Skip to main content

The Role of Mitochondria in the Activation/Maintenance of SOCE

Store-operated Ca2+ Entry and Mitochondria

  • Chapter
  • First Online:
  • 675 Accesses

Abstract

Mitochondria modify cellular Ca2+ transport processes and, in turn, almost every Ca2+ signaling event has a notable effect on mitochondrial function. This kind of reciprocal interplay between Ca2+ handling and mitochondria is especially prominent during store-operated Ca2+ entry (SOCE). Localization of mitochondria, Ca2+ uptake and efflux into and out of the organelle, and even release of metabolites from the mitochondria have been shown to substantially modify SOCE. On the other hand, Ca2+ entering the cell through store-operated channels is sequestered by mitochondria. The ensuing mitochondrial Ca2+ signal activates the reduction of pyridine nucleotides and promotes ATP synthesis and thereby adjusts energy metabolism to cellular demands. Mitochondrial Ca2+ accumulation also supports cell specific functions such as steroid and insulin secretion. Early observations have suggested that mitochondria need to be localized in the vicinity of store-operated channels for efficient SOCE to occur. Recent studies in numerous cell types, however, have shown that mitochondria are not located in the molecular proximity of store-operated channels but Ca2+diffuses to mitochondria from the nearby orifice of the channels. Consequently, the formation of high Ca2+ perimitochondrial microdomains is not a sine qua non for SOCE-mitochondrion cooperation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N (2001) Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276:29430–29439

    Article  PubMed  CAS  Google Scholar 

  • Bakowski D, Parekh AB (2007) Regulation of store-operated calcium channels by the intermediary metabolite pyruvic acid. Current Biol 17:1076–1081

    Article  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3 and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  • Brasen JC, Olsen LF, Hallett MB (2010) Cell surface topology creates high Ca2+ signaling microdomains. Cell Calcium 47:339–349

    Article  PubMed  CAS  Google Scholar 

  • Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  • Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6:361–371

    Article  PubMed  CAS  Google Scholar 

  • Chang WC, Nelson C, Parekh AB (2006) Ca2+ Influx through CRAC channels activates cytosolic phospholipase A2, leukotriene C4 secretion, and expression of c-fos through ERK-dependent and -independent pathways in mast cells. FASEB J 20:2381–2383

    Article  PubMed  CAS  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2006) Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 273:433–450

    Article  PubMed  CAS  Google Scholar 

  • Colegrove SL, Albrecht MA, Friel DD (2000) Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons. J Gen Physiol 115:351–369

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ, Lipp P, Berridge MJ, Li WH, Bootman MD (2000) Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J 347:593–600

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J Biol Chem 276:26411–26420

    Article  PubMed  CAS  Google Scholar 

  • Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607–618

    Article  PubMed  CAS  Google Scholar 

  • Csordás G, Várnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  Google Scholar 

  • Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100:1128–1141

    Article  PubMed  CAS  Google Scholar 

  • Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta 1787:1383–1394

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (1992) Ca2+-Dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283:41–50

    PubMed  CAS  Google Scholar 

  • Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D (2010) Coupling of mitochondria to store-operated Ca2+-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium 47:525–537

    Article  PubMed  CAS  Google Scholar 

  • Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Calcium homeostasis during mitochondria fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714

    Article  PubMed  CAS  Google Scholar 

  • Frieden M, Arnaudeau S, Castelbou C, Demaurex N (2005) Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J Biol Chem 280:43198–43208

    Article  PubMed  CAS  Google Scholar 

  • Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC. EMBO J 19:6401–6407

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Bakowski D, Parekh AB (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J 20:2672–2679

    Article  PubMed  CAS  Google Scholar 

  • Glitsch MD, Parekh AB (2000) Ca2+ Store dynamics determines the pattern of activation of the store-operated Ca2+ current ICRAC in response to InsP3 in rat basophilic leukaemia cells. J Physiol 523:283–290

    Article  PubMed  CAS  Google Scholar 

  • Glitsch MD, Bakowski D, Parekh AB (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J 21:6744–6754

    Article  PubMed  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  CAS  Google Scholar 

  • Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial Ca2+ transport mechanisms. Biochim Biophys Acta 1787:1291–1308

    Article  PubMed  CAS  Google Scholar 

  • Hajnóczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+. J Biol Chem 274:14157–14162

    Article  PubMed  Google Scholar 

  • Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Nat Acad Sci U S A 97:10607–10612

    Article  CAS  Google Scholar 

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophya Acta: Bio-Energetics 1366:33–50

    Article  CAS  Google Scholar 

  • Isshiki M, Ying YS, Fujita T, Anderson RG (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277:43389–43398

    Article  PubMed  CAS  Google Scholar 

  • Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    Article  PubMed  CAS  Google Scholar 

  • Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Nat Acad Sci U S A 96:13807–13812

    Article  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  • Koncz P, Szanda G, Fülöp L, Rajki A, Spät A (2009) Mitochondrial Ca2+ uptake is inhibited by a concerted action of p38 MAPK and protein kinase D. Cell Calcium 46:122–129

    Article  PubMed  CAS  Google Scholar 

  • Korzeniowski MK, Szanda G, Balla T, Spät A (2009) Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium 46:49–55

    Article  PubMed  CAS  Google Scholar 

  • Lawrie AM, Rizzuto R, Pozzan T, Simpson AWM (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem 271:10753–10759

    Article  PubMed  CAS  Google Scholar 

  • Lenzen S, Hickethier R, Panten U (1986) Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport. J Biol Chem 261:16478–16483

    PubMed  CAS  Google Scholar 

  • Makowska A, Zablocki K, Duszynski J (2000) The role of mitochondria in the regulation of calcium influx into jurkat cells. Europ J Biochem 267:877–884

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, store-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Trenker M, Graier WF (2005) The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem 280:12114–12122

    Article  PubMed  CAS  Google Scholar 

  • Marsault R, Murgia M, Pozzan T, Rizzuto R (1997) Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J 16:1575–1581

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  • Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, Wahlers T, Hoppe UC (2009) Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119:2435–2443

    Article  PubMed  CAS  Google Scholar 

  • Mignen O, Brink C, Enfissi A, Nadkarni A, Shuttleworth TJ, Giovannucci DR, Capiod T (2005) Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells. J Cell Sci 118:5615–5623

    Article  PubMed  CAS  Google Scholar 

  • Montalvo GB, Artalejo AR, Gilabert JA (2006) ATP from subplasmalemmal mitochondria controls Ca2+-dependent inactivation of CRAC channels. J Biol Chem 281:35616–35623

    Article  PubMed  CAS  Google Scholar 

  • Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    Article  PubMed  CAS  Google Scholar 

  • Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Nakahashi Y, Nelson E, Fagan K, Gonzales E, Guillou JL, Cooper DM (1997) Construction of a full-length Ca2+-sensitive adenylyl cyclase/aequorin chimera. J Biol Chem 272:18093–18097

    Article  PubMed  CAS  Google Scholar 

  • Olson ML, Chalmers S, McCarron JG (2010) Mitochondrial Ca2+ uptake increases Ca2+ release from inositol 1,4,5-trisphosphate receptor clusters in smooth muscle cells. J Biol Chem 285:2040–2050

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB (1998) Slow feedback inhibition of calcium release-activated calcium current by calcium entry. J Biol Chem 273:14925–14932

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9:399–410

    Article  PubMed  CAS  Google Scholar 

  • Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874

    Article  PubMed  CAS  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 Clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  PubMed  CAS  Google Scholar 

  • Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 Encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Verkhratsky A (2007) Endoplasmic reticulum calcium tunnels integrate signaling in polarised cells. Cell Calcium 42:373–378

    Article  PubMed  CAS  Google Scholar 

  • Pitter JG, Maechler P, Wollheim CB, Spät A (2002) Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium 31:97–104

    Article  PubMed  CAS  Google Scholar 

  • Pivovarova NB, Hongpaisan J, Andrews SB, Friel DD (1999) Depolarization-induced mitochondrial Ca2+ accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci 19:6372–6384

    PubMed  CAS  Google Scholar 

  • Pralong W-F, Hunyady L, Várnai P, Wollheim CB, Spät A (1992) Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Nat Acad Sci U S A 89:132–136

    Article  CAS  Google Scholar 

  • Pralong W-F, Spät A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+. J Biol Chem 269:27310–27314

    PubMed  CAS  Google Scholar 

  • Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  PubMed  CAS  Google Scholar 

  • Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M (2006) Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. JBiol Chem 281:40302–40309

    Article  CAS  Google Scholar 

  • Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624

    Article  PubMed  CAS  Google Scholar 

  • Rohács T, Gy N, Spät A (1997a) Cytoplasmic Ca2+ signaling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin. Biochem J 322:785–792

    PubMed  Google Scholar 

  • Rohács T, Tory K, Dobos A, Spät A (1997b) Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells. Biochem J 328:525–528

    PubMed  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797(6–7):907–912

    PubMed  CAS  Google Scholar 

  • Spät A, Fülöp L, Koncz P, Szanda G (2008a) When is high- Ca2+ microdomain required for mitochondrial Ca2+ uptake? Acta Physiol (Oxf) 195:139–147

    Article  Google Scholar 

  • Spät A, Szanda G, Csordás G, Hajnóczky G (2008b) High- and low-calcium-dependent mechanisms of mitochondrial calcium signaling. Cell Calcium 44:51–63

    Article  PubMed  Google Scholar 

  • Spencer T, Bygrave FL (1971) Stimulation by calcium ions of atractyloside-sensitive adenine nucleotide translocation in rat liver mitochondria. Biochem Biophys Res Commun 43:1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Szabadkai G, Pitter JG, Spät A (2001) Cytoplasmic Ca2+ at low submicromolar concentration stimulates mitochondrial metabolism in rat luteal cells. Pflügers Arch Europ J Physiol 441:678–685

    Article  CAS  Google Scholar 

  • Szanda G, Koncz P, Várnai P, Spät A (2006) Mitochondrial Ca2+ uptake with and without the formation of high- Ca2+ microdomains. Cell Calcium 40:527–538

    Article  PubMed  CAS  Google Scholar 

  • Szanda G, Koncz P, Rajki A, Spät A (2008) Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake. Cell Calcium 43:250–259

    Article  PubMed  CAS  Google Scholar 

  • Szanda G, Rajki A, Gallego-Sandin S, Garcia-Sancho J, Spät A (2009) Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflügers Arch Europ J Physiol 457:941–954

    Article  CAS  Google Scholar 

  • Thyagarajan B, Malli R, Schmidt K, Graier WF, Groschner K (2002) Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling. Br J Pharmacol 137:821–830

    Article  PubMed  CAS  Google Scholar 

  • Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J 18:4999–5008

    Article  PubMed  CAS  Google Scholar 

  • To MS, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY (2010) Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca2+ current in liver cells. Arch Biochem Biophys 495:152–158

    Article  PubMed  CAS  Google Scholar 

  • Trepakova ES, Cohen RA, Bolotina VM (1999) Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores. Circ Res 84:201–209

    PubMed  CAS  Google Scholar 

  • Varadi A, Cirulli V, Rutter GA (2004) Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36:499–508

    Article  PubMed  CAS  Google Scholar 

  • Várnai P, Tóth B, Tóth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J Biol Chem 282:29678–29690

    Article  PubMed  Google Scholar 

  • Waldeck-Weiermair M, Malli R, Naghdi S, Trenker M, Kahn MJ, Graier WF (2010) The contribution of UCP2 and UCP3 to mitochondrial Ca2+ uptake is differentially determined by the source of supplied Ca2+. Cell Calcium 47:433–440

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signaling by mitochondria. Biochim Biophys Acta 1787:1374–1382

    Article  PubMed  CAS  Google Scholar 

  • Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW, Schoonjans K, Pozzan T, Spät A, Wollheim CB (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13:601–611

    Article  PubMed  CAS  Google Scholar 

  • Won JH, Yule DI (2006) Measurement of Ca2+ signaling dynamics in exocrine cells with total internal reflection microscopy. Am J Physiol Gastrointest Liver Physiol 291:G146–G155

    Article  PubMed  CAS  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ Store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  • Yi M, Weaver D, Hajnóczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672

    Article  PubMed  CAS  Google Scholar 

  • Yu WH, Wolfgang W, Forte M (1995) Subcellular localization of human voltage-dependent anion channel isoforms. J Biol Chem 270:13998–14006

    Article  PubMed  CAS  Google Scholar 

  • Zweifach A, Lewis RS (1995) Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem 270:14445–14451

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Spät .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Spät, A., Szanda, G. (2012). The Role of Mitochondria in the Activation/Maintenance of SOCE. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_13

Download citation

Publish with us

Policies and ethics