Skip to main content

Beyond Euler-Cauchy Continua: The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument

  • Chapter

Part of the book series: CISM Courses and Lectures ((CISM,volume 535))

Abstract

The most general and elegant axiomatic framework on which continuum mechanics can be based starts from the Principle of Virtual Works (or Virtual Power). This Principle, which was most likely used already at the very beginning of the development of mechanics (see e.g. Benvenuto (1981), Vailati (1897), Colonnetti (1953), Russo (2003)), became after D’Alembert the main tool for an efficient formulation of physical theories. Also in continuum mechanics it has been adopted soon (see e.g. Benvenuto (1981), Salençon (1988), Germain (1973), Berdichevsky (2009), Maugin (1980), Forest (2006)). Indeed the Principle of Virtual Works becomes applicable in continuum mechanics once one recognizes that to estimate the work expended on regular virtual displacement fields of a continuous body one needs a distribution (in the sense of Schwartz). Indeed in the present paper we prove, also by using concepts from differential geometry of embedded Riemanniam manifolds, that the Representation Theorem for Distributions allows for an effective characterization of the contact actions which may arise in N-th order strain-gradient multipolar continua (as defined by Green and Rivlin (1964)), by univocally distinguishing them in actions (forces and n-th order forces) concentrated on contact surfaces, lines (edges) and points (wedges). The used approach reconsiders the results found in the pioneering papers by Green and Rivlin (1964)–(1965), Toupin (1962), Mindlin (1964)–(1965) and Casal (1961) as systematized, for second gradient models, by Paul Germain (1973). Finally, by recalling the results found in dell’Isola and Seppecher (1995)–(1997), we indicate how Euler-Cauchy approach to contact actions and the celebrated tetrahedron argument may be adapted to N-th order strain-gradient multipolar continua.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. K. Abu Al-Rub Modeling the interfacial effect on the yield strength and flow stress of thin metal films on substrates Mechanics Research Communications 35 65–72 (2008)

    Article  MathSciNet  Google Scholar 

  2. R. Abeyaratne, N. Triantafyllidis, An investigation of localization in a porous elastic material using homogenization theory. Trans. ASME J. Appl. Mech. 51, no. 3, 481–486 (1984)

    Article  MathSciNet  Google Scholar 

  3. R. Abraham, J.E. Marsden, and T. Ratiu, ‘Manifolds,Tensor Analysis, and Applications’, Applied Mathematical Sciences, 75, Springer Verlag, (1988).

    Google Scholar 

  4. Alibert, J.-J., Seppecher, P., dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, no. 1, 51–73 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. V.I. Arnold, Mathematical Methods of Classical Mechanics Springer Verlag (1979)–(1989)

    Google Scholar 

  6. C. Banfi, A. Marzocchi and A. Musesti On the principle of virtual powers in continuum mechanics Ricerche di Matematica 55: 299–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bardenhagen, N. Triantafyllidis Derivation of higher order gradient continuum theories in 2,3-D nonlinear elasticity from periodic lattice models. J. Mech. Phys. Solids 42, no. 1, 111–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Benvenuto La scienza delle costruzioni e il suo sviluppo storico Sansoni, Firenze, (1981)

    Google Scholar 

  9. V. Berdichevsky, Variational Principles of Continuum Mechanics, Springer, (2009).

    Google Scholar 

  10. J.L. Bleustein, A note on the boundary conditions of Toupin’s strain-gradient theory International Journal of Solids and Structures, 3(6), pp. 1053–1057. (1967)

    Article  Google Scholar 

  11. B. Bourdin, G.A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91, 1–3, 2008, 1–148 (also appeared as a Springer book: ISBN: 978-1-4020-6394-7).

    Article  MathSciNet  Google Scholar 

  12. J.L. Borges, Pierre Menard Author of the Quixote (translation by James E. Irby) http://www.coldbacon.com/writing/borgesquixote.html

    Google Scholar 

  13. P. Casal, et H. Gouin, ‘Relation entre l’équation de l’énergie et l’équation du mouvement en théorie de Korteweg de la capillaritè’, C. R. Acad. Sci. Paris, t. 300, Série II, N. 7 231–233 (1985).

    MathSciNet  MATH  Google Scholar 

  14. P. Casal, ‘La théorie du second gradient et la capillarité’, C. R. Acad. Sci. Paris, t. 274, Série A 1571–1574 (1972).

    Google Scholar 

  15. P. Casal, La capillarité interne, Cahier du groupe Français de rhéologie, CNRS VI, 3, pp. 31–37 (1961).

    Google Scholar 

  16. P. Casal, et H. Gouin, ‘Relation entre l’équation de l’énergie et l’équation du mouvement en théorie de Korteweg de la capillarité’, C. R. Acad. Sci. Paris, t. 300, Série II, N. 7 231–233 (1985).

    MathSciNet  MATH  Google Scholar 

  17. A. Carcaterra, A. Akay, I.M. Koc Near-irreversibility in a conservative linear structure with singularity points in its modal density Journal of the Acoustical Society of America 1194 2141–2149 (2006)

    Article  Google Scholar 

  18. A. Carcaterra Ensemble energy average and energy flow relationships for nonstationary vibrating systems Journal of Sound and Vibration 288,3, 751–790 (2005)

    Article  Google Scholar 

  19. F. Collin, R. Chambon and R. Charlier A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int. J. Num. Meth. Engng. 65, 1749–1772 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Colonnetti, Scienza delle costruzioni, Torino, Edizioni scientifiche Einaudi, 3o ed., (1953–57).

    Google Scholar 

  21. E. Cosserat and F. Cosserat Note sur la théorie de l’action euclidienne. Paris, Gauthier-Villars, (1908).

    Google Scholar 

  22. E. Cosserat, and F. Cosserat Sur la Théorie des Corps Déformables, Herman, Paris, (1909).

    Google Scholar 

  23. N. Daher, G. A. Maugin Virtual power and thermodynamics for electromagnetic continua with interfaces. J. Math. Phys. 27, no. 12, 3022–3035 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Daher, G. A. Maugin The method of virtual power in continuum mechanics. Application to media presenting singular surfaces and interfaces. Acta Mech. 60, no. 3–4, 217–240, (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. dell’Isola and W. Kosinski “Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers,” Archives of Mechanics, vol. 45, pp. 333–359 (1993).

    MathSciNet  Google Scholar 

  26. F. dell’Isola and P. Seppecher, “The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power”, Comptes Rendus de l’Academie de Sciences-Serie IIb: Mecanique, Physique, Chimie, Astronomie, vol. 321,, pp. 303–308 (1995).

    Google Scholar 

  27. F. dell’Isola and P. Seppecher, “Edge Contact Forces and Quasi-Balanced Power”, Meccanica, vol. 32, pp. 33–52 (1997)

    Article  MathSciNet  Google Scholar 

  28. F. dell’Isola, G. Sciarra, and S. Vidoli, Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465, no. 2107, 2177–2196 (2009)

    Article  MathSciNet  Google Scholar 

  29. F. dell’Isola, G. Sciarra, R. C.Batra, Static deformations of a linear elastic porous body filled with an inviscid fluid. Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III. Vol. III. J. Elasticity 72, no. 1—3, 99–120 (2003)

    Article  MathSciNet  Google Scholar 

  30. F. dell’Isola, M. Guarascio, K. Hutter A variational approach for the deformation of a saturated porous solid. A secondgradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)

    Article  Google Scholar 

  31. A. Di Carlo e A. Tatone (Iper-)Tensioni & Equi-Potenza AIMETA’01 XV Congresso AIMETA di Meccanica Teorica e Applicata 15th AIMETA Congress of Theoretical and Applied Mechanics 2001

    Google Scholar 

  32. M. Degiovanni, A. Marzocchi and A. Musesti Edge-force densities and second-order powers Annali di Matematica 185, 81–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Degiovanni, A. Marzocchi, and A. Musesti, A., ‘Cauchy fluxes associated with tensor fields having divergence measure’, Arch. Ration. Mech. Anal. 147 197–223 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  34. J.E. Dunn, and J. Serrin, ‘On the thermomechanics of interstitial working’, Arch. Rational Mech. Anal., 88(2) 95–133 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  35. J.E. Dunn ‘Interstitial working and a non classical continuum thermodynamics’, In: J. Serrin (Ed), New Perspectives in Thermodynamics, Springer Verlag, Berlin, pp. 187–222 (1986).

    Chapter  Google Scholar 

  36. G. E. Exadaktylos, I. Vardoulakis, Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, Volume 335, Issues 1–2, 25 June 2001, Pages 81–109

    Article  Google Scholar 

  37. A.C. Fannjiang, Y.S. Chan, and G.H. Paulino Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J. Appl. Math. 62, no. 3, 1066–1091 (electronic) (2001/02).

    Article  MathSciNet  Google Scholar 

  38. S. Forest, M. Amestoy, S. Cantournet, G. Damamme, S. Kruch Mécanique des Milieux Continus ECOLE DES MINES DE PARIS Année 2005–2006

    Google Scholar 

  39. S. Forest Mechanics of generalized continua: construction by homogenization J.Phys. IV France 8 1998

    Google Scholar 

  40. S. Forest Homogenization methods and the mechanics of generalized continua-part 2 Theoretical and applied Mechanics vol. 28–29, pp. 113–143 (2002)

    MathSciNet  Google Scholar 

  41. S. Forest. Milieux continus généralisés et matériaux hétérogènes. Les Presses de l’Ecole des Mines de Paris, ISBN: 2-911762-67-3, 200 pages, (2006).

    Google Scholar 

  42. S. Forest. Generalized continua. In K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, and S. Mahajan, editors, Encyclopedia of Materials: Science and Technology updates, pages 1–7. Elsevier, Oxford, (2005).

    Chapter  Google Scholar 

  43. S. Forest and M. Amestoy. Mécanique des milieux continus. Cours de l’Ecole des Mines de Paris n25e6 3121, 264 pages, (2004, 2005, 2006).

    Google Scholar 

  44. S. Forest. Milieux continus généralisés et matériaux hétérog`enes. Mémoire d’habilitation à diriger des recherches, (2004).

    Google Scholar 

  45. E. Fried and M.E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small length scales. Archive for Rational Mechanics and Analysis 182, 513–554 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Fried and M.E. Gurtin, A continuum mechanical theory for turbulence: a generalized Navier-Stokes-equation with boundary conditions. Theoretical and Computational Fluid Dynamics 182, 513–554 (2008)

    MathSciNet  Google Scholar 

  47. P. Germain Cours de M`ecanique des Milieux Continus, tome I, Masson, Paris, (1973).

    Google Scholar 

  48. P. Germain La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  49. P. Germain The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Germain ‘Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus’, C. R. Acad. Sci. Paris Série A-B 274 A1051-A1055.(1972)

    Google Scholar 

  51. A. E. Green, R. S. Rivlin, Multipolar continuum mechanics, Arch. Rational Mech. Anal., 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  52. A. E. Green, R. S. Rivlin, Simple force and stress multipoles, Arch. Rational Mech. Anal.,16, 325–353 (1964)

    MathSciNet  MATH  Google Scholar 

  53. A. E. Green, R. S. Rivlin,. On Cauchy’s equations of motion, Z. Angew. Math. Phys.,ZAMP. 15,, 290–292, (1964)

    Article  MathSciNet  MATH  Google Scholar 

  54. A. E. Green, R. S. Rivlin Multipolar continuum mechanics: Functional theory. I, Proc. Roy. Soc. Ser. A, 284, 303–324 (1965)

    Article  MathSciNet  Google Scholar 

  55. M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, International Journal of Plasticity 50, 809–819 (2002).

    MathSciNet  Google Scholar 

  56. N. Kirchner, P. Steinmann, On the material setting of gradient hyperelasticity. (English summary) Math. Mech. Solids 12 (2007)

    Google Scholar 

  57. O.D. Kellogg, Foundations of Potential Theory Springer, Berlin, (1929)

    Google Scholar 

  58. W. Kosinski, Field Singularities and Wave Analysis in Continuum Mechanics. Ellis Horwood Series: Mathematics and Its Applications, Wiley & Sons, PWN — Polish Scientific Publishers, Warsaw 1986

    Google Scholar 

  59. R. Larsson, S. A Diebels, Second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Internat. J. Numer. Methods Engrg. 69, no. 12, 2485–2512 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Lazar, G. A. Maugin A note on line forces in gradient elasticity Mechanics Research Communications 33 674–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Lucchesi ·M. Silhavý ·N. Zani On the Balance Equation for Stresses Concentrated on Curves J Elasticity 90:209–223 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Madeo, F. dell’Isola, N. Ianiro, G. Sciarra, “A second gradient poroelastic model of consolidation”, SIMAI 2008, Rome 15–19 September (2008).

    Google Scholar 

  63. A. Madeo, F. dell’Isola, N. Ianiro, and G. Sciarra, “A variational deduction of second gradient poroelasticity II: An application to the consolidation problem,” Journal of Mechanics of Materials and Structures, vol. 3,, pp. 607–625 (2008)

    Article  Google Scholar 

  64. A. Marzocchi,, A. Musesti, Balanced virtual powers in Continuum Mechanics. Meccanica 38, 369–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Marzocchi, A. Musesti,, ‘Decomposition and integral representation of Cauchy interactions associated with measures’, Cont. Mech. Thermodyn. 13 149–169 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  66. G. Maugin MathReview MR1437786 (98d:73003) 73A05 (73B18 73S10) on the paper F.dell’Isola P. Seppecher (1997).

    Google Scholar 

  67. G. Maugin MathReview MR1600928 (99e:73005) on the paper G. Capriz and G. Mazzini Invariance and balance in continuum mechanics. Nonlinear analysis and continuum mechanics (Ferrara,1992), 27–35, Springer, New York, 1998.

    Google Scholar 

  68. G. A. Maugin A.V. Metrikine Editors Mechanics of Generalized Continua, One Hundred Years After the Cosserats, Springer (2010)

    Google Scholar 

  69. R.D. Mindlin, Second gradient of strain and surface tension in linear elasticity Int. J. Solids and Struct. 1,4,417–438 (1965)

    Article  Google Scholar 

  70. R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Analysis, vol. 16, pp. 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  71. R. D. Mindlin, Complex representation of displacements and stresses in plane strain with couple-stresses. 1965 Appl. Theory of Functions in Continuum Mechanics (Proc. Internat. Sympos., Tbilisi), Vol. I, Mechanics of Solids (Russian) pp. 256–259 Izdat. ”Nauka”, Moscow (1963)

    Google Scholar 

  72. R. D. Mindlin, H. F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  73. R. D. Mindlin Influence of couple-stresses on stress concentrations Main features of cosserat theory are reviewed by lecturer and some recent solutions of the equations, for cases of stress concentration around small holes in elastic solids, are described EXPERIMENTAL MECHANICS 3, 1, 1–7, THE WILLIAM M. MURRAY LECTURE, (1962)

    Google Scholar 

  74. R. D. Mindlin N. N. Eshel On first strain-gradient theories in linear elasticity International Journal of Solids and Structures 4,1 1968, 109–124

    Article  MATH  Google Scholar 

  75. R.D. Mindlin,. Stress functions for a Cosserat continuum International Journal of Solids and Structures, 1(3), pp. 265–271 (1965)

    Article  Google Scholar 

  76. R.D. Mindlin On the equations of elastic materials with microstructure International Journal of Solids and Structures, 1(1), pp. 73–78 (1965).

    Article  Google Scholar 

  77. M. Muntersbjom, Francis Bacon’s Philosophy of Science: Machina intellectus and Forma indita Philosophy of Science, 70 (December 2003) pp. 1137–1148.

    Article  Google Scholar 

  78. W. Noll, E.G. Virga, ‘On edge interactions and surface tension’, Arch. Rational Mech. Anal., 111(1) 1–31 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  79. W. Noll ‘The foundations of classical mechanics in the light of recent advances in continuum mechanics’ Proceeding of the Berkeley Symposium on the Axiomatic Method, Amsterdam,, pp. 226–281 (1959).

    Google Scholar 

  80. W. Noll ‘Lectures on the foundations of continuum mechanics and thermodynamics’, Arch. Rational Mech. Anal. 52 62–92 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  81. W. Noll ‘The geometry of contact separation and reformation of continuous bodies’, Arch. Rational Mech. Anal., 122(3) 197–212 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  82. C. Pideri and P. Seppecher A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, no. 5, 241–257 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  83. P. Podio-Guidugli A virtual power format for thermomechanics Continuum Mech. Thermodyn. 20: 479–487 (2009)

    Article  MathSciNet  Google Scholar 

  84. P. Podio-Guidugli, Contact interactions, stress, and material symmetry, for nonsimple elastic materials. (English, Serbo-Croatian summary) Issue dedicated to the memory of Professor Rastko Stojanovic (Belgrade, 2002). Theoret. Appl. Mech. 28/29 (2002), 261–276.

    MathSciNet  Google Scholar 

  85. P. Podio-Guidugli and M. Vianello Hypertractions and hyperstresses convey the same mechanical information Continuum Mech. Thermodyn. 22:163–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. C. Polizzotto, Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions. Eur. J. Mech. A Solids 26, no. 2, 189–211 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  87. Rorres C. Completing Book II of Archimedes’s On Floating Bodies THE MATHEMATICAL INTELLIGENCER 26,3, Pages 32–42 (2004)

    Article  MathSciNet  Google Scholar 

  88. L. Russo The Forgotten Revolution Springer Verlag (2003)

    Google Scholar 

  89. J. Salençon Mécanique des milieux continus Ed. Ellipses (1988)–(1995) Handbook of Continuum Mechanics Ed. Springer (Berlin, 2001) Mécanique des milieux continus. Tome I. Éd. École polytechnique, Palaiseau; Ellipses, Paris, (2002)–(2005)

    Google Scholar 

  90. L. Schwartz, Théorie des Distributions, Hermann Paris, (1973).

    Google Scholar 

  91. G. Sciarra, F. dell’Isola and O. Coussy Second gradient poromechanics. Internat. J. Solids Structures 44, no. 20, 6607–6629 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  92. G. Sciarra, F. dell’Isola and K. Hutter A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13, no. 5, 287–306 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  93. G. Sciarra, F. dell’Isola, N. Ianiro, and A. Madeo, “A variational deduction of second gradient poroelasticity part I: General theory”, Journal of Mechanics of Materials and Structures, vol. 3, pp. 507–526 (2008).

    Article  Google Scholar 

  94. P. Seppecher ‘Etude des conditions aux limites en théorie du second gradient: cas de la capillarité, C. R. Acad. Sci. Paris, t. 309, Série II 497–502 (1989).

    MathSciNet  MATH  Google Scholar 

  95. P. Seppecher Etude d’une Modélisation des Zones Capillaires Fluides: Interfaces et Lignes de Contact, Thèse de l’Université Paris VI, Avril (1987).

    Google Scholar 

  96. M. Šilhavý ‘The existence of the flux vector and the divergence theorem for general Cauchy fluxes’, Arch.Ration. Mech. Anal. 90 195–211 (1985).

    Article  MATH  Google Scholar 

  97. M. Šilhavý ‘Cauchy’s stress theorem and tensor fields with divergences in Lp’, Arch. Ration. Mech. Anal. 116 223–255 (1991).

    Article  MATH  Google Scholar 

  98. M. Sokolowski, Theory of couple-stresses in bodies with constrained rotations. In CISM courses and lectures, vol. 26. Berlin, Germany: Springer (1970).

    Google Scholar 

  99. M. Spivak A comprehensive introduction to differential geometry. Voll. I and II. Second edition. Publish or Perish, Inc., Wilmington, Del. (1979)

    Google Scholar 

  100. A. S. J. Suiker and C. S. Chang, Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142, 223–234 (2000).

    Article  MATH  Google Scholar 

  101. R.A. Toupin Elastic Materials with couple-stresses, Arch. Rat. Mech. Analysis, vol. 11, pp. 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  102. R. A. Toupin, Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17 85–112 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  103. N. Triantafyllidis and S. Bardenhagen, On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elasticity 33 (1993)

    Google Scholar 

  104. N. Triantafyllidis and S. Bardenhagen The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J. Mech. Phys. Solids 44, no. 11, 1891–1928 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  105. C.A. Truesdell A First Course in Rational Continuum Mechanics, Vol. I General Concepts, Academic Press, New York, 1977.

    MATH  Google Scholar 

  106. N. Triantafyllidis and E.C. Aifantis A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elasticity 16, no. 3, 225–237 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  107. Y. Yang, and A. Misra “Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation,” Computer Modeling in Engineering and Sciences, Vol. 64, No. 1, 1–36 (2010)

    MathSciNet  Google Scholar 

  108. Y. Yang, W.Y. Ching and Misra, A., “Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film,” Journal of Nanomechanics and Micromechanics, (in print). (2011)

    Google Scholar 

  109. G. Vailati, Il principio dei lavori virtuali da Aristotele a Erone d’Alessandria, Scritti (Bologna, Forni, 1987), vol. II, pp. 113–128, Atti della R. Accademia delle Scienze di Torino, vol. XXXII, adunanza del 13 giugno 1897, quaderno IG (091) 75 I–III (1897).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This work is dedicated to Professor Antonio Romano in occasion of his 70-th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

dell’Isola, F., Seppecher, P., Madeo, A. (2011). Beyond Euler-Cauchy Continua: The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. In: dell’Isola, F., Gavrilyuk, S. (eds) Variational Models and Methods in Solid and Fluid Mechanics. CISM Courses and Lectures, vol 535. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0983-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0983-0_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0982-3

  • Online ISBN: 978-3-7091-0983-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics