Support Structures of Wind Energy Converters

  • Peter Schaumann
  • Cord Böker
  • Anne Bechtel
  • Stephan Lochte-Holtgreven
Part of the CISM Courses and Lectures book series (CISM, volume 531)

Abstract

The wind energy market is one of the most promising markets of renewable energies. Besides biomass, photovoltaic, geothermal, and ocean energy especially the offshore wind energy will deliver the biggest part in renewable electricity. Regarding National and European demands for 2030, 25% of the required electricity will result from renewables. The biggest player will be the wind energy. To reach this aim a significant installation of offshore and onshore wind energy turbines is necessary. Figure 1 shows the estimated annual installation and cumulated capacity of onshore and offshore wind energy in Europe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almar-Naes (1985): Fatigue Handbook — offshore steel structures. Norges tekniske högskole published by the Tapir Publishers. Trondheim, Norway. 1985.Google Scholar
  2. API-RP-2A-WSD (2000): Recommended Practice for the Planning, Designing and Constructing — Fixed Offshore Platforms — Working Stress Design. American Petroleum Institute, Recommended Practice, 21st Edition. Washington, USA. 12/2000.Google Scholar
  3. Bignonnet, A (1987): Corrosion Fatigue of Steel in Marine Structures — A Decade of Progress. In: Steel in Marine Structures edited by C Nordhoek and J de Back, Elsevier, Amsterdam, The Netherlands, 1987.Google Scholar
  4. Böker (2009): Load simulation and local dynamics of support structures for offshore eind turbines. Dissertation Thesis. Institute for Steel Construction, Leibniz Universität Hannover. Aachen: Shaker, 2009.Google Scholar
  5. BSH (2007): Standard — Design of Offshore Wind Turbines. Federal Maritime and Hydrographic Agency (BSH). Hamburg, Germany. December 2007.Google Scholar
  6. Ciamberlano F (2006): Engineering Insurance of Offshore Wind Turbines. Proceedings of the 39th IMIA Annual Conference. 12. September, Bosten, USA, 2006.Google Scholar
  7. DIBt (2004): Richtlinie für Windenergieanlagen — Einwirkungen und Standsicherheitsnachweise für Turm und Gründung. Deutsches Institut für Bautechnik (DIBt). Berlin, Germany. March 2004 (in german)Google Scholar
  8. DIN 18800-1 (2008): Steel Structures — Part1: Design and Construction. Normenausschuss Bauwesen (NABau) im DIN. Beuth Verlag Berlin, Germany. 11/2008Google Scholar
  9. DIN 18800-2 (2008): Steel Structures — Part2: Stability — Buckling of bars and skeletal structures. Normenausschuss Bauwesen (NABau) im DIN. Beuth Verlag Berlin, Germany. 11/2008Google Scholar
  10. DIN 18800-7 (2008): Steel Structures-Part 7: Execution and constructor’s qualification. Normenausschuss Bauwesen (NABau) im DIN. Normenausschuss Schweißtechnik (NAS) im DIN. Beuth Verlag Berlin, Germany. 11/2008Google Scholar
  11. DNV-RP-C205 (2007): Environmental conditions and environmental loads. Høvik, Norway. Det Norske Veritas, April 2007.Google Scholar
  12. DNV-OS-J101 (2007): Design of Offshore Wind Turbine Structures. Høvik, Norway. Det Norske Veritas, October 2007.Google Scholar
  13. EN 1993-1-1 (2005): Eurocode 3: Design of steel structures — Part 1-1: General rules and rules for buildings. CEN. Brussels, Belgium. 2005.Google Scholar
  14. EN 1993-1-8 (2005): Eurocode 3: Design of steel structures — Part 1-8: Design of joints. CEN European Committee for Standardization. Brussels, Belgium. 2005.Google Scholar
  15. EN 1993-1-9 (2005): Eurocode 3: Design of steel structures — Part 1-9: Fatigue. CEN European Committee for Standardization. Brussels, Belgium. 2005.Google Scholar
  16. EN 10056-1 (1998): Structural Steel equal or unequal leg angles — Part 1: Dimensions. NA Eisen und Stahl (FES) im DIN, Beuth Verlag. Berlin, Germany. 10.1998.Google Scholar
  17. ENV 1993-3-2 (1997): Eurocode 3: Design of steel structures — Part 3-2: Towers, masts and chimneys, CEN European Committee for Standardization. Brussels, Belgium. 1997.Google Scholar
  18. Greenpeace (2000): North Sea Offshore Wind — A powerhouse for Europe. Technical Possibilities and Ecological Considerations — Study. Deutsches Windenergie Institut DEWI. Wilhelmshaven, Germany. 2000.Google Scholar
  19. GL-Onshore Guideline (2003): Guideline for the certification of Wind Turbines. Germanischer Lloyd Industrial Services. Hamburg, Germany. Edition 2003 with Supplement 2004, November 2003.Google Scholar
  20. GL-Offshore Guideline (2005): Guideline for the certification of Offshore Wind Turbines, Germanischer Lloyd Industrial Services. Hamburg, Germany. June 2005.Google Scholar
  21. Hapel K-H (1990): Festigkeitsanalyse dynamisch beanspruchter Offshore-Konstruktionen. Vieweg-Verlag Braunschweig, Germany.Google Scholar
  22. Kleineidam P (2005): Zur Bemessung der Tragstrukturen von Offshore-Windenergieanlagen gegen Ermüdung. Dissertation Thesis. Institute for Steel Construction, Leibniz Universität Hannover. Aachen: Shaker, 2005.Google Scholar
  23. IIW (2007): XIII-2151-07/XV-1254-07 — Recommendations for Fatigue Design of Welded Joints and Components. International Institute of Welding IIW, edited by A. Hobbacher. Paris, France. May 2007.Google Scholar
  24. IEC 61400-3 (2005) Ed. 3, Wind Turbines — Part 1: Design Requirements, International IEC 61400-1 Electrotechnical Commission (IEC). Genève, Switzerland. 2005.Google Scholar
  25. IEC 61400-3 (2009) Ed. 1, Wind Turbines — Part 3: Design Requirements for Offshore Wind Turbines, International Electrotechnical Commission (IEC). Genèeve, Switzerland. 2009.Google Scholar
  26. Mittendorf K (2006): Hydromechanical Design Parameters and Design Loads for Offshore Wind Energy Converters. Dissertation Thesis, Leibniz Universität Hannover. Hannover: Institute of Fluid Mechanics, 2006.Google Scholar
  27. Petersen (2001): Stahlbau — Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten. Vieweg Verlag. Wiesbaden, Germany. 2001Google Scholar
  28. Pierson W J and Moskowitz L (1964): A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigordskii, Journal of Geophysical Research 69: 5181–5190.CrossRefGoogle Scholar
  29. Radaj and Sonsino (2006): Fatigue assessment of welded joints by local approaches. 2nd edition. Woodhead Publishing Ltd. & Maney Publishing Ltd., Cambridge, UK. 2006.CrossRefGoogle Scholar
  30. Schaumann et al. (2007–01): Tragstrukturen für Windenergieanlagen. in: Stahlbaukalender 2007. Edited by U Kuhlmann. Verlag Ernst & Sohn. Berlin, Germany. 2007.Google Scholar
  31. Schaumann et al. (2007–02): Numerical Analysis of the Load Bearing Behavior of Slip Resistant Prestressed Bolt Connections with Consideration of Adhesion. Bauingenieur. Heft 2, p. 77–84. Springer Verlag. Düsseldorf, Germany. 2007. (in german).Google Scholar
  32. Schaumann et al. (2010): Fatigue design for axially loaded grouted connections of offshore wind turbine support structures in deeper waters. Proceedings of the 12th Biennial ASCE Aerospace Division International Conference. 14th–17th March, Honolulu, Hawaii. 2010.Google Scholar
  33. Seidel (2001): Zur Bemessung geschraubter Ringflanschverbindungen von Windenergieanlagen. Dissertation Thesis. Institute for Steel Construction, Leibniz Universität Hannover. Aachen: Shaker, 2001.Google Scholar
  34. Schmidt/ Neuper (1997): Zum elastostatischen Tragverhalten exzentrisch gezogener L-Stöße mit vorgespannten Schrauben. Stahlbau 66, Heft 3. Ernst&Sohn. Berlin, Germany 1997.Google Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • Peter Schaumann
    • 1
  • Cord Böker
    • 2
  • Anne Bechtel
    • 1
  • Stephan Lochte-Holtgreven
    • 1
  1. 1.Institute for Steel ConstructionLeibniz University HannoverHannoverGermany
  2. 2.REpower Systems AGHamburgGermany

Personalised recommendations