Large wind turbines in earthquake areas: structural analyses, design/construction & in-situ testing

  • Claudio Borri
  • Paolo Biagini
  • Enzo Marino
Part of the CISM Courses and Lectures book series (CISM, volume 531)


The Wind Energy Roadmap for the European Union was published by the European Commission on Oct. 7th, 2009, in the framework of its Communication of Financing Low Carbon Technologies. Following its publication, the roadmap was officially presented and discussed at the Strategic Energy Technology Plan (SET-Plan) workshop, held in Stockholm on October 21st and 22nd 2009, and organised by the European Commission and the Swedish Energy Agency.


Wind Turbine Crack Width Ultimate Limit State Italian Code Blade Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brebbia, C.A., Dominguez, J. (1998). Boundary Elements, An Introductory Course. WIT Press, Boston, Southampton.Google Scholar
  2. Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. (2001). Wind Energy Handbook, John Wiley & Sons.Google Scholar
  3. Cointe, R. (1990). Numerical simulation of a wave channel. Engineering Analysis with Boundary Elements 7(4), 167–177.CrossRefGoogle Scholar
  4. Dold, J.W. (1992). An efficient surface-integral algorithm applied to unsteady gravity waves. Journal of Computational Physics 103, 90–115.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Grilli, S.T., Svendsen, I.A. (1990). Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engineering Analysis with Boundary Elements 7(4), 178–195.CrossRefGoogle Scholar
  6. Grilli, S.T., Skourup, J., Svedsen I.A. (1989). An efficient boundary element method for nonlinear water waves. Engineering Analysis with Boundary Elements 6(2), 97–107.CrossRefGoogle Scholar
  7. Hansen, M. O. L. (2008). Aerodynamics of Wind Turbines. Earthscan.Google Scholar
  8. Hau, E. (2006). Wind Turbines: Fundamentals, Technologies, Application, Economics. Springer.Google Scholar
  9. Jonkman, J. M., 2005. Buhl Jr., M.L. 2005. FAST User’s Guide, NREL/EL-500-29798. Golden, Colorado: National Renewable Energy Laboratory.Google Scholar
  10. Jonkman, J. Butterfield, S. Musial, W. Scott, G. 2009. Definition of a 5-MW reference wind turbine for offshore system development. Technical Report, NREL.Google Scholar
  11. Longuet-Higgins, M.S., Cokelet, E.D. 1976. The deformation of steep surface waves on water, I. A numerical method of computation. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 350(1660):1–26.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Machane, R., Canot, E. 1997. High-order schemes in boundary element methods for transient non-linear free surface problems. International Journal for Numerical Methods in Fluids 24(10), 1049–1072.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Marino, E. (2010). An Integrated Nonlinear Wind-Waves Model for Offshore Wind Turbines. PhD Thesis.Google Scholar
  14. Marino, E., Borri, C., Peil, U. (2010). Offshore wind turbines: a wind-fully nonlinear waves integrated model. Submitted to The Fifth International Symposium on Computational Wind Engineering (CWE2010).Google Scholar
  15. Moriarty, P. J., Hansen, A. C. (2005). Aerodyn theory manual. Technical report, NREL/EL-500-36881.Google Scholar
  16. Morison, J. R., O’Brien, M.P., Johnson, J.W., Schaaf, S.A. 1950. The force exerted by surface wave on piles. Petroleum Transactions (American Institute of Mining Engineers) 154, 189–149.Google Scholar
  17. Nakayama, T. 1983. Boundary element analysis of nonlinear water wave problems. International Journal for Numerical Methods in Engineering 19(7), 953–970.zbMATHCrossRefGoogle Scholar
  18. Nakayama, T. 1990. A computational method for simulating transient motions of an incompressible inviscid fluid with a free surface. International Journal for Numerical Methods in Fluids 10(6), 683–695.zbMATHCrossRefGoogle Scholar
  19. Peil, U., Corte, C. 2005. Numerical simulation of breaking wave load on offshore wind turbines. J. Napstrek & C. Fisher (eds); ITAM AS CR, Prague.Google Scholar
  20. Peregrine, D.H., Dold, J.W. 1986. An efficient boundary integral method for steep unsteady water waves. Numerical Methods for Fluid Dynamics II, 671–679.Google Scholar
  21. Tsai, W., Yue, D.K.P. 1996. Computation of nonlinear free-surface flows. Annual Review of Fluid Mechanics 28,249–278.MathSciNetCrossRefGoogle Scholar
  22. Wang, P. Yitao, Y. Tulin, M.P. 1995. An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM. International Journal for Numerical Methods in Fluids 20, 1315–1336.zbMATHCrossRefGoogle Scholar
  23. Wienke, J., Oumeraci, H. (2005). Breaking wave impact force on a vertical and inclined slender pile-theoretical and large-scale model investigations. Coastal Engineering 52, 435–462.CrossRefGoogle Scholar
  24. Wind energy statistics. (2008). European Wind Energy Association (EWEA).Google Scholar
  25. Global Wind Report (2008). Technical report, Global Wind Energy Council (GWEC).Google Scholar
  26. IEC 61400-1, 3rd ed. 2005. International Standards. Wind turbines Part 1:Design requirements.Google Scholar
  27. Norme Tecniche per le Costruzioni (2008). Ministero delle Infrastrutture, Italy, 14.01.2008.Google Scholar
  28. UNI EN 1990:2006 (2006). Eurocode 1: Basis of structural design.Google Scholar
  29. UNI EN 1992-1-1:2005 (2005). Eurocode 2: Design of concrete structures — Part 1-1: General rules and rules for buildings.Google Scholar
  30. DIBt (2004). Richtlinie für Windenergieanlagen, Deutsches Institut für Bautechnik.Google Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • Claudio Borri
    • 1
  • Paolo Biagini
    • 1
  • Enzo Marino
    • 1
  1. 1.CRIACIV* c/o Department of Civil and Environmental EngineeringUniversity of FlorenceFirenzeItaly

Personalised recommendations