity due to intravenous injection of boiled methadone. New Engl J Med 354:1210–1211

    Article  PubMed  CAS  Google Scholar 

  42. Orihuela D (2009) Inhibitory effect of aluminium on calcium absorption in small intestine of rats with different thyroid hormone status. J Inorg Biochem 103:1542–1547

    Article  PubMed  CAS  Google Scholar 

  43. Domingo JL (1995) Reproductive and developmental toxicity of aluminum – a review. Neurotoxicol Teratol 17:515–521

    Article  PubMed  CAS  Google Scholar 

  44. Moore PB, Edwardson JA, Ferrier IN, Taylor GA, Lett D, Tyrer SP, Day JP, King SJ, Lilley JS (1997) Gastrointestinal absorption of aluminum is increased in Down’s syndrome. Biol Psychiatry 41:488–492

    Article  PubMed  CAS  Google Scholar 

  45. Flarend R, Bin T, Elmore D, Hem SL (2001) A preliminary study of the dermal absorption of aluminium from antiperspirants using aluminium-26. Food Chem Toxicol 39:163–168

    Article  PubMed  CAS  Google Scholar 

  46. Bertholf RL, M. R. Wills MR, Savory J (1988) In: H. G. Seiler and H. Sigel (ed) Handbook on toxicity of inorganic compounds. Marcel Dekker, New York

    Google Scholar 

  47. Sjogren B, Lundberg I, Lidums V (1983) Aluminum in the blood and urine of industrially exposed workers. Br J Ind Med 40:301–304

    PubMed  CAS  Google Scholar 

  48. de Kom JFM, Dissels HMH, van der Voet GB, de Wolff FA (1997) Serum aluminium levels of workers in the bauxite mines. J Toxicol Clin Toxicol 35:645–651

    Article  PubMed  Google Scholar 

  49. McDonald B, Haszard R, Spence A, Osbourne K (1996) 492A mortality study of Alzheimer’s disease and aluminium exposure through inhalation of McIntyre powder in Cornish Tin Miners. Neurobiol Aging 17:S122–S123

    Article  Google Scholar 

  50. Couette M, Boisse MF, Maison P, Brugieres P, Cesaro P, Chevalier X, Gherardi RK, Bachoud-Levi AC, Authier FJ (2009) Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem 103:1571–1578

    Article  PubMed  CAS  Google Scholar 

  51. Zhou YZ, Yokel RA (2005) The chemical species of aluminum influences its paracellular flux across and uptake into Caco-2 cells, a model of gastrointestinal absorption. Toxicol Sci 87:15–26

    Article  PubMed  CAS  Google Scholar 

  52. Zhou Y, Harris WR, Yokel RA (2008) The influence of citrate, maltolate and fluoride on the gastrointestinal absorption of aluminum at a drinking water-relevant concentration: A Al-26 and C-14 study. J Inorg Biochem 102:798–808

    Article  PubMed  CAS  Google Scholar 

  53. Priest ND (2004) The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J Environ Monit 6:375–403

    Article  PubMed  CAS  Google Scholar 

  54. Wrobel K, Gonzalez EB, Sanzmedel A (1995) Aluminum and silicon speciation in human serum by ion-exchange high-performance liquid-chromatography electrothermal atomic-absorption spectrometry and gel-electrophoresis. Analyst 120:809–815

    Article  PubMed  CAS  Google Scholar 

  55. Milacic R, Murko S, Scancar J (2009) Problems and progresses in speciation of Al in human serum: an overview. J Inorg Biochem 103:1504–1513

    Article  PubMed  CAS  Google Scholar 

  56. Garcia Alonso JI, Lopez Garcia A, Perez Parajon J, Blanco Gonzalez E, Sanz Medel A, Cannata JB (1990) High-performance liquid-chromatography methods for studying protein-binding of aluminum in human serum in the absence and in the presence of desferrioxamine. Clin Chim Acta 189:69–80

    Article  PubMed  CAS  Google Scholar 

  57. Martin R (1991) Aluminium in biological systems. In: Aluminium in chemistry, biology and medicine. Raven Press, New York

    Google Scholar 

  58. Martin RB (1991) Fe3+ and Al3+ hydrolysis equilibria – cooperativity in Al3+ hydrolysis reactions. J Inorg Biochem 44:141–147

    Article  CAS  Google Scholar 

  59. VanLandeghem GF, D'Haese PC, Lamberts LV, DeBroe ME (1997) Competition of iron and aluminum for transferrin: the molecular basis for aluminum deposition in iron-overloaded dialysis patients? Exp Nephrol 5:239–245

    CAS  Google Scholar 

  60. Talbot RJ, Newton D, Priest ND, Austin JG, Day JP (1995) Inter-subject variability in the metabolism of aluminum following intravenous-injection as citrate. Hum Exp Toxicol 14:595–599

    Article  PubMed  CAS  Google Scholar 

  61. Gonzalez MA, Bernal CA, Mahieu S, Carrillo MC (2009) The interactions between the chronic exposure to aluminum and liver regeneration on bile flow and organic anion transport in rats. Biol Trace Elem Res 127:164–176

    Article  PubMed  CAS  Google Scholar 

  62. Garbossa G, Gutnisky A, Nesse A (1994) The inhibitory-action of aluminum on mouse bone-marrow cell-growth – evidence for an erythropoietin-mediated and transferrin-mediated mechanism. Miner Electrolyte Metab 20:141–146

    PubMed  CAS  Google Scholar 

  63. ICRP (1975) Report of Task Group on Reference Man, ICRU Publication 23. Pergamon Press, Oxford, England

    Google Scholar 

  64. Flendrig JA, Kruis H, Das HA (1976) Aluminum and dialysis dementia. Lancet 307:1235–1235

    Article  PubMed  CAS  Google Scholar 

  65. Smans KA, D’Haese PC, Van Landeghem GF, Andries LJ, Lamberts LV, Hendy GN, De Broe ME (2000) Transferrin-mediated uptake of aluminium by human parathyroid cells results in reduced parathyroid hormone secretion. Nephrol Dial Transplant 15:1328–1336

    Article  PubMed  CAS  Google Scholar 

  66. Gonzalez MA, Alvarez MdL, Pisani GB, Bernal CA, Roma MG, Carrill MC (2007) Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats. Biol Trace Elem Res 116:329–348

    Article  PubMed  CAS  Google Scholar 

  67. Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27:385–394

    Article  PubMed  CAS  Google Scholar 

  68. Nebeker HG, Coburn JW (1986) Aluminum and renal osteodystrophy. Annu Rev Med 37:79–95

    Article  PubMed  CAS  Google Scholar 

  69. Malluche HH, Monierfaugere MC (1992) Risk of adynamic bone-disease in dialyzed patients. Kidney Int 42:S62–S67

    Google Scholar 

  70. Kasai K, Hori MT, Goodman WG (1991) Transferrin enhances the antiproliferative effect of aluminum on osteoblast-like cells. Am J Physiol 260:E537–E543

    PubMed  CAS  Google Scholar 

  71. Torres A, Lorenzo V, Hernandez D, Rodriguez JC, Concepcion MT, Rodriguez AP, Hernandez A, Debonis E, Darias E, Gonzalezposada JM, Losada M, Rufino M, Felsenfeld AJ, Rodriguez M (1995) Bone-disease in predialysis, hemodialysis, and capd patients – evidence of a better bone response to PTH. Kidney Int 47:1434–1442

    Article  PubMed  CAS  Google Scholar 

  72. Drueke TB, Barany P, Cazzola M, Eschbach JW, Grutzmacher P, Kaltwasser JP, Macdougall IC, Pippard MJ, Shaldon S, vanWyck D (1997) Management of iron deficiency in renal anemia: guidelines for the optimal therapeutic approach in erythropoietin-treated patients. Clin Nephrol 48:1–8

    PubMed  CAS  Google Scholar 

  73. Shea TB, Beermann ML, Wang FS (1995) Relative susceptibility of cytoskeleton-associated and soluble neurofilament subunits to aluminum exposure in intact-cells – a possible mechanism for reduction of neurofilament axonal-transport during aluminum neurotoxicity. Mol Chem Neuropathol 24:203–219

    Article  PubMed  CAS  Google Scholar 

  74. Altmann P, Cunningham J, Dhanesha U, Ballard M, Thompson J, Marsh F (1999) Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. BMJ 319:807–811

    Article  PubMed  CAS  Google Scholar 

  75. Yokel RA, Allen DD, Ackley DC (1999) The distribution of aluminum into and out of the brain. J Inorg Biochem 76:127–132

    Article  PubMed  CAS  Google Scholar 

  76. Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26:221–229

    Article  PubMed  CAS  Google Scholar 

  77. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol Endocrinol Metab 273:E207–E213

    CAS  Google Scholar 

  78. Stoehr G, Luebbers K, Wilhelm M, Hoelzer J, Ohmann C (2006) Aluminum load in ICU patients during stress ulcer prophylaxis. Eur J Int Med 17:561–566

    Article  CAS  Google Scholar 

  79. Drueke TB (2002) Intestinal absorption of aluminium in renal failure. Nephrol Dial Transplant 17:13–16

    Article  PubMed  CAS  Google Scholar 

  80. Williams JW, Vera SR, Peters TG, Luther RW, Bhattacharya S, Spears H, Graham A, Pitcock JA, Crawford AJ (1986) Biliary-excretion of aluminum in aluminum osteodystrophy with liver-disease. Ann Int Med 104:782–785

    PubMed  CAS  Google Scholar 

  81. Monteagudo FSE, Isaacson LC, Wilson G, Hickman R, Folb PI (1988) Aluminum excretion by the distal tubule of the pig-kidney. Nephron 49:245–250

    Article  PubMed  CAS  Google Scholar 

  82. Ezomo OF, Matsushima F, Meshitsuka S (2009) Up-regulation in the expression of renin gene by the influence of aluminium. J Inorg Biochem 103:1563–1570

    Article  PubMed  CAS  Google Scholar 

  83. Priest ND, Newton D, Day JP, Talbot RJ, Warner AJ (1995) Human metabolism of Al-26 and Ga-67 injected as citrates. Hum Exp Toxicol 14:287–293

    Article  PubMed  CAS  Google Scholar 

  84. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  85. Martin RB (1996) Ternary complexes of Al3+ and F- with a third ligand. Coord Chem Rev 149:23–32

    Article  Google Scholar 

  86. Agarwal RP, Moreno EC (1971) Stability constants of aluminium fluoride complexes. Talanta 18:873–880

    Article  PubMed  CAS  Google Scholar 

  87. Frankowski M, Ziola-Frankowska A (2010) Speciation analysis of aluminium and aluminium fluoride complexes by HPIC-UVVIS. Talanta 82:1763–1769

    Article  PubMed  CAS  Google Scholar 

  88. Bogatko S, Cauet E, Geerlingst P (2011) Influence of F- coordination on Al3+ hydrolysis reactions from density functional theory calculations. J Phys Chem C 115:6910–6921

    Article  CAS  Google Scholar 

  89. Graf H, Stummvoll HK, Meisinger V, Kovarik J, Wolf A, Pinggera WF (1981) Aluminum removal by hemodialysis. Kidney Int 19:587–592

    Article  PubMed  CAS  Google Scholar 

  90. Brown DJ, Ham KN, Dawborn JK, Xipell JM (1982) Treatment of dialysis osteomalacia with desferrioxamine. Lancet 2:343–345

    Article  PubMed  CAS  Google Scholar 

  91. Nebeker HG, Milliner DS, Ott SA, Sherrard DJ, Alfrey AC, Abuelo JG, Wasserstein A, Coburn JW (1984) Aluminum-related osteomalacia – clinical-response to desferrioxamine. Kidney Int 25:173–173

    Google Scholar 

  92. Ciancioni C, Poignet JL, Mauras Y, Panthier G, Delons S, Allain P, Man NK (1984) Plasma aluminum and iron kinetics in hemodialyzed patients after iv infusion of desferrioxamine. Trans Am Soc Artif Intern Organs 30:479–482

    PubMed  CAS  Google Scholar 

  93. Molitoris BA, Alfrey PS, Miller NL, Hasbargen JA, Kaehney WD, Alfrey AC, Smith BJ (1987) Efficacy of intramuscular and intraperitoneal deferoxamine for aluminum chelation. Kidney Int 31:986–991

    Article  PubMed  CAS  Google Scholar 

  94. Yokel RA, Ackrill P, Burgess E, Day JP, Domingo JL, Flaten TP, Savory J (1996) Prevention and treatment of aluminum toxicity including chelation therapy: status and research needs. J Toxicol Environ Health 48:667–683

    Article  PubMed  CAS  Google Scholar 

  95. Yokel RA, Rhineheimer SS, Sharma P, Elmore D, McNamara PJ (2001) Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single Al-26 exposure. Toxicol Sci 64:77–82

    Article  PubMed  CAS  Google Scholar 

  96. Nakamura H, Rose PG, Blumer JL, Reed MD (2000) Acute encephalopathy due to aluminum toxicity successfully treated by combined intravenous deferoxamine and hemodialysis. J Clin Pharmacol 40:296–300

    Article  PubMed  CAS  Google Scholar 

  97. Wang G, Zhu P, Wang S (1996) [The causes, diagnosis and treatment of aluminum toxicity in patients with chronic renal failure undergoing dialysis]. Zhonghua nei ke za zhi [Chinese journal of internal medicine] 35:36–40

    CAS  Google Scholar 

  98. Kruck TP, Cui JG, Percy ME, Lukiw WJ (2004) Molecular shuttle chelation: the use of ascorbate, desferrioxamine and Feralex-G in combination to remove nuclear bound aluminum. Cell Mol Neurobiol 24:443–459

    Article  PubMed  CAS  Google Scholar 

  99. Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, Srinivas P, Sambamurti K, Rao KJ, Scancar J, Messori L, Zecca L, Zatta P (2009) Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 17:457–468

    PubMed  CAS  Google Scholar 

  100. Liu ZD, Hider RC (2002) Design of clinically useful iron(III)-selective chelators. Med Res Rev 22:26–64

    Article  PubMed  CAS  Google Scholar 

  101. Hider RC, Liu ZD (2003) Emerging understanding of the advantage of small molecules such as hydroxypyridinones in the treatment of iron overload. Curr Med Chem 10:1051–1064

    Article  PubMed  CAS  Google Scholar 

  102. Santos MA, Gil M, Gano L, Chaves S (2005) Bifunctional 3-hydroxy-4-pyridinone derivatives as potential pharmaceuticals: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo evaluation with (67)Ga. J Biol Inorg Chem 10:564–580

    Article  PubMed  CAS  Google Scholar 

  103. Fukuda S (2005) Chelating agents used for plutonium and uranium removal in radiation emergency medicine. Curr Med Chem 12:2765–2770

    Article  PubMed  CAS  Google Scholar 

  104. Kruck TPA, Burrow TE (2002) Synthesis of feralex a novel aluminum/iron chelating compound. J Inorg Biochem 88:19–24

    Article  PubMed  CAS  Google Scholar 

  105. Chaves S, Dron PI, Danalache FA, Sacoto D, Gano L, Santos MA (2009) Combined chelation based on glycosyl-mono- and bis-hydroxypyridinones for aluminium mobilization: solution and biodistribution studies. J Inorg Biochem 103:1521–1529

    Article  PubMed  CAS  Google Scholar 

  106. Gama S, Gil M, Gano L, Farkas E, Santos MA (2009) Combined chelation of bi-functional bis-hydroxypiridinone and mono-hydroxypiridinone: Synthesis, solution and in vivo evaluation. J Inorg Biochem 103:288–298

    Article  PubMed  CAS  Google Scholar 

  107. Grazina R, Gano L, Sebestik J, Santos MA (2009) New tripodal hydroxypyridinone based chelating agents for Fe(III), Al(III) and Ga(III): synthesis, physico-chemical properties and bioevaluation. J Inorg Biochem 103:262–273

    Article  PubMed  CAS  Google Scholar 

  108. Chaves S, Marques SM, Matos AMF, Nunes A, Gano L, Tuccinardi T, Martinelli A, Santos MA (2010) New tris(hydroxypyridinones) as iron and aluminium sequestering agents: synthesis, complexation and in vivo studies. Chemistry 16:10535–10545

    Article  PubMed  CAS  Google Scholar 

  109. Biaso F, Baret P, Pierre J-L, Serratrice G (2002) Comparative studies on the iron chelators O-TRENSOX and TRENCAMS: selectivity of the complexation towards other biologically relevant metal ions and Al3+. J Inorg Biochem 89:123–130

    Article  PubMed  CAS  Google Scholar 

  110. Di Marco VB, Bombi GG, Tapparo A, Powell AK, Anson CE (1999) Complexation of aluminium(III) with 3-hydroxy-2(1H)-pyridinone. Solution state study and crystal structure of tris(3-hydroxy-2(1H)-pyridinonato)aluminium(III). J Chem Soc Dalton Trans 2427–2432

    Google Scholar 

  111. Di Marco VB, Tapparo A, Bertani R, Bombi GG (1999) Complex formation between aluminium(III) and two pyridine derivatives: 2-hydroxynicotinic and 3-hydroxypicolinic acid. Ann Chim 89:535–546

    Google Scholar 

  112. Di Marco VB, Yokel RA, Ferlin MG, Tapparo A, Bombi GG (2002) Evaluation of 3,4-hydroxypyridinecarboxylic acids as possible bidentate chelating agents for aluminium(III): synthesis and metal-ligand solution chemistry. Eur J Inorg Chem 2648–2655

    Google Scholar 

  113. Di Marco VB, Dean A, Ferlin MG, Yokel RA, Li HT, Venzo A, Bombi GG (2006) Methyl-hydroxypyridinecarboxylic acids as possible bidentate chelating agents for aluminium(III): synthesis and metal-ligand solution chemistry. Eur J Inorg Chem 1284–1293

    Google Scholar 

  114. Bombi GG, Di Marco VB, Marton D, Moro S, Reheman A, Tapparo A, Viero L (2007) 2-Hydroxy-3-carboxy-dlhydrocinnamic acid: complexation properties towards aluminium(III) and iron(III). Polyhedron 26:3419–3427

    Article  CAS  Google Scholar 

  115. Dean A, Ferlin MG, Brun P, Castagliuolo I, Badocco D, Pastore P, Venzo A, Bombi GG, Di Marco VB (2008) Evaluation of 2-methyl-3-hydroxy-4-pyridinecarboxylic acid as a possible chelating agent for iron and aluminium. Dalton Trans 1689–1697

    Google Scholar 

  116. Dean A, Ferlin MG, Brun P, Castagliuolo I, Yokel RA, Badocco D, Pastore P, Venzo A, Bombi GG, Di Marco VB (2009) 1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid as new possible chelating agents for iron and aluminium. Dalton Trans 1815–1824

    Google Scholar 

  117. Dean A, Ferlin MG, Brun P, Castagliuolo I, Yokel RA, Venzo A, Bombi GG, Di Marco VB (2011) Evaluation of 4-hydroxy-6-methyl-3-pyridinecarboxylic acid and 2,6-dimethyl-4-hydroxy-3-pyridinecarboxylic acid as chelating agents for iron and aluminium. Inorg Chim Acta 373:179–186

    Article  CAS  Google Scholar 

  118. Gumienna-Kontecka E, Silvagni R, Lipinski R, Lecouvey M, Marincola FC, Crisponi G, Nurchi VM, Leroux Y, Kozlowski H (2002) Bisphosphonate chelating agents: complexation of Fe(III) and Al(III) by 1-phenyl-1-hydroxymethylene bisphosphonate and its analogues. Inorg Chim Acta 339:111–118

    Article  CAS  Google Scholar 

  119. Ding H, Xu G, Wang J, Zhang Y, Wu X, Xie Y (2004) Catechol–bisphosphonate conjugates: new types of chelators for metal intoxication therapy. Heteroat Chem 15:549–555

    Article  CAS  Google Scholar 

  120. Bailly T, Burgada R, Prangé T, Lecouvey M (2003) Synthesis of tetradentate mixed bisphosphonates–new hydroxypyridinonate ligands for metal chelation therapy. Tetrahedron Lett 44:189–192

    Article  CAS  Google Scholar 

  121. Crisponi G, Nurchi VM, Pivetta T (2008) Potentiometric and spectrophotometric equilibrium study on Fe(III) and new catechol-bisphosphonate conjugates. J Inorg Biochem 102:209–215

    Article  PubMed  CAS  Google Scholar 

  122. Crisponi G, Nurchi VM, Pivetta T, Galezowska J, Gumienna-Kontecka E, Bailly T, Burgada R, Kozlowski H (2008) Towards a new attenuating compound: a potentiometric, spectrophotometric and NMR equilibrium study on Fe(III), Al(III) and a new tetradentate mixed bisphosphonate-hydroxypyridinonate ligand. J Inorg Biochem 102:1486–1494

    Article  PubMed  CAS  Google Scholar 

  123. Fox RC, Taylor PD (1998) Bis(5-hydroxy-2-hydroxymethyl-pyran-4-one-6-yl)methane: a novel ligand for the intracellular mobilisation of ferritin-bound iron. Bioorg Med Chem Lett 8:443–446

    Article  PubMed  CAS  Google Scholar 

  124. Nurchi VM, Crisponi G, Lachowicz JI, Murgia S, Pivetta T, Remelli M, Rescigno A, Niclos-Gutierrez J, Gonzalez-Perez JM, Dominguez-Martin A, Castineiras A, Szewczuk Z (2010) Iron(III) and aluminum(III) complexes with hydroxypyrone ligands aimed to design kojic acid derivatives with new perspectives. J Inorg Biochem 104:560–569

    Article  PubMed  CAS  Google Scholar 

  125. Nurchi VM, Lachowicz JI, Crisponi G, Murgia S, Arca M, Pintus A, Gans P, Niclos-Gutierrez J, Dominguez-Martin A, Castineiras A, Remelli M, Szewczuk Z, Lis T (2011) Kojic acid derivatives as powerful chelators for iron(III) and aluminium(III). Dalton Trans 40:5984–5998

    Article  PubMed  CAS  Google Scholar 

  126. John VD, Krishnankutty K (2010) Antitumour studies of aluminium complexes of synthetic curcuminoids main group. Met Chem 33:157–166

    CAS  Google Scholar 

  127. Sahoo SK, Baral M, Bera RK, Kanungo BK (2011) Spectrophotometric and potentiometric studies on the binding abilities of two novel tripodal imine-phenol ligands towards Al(III) and Ga(III). J Solut Chem 40:1187–1199

    Article  CAS  Google Scholar 

  128. Cornard JP, Merlin JC (2002) Spectroscopic and structural study of complexes of quercetin with Al(III). J Inorg Biochem 92:19–27

    Article  PubMed  CAS  Google Scholar 

  129. Kobayashi A, Edo I, Furihata K, Yoshimura E (2005) Secretion of an aluminum chelator, 2-isopropylmalic acid, by the budding yeast, Saccharomyces cerevisiae. J Inorg Biochem 99:1260–1263

    Article  PubMed  CAS  Google Scholar 

  130. Yoshimura E, Kohdr H, Mori S, Hider RC (2011) The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration. Biometals 24:723–727

    Article  PubMed  CAS  Google Scholar 

  131. Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelinkpeters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG (1979) Cambridge crystallographic data center – computer-based search, retrieval, analysis and display of information. Acta Crystallogr B 35:2331–2339

    Article  Google Scholar 

  132. Nelson WO, Karpishin TB, Rettig SJ, Orvig C (1988) Aluminum and gallium compounds of 3-hydroxy-4-pyridinones – synthesis, characterization, and crystallography of biologically-active complexes with unusual hydrogen-bonding. Inorg Chem 27:1045–1051

    Article  CAS  Google Scholar 

  133. Nelson WO, Rettig SJ, Orvig C (1989) Aluminum and gallium complexes of 1-ethyl-3-hydroxy-2-methyl-4-pyridinone – a new exoclathrate matrix. Inorg Chem 28:3153–3157

    Article  CAS  Google Scholar 

  134. Xiao G, van der Helm D, Hider RC, Dobbin PS (1992) Structure-stability relationships of 3-hydroxypyridin-4-one complexes. J Chem Soc Dalton Trans 3265–3271

    Google Scholar 

  135. Simpson L, Rettig SJ, Trotter J, Orvig C (1991) 1-Normal-propyl-3-hydroxy-2-methyl-4-pyridinone and 1-normal-butyl-3-hydroxy-2-methyl-4-pyridinone complexes of Group 13 (IIIA) metal-ions. Can J Chem 69:893–900

    Article  CAS  Google Scholar 

  136. Zhang Z, Rettig SJ, Orvig C (1991) Lipophilic coordination compounds: aluminum, gallium, and indium complexes of 1-aryl-3-hydroxy-2-methyl-4-pyridinones. Inorg Chem 30:509–515

    Article  CAS  Google Scholar 

  137. Finnegan MM, Rettig SJ, Orvig C (1986) A neutral water-soluble aluminum complex of neurological interest. J Am Chem Soc 108:5033–5035

    Article  CAS  Google Scholar 

  138. Yu P, Phillips BL, Olmstead MM, Casey WH (2002) Rates of solvent exchange in aqueous aluminium(III)-maltolate complexes. J Chem Soc Dalton Trans 2119–2125

    Google Scholar 

  139. Odoko M, Yamamoto K, Hosen M, Okabe N (2003) fac-Tris(2-ethyl-4-oxo-4H-pyran-3-olato-kappa O-2(3), O-4)iron(III) and its aluminium(III) analog. Acta Crystallogr C 59:M121–M123

    Article  PubMed  CAS  Google Scholar 

  140. Hegetschweiler K, Ghisletta M, Fassler TF, Nesper R, Schmalle HW, Rihs G (1993) 1,3,5-Triamino-1,3,5-trideoxy-cis-inositol, a new ligand with a remarkable versatility for metal-ions. 3. Preparation and characterization of the aluminum(III), gallium(III), and thallium(III) complexes. Inorg Chem 32:2032–2041

    Article  CAS  Google Scholar 

  141. Hegetschweiler K, Kradolfer T, Gramlich V, Hancock RD (1995) The design of selective chelating-agents – 1,3,5-trideoxy-1,3,5-tris-(dimethylamino)-cis-inositol, a powerful ligand for hard and highly-charged metal-ions. Chem Eur J 1:74–88

    Article  CAS  Google Scholar 

  142. Matzapetakis M, Kourgiantakis M, Dakanali M, Raptopoulou CP, Terzis A, Lakatos A, Kiss T, Banyai I, Iordanidis L, Mavromoustakos T, Salifoglou A (2001) Synthesis, pH-dependent structural characterization, and solution behavior of aqueous aluminum and gallium citrate complexes. Inorg Chem 40:1734–1744

    Article  PubMed  CAS  Google Scholar 

  143. Dakanali M, Raptopoulou CP, Terzis A, Lakatos A, Banyai I, Kiss T, Salifoglou A (2003) A novel dinuclear species in the aqueous distribution of aluminum in the presence of citrate. Inorg Chem 42:252–254

    Article  PubMed  CAS  Google Scholar 

  144. Malone SA, Cooper P, Heath SL (2003) Synthesis and structure of a new aluminium citrate trimer from aqueous solution at very low pH. Dalton Trans 4572–4573

    Google Scholar 

  145. Lakatos A, Bertani R, Kiss T, Venzo A, Casarin M, Benetollo F, Ganis P, Favretto D (2004) Al-III ion complexes of saccharic acid and mucic acid: a solution and solid-state study. Chem Eur J 10:1281–1290

    Article  PubMed  CAS  Google Scholar 

  146. Cohen SM, Meyer M, Raymond KN (1998) Enterobactin protonation and iron release: Hexadentate tris-salicylate ligands as models for triprotonated ferric enterobactin. J Am Chem Soc 120:6277–6286

    Article  CAS  Google Scholar 

  147. Steinhauser S, Heinz U, Bartholoma M, Weyhermuller T, Nick H, Hegetschweiler K (2004) Complex formation of ICL670 and related ligands with Fe-III and Fe-II. Eur J Inorg Chem 4177–4192

    Google Scholar 

  148. Steinhauser S, Heinz U, Sander J, Hegetschweiler K (2004) Complex formation of 2,6-bis-(2′-hydroxyphenyl)pyridine with Al-III, Fe-III and Cu-II. Zeitschrift Fur Anorganische Und Allgemeine Chemie 630:1829–1838

    Article  CAS  Google Scholar 

  149. Langemann K, Heineke D, Rupprecht S, Raymond KN (1996) Nordesferriferrithiocin. Comparative coordination chemistry of a prospective therapeutic iron chelating agent. Inorg Chem 35:5663–5673

    Article  PubMed  CAS  Google Scholar 

  150. Hoveyda HR, Karunaratne V, Rettig SJ, Orvig C (1992) Coordination chemistry of 2-(2′-hydroxyphenyl)-2-oxazolines with aluminum, gallium, and indium – 1st tris(ligand)metal(III) complexes of this naturally-occurring binding group. Inorg Chem 31:5408–5416

    Article  CAS  Google Scholar 

  151. Hoveyda HR, Orvig C, Rettig SJ (1994) mer-Tris[2-(5-bromo-2-hydroxyphenyl)-2-oxazolinato]aluminium(III) methanol solvate. Acta Crystallogr C 50:1906–1909

    Article  Google Scholar 

  152. Bossek U, Hanke D, Wieghardt K, Nuber B (1993) Pendent arm macrocyclic complexes – crystal-structures of Al(TCTA) and In(TS-TACN). Polyhedron 12:1–5

    Article  CAS  Google Scholar 

  153. Liu S, Rettig SJ, Orvig C (1992) Polydentate ligand chemistry of Group 13 metals: effects of the size and donor selectivity of metal ions on the structures and properties of aluminum, gallium, and indium complexes with potentially heptadentate (N4O3) amine phenol ligands. Inorg Chem 31:5400–5407

    Article  CAS  Google Scholar 

  154. Bollinger JE, Mague JT, Banks WA, Kastin AJ, Roundhill DM (1995) Lipophilic hexadentate aluminum complexes of new phenolate-derivatized cyclohexanetriamine ligands and their effect on the peptide-transport system (PTS-1). Inorg Chem 34:2143–2152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Crisponi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Nurchi, V.M., Crisponi, G., Bertolasi, V., Faa, G., Remelli, M. (2012). Aluminium-dependent human diseases and chelating properties of aluminium chelators for biomedical applications. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_10

Download citation

Publish with us

Policies and ethics