Aero-Servo-Elastic Design of Wind Turbines: Numerical and Wind Tunnel Modeling Contribution

  • Alberto Zasso
  • Paolo Schito
  • Carlo L. Bottasso
  • Alessandro Croce
Part of the CISM Courses and Lectures book series (CISM, volume 531)

Abstract

The main purpose of this contribution is to provide a basic understanding of the fundamental interaction mechanism between the wind flow and the wind turbine, responsible for the power generation, as well as for the aerodynamic and inertial loading of the machine. A specific focus will be given at this proposal to the role of the control laws by which the turbine is operated, in determining both the performance as well as the structural loading of the machinery.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Anonymous. Wind turbines — Part 1: design requirements; Part 2: design requirements for small wind turbines; Part 11: acoustic noise measurement techniques. International Standard IEC 61400, 2005–2006.Google Scholar
  2. Anonymous. Adams, MSC.Software Corporation, 2 MacArthur Place, Santa Ana, CA 92707, USA www.mscsoftware.com.Google Scholar
  3. Anonymous. ECN BOT, ECN Wind Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands, epos.ecn.nl.Google Scholar
  4. Anonymous. HAWC2, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde, Denmark, www.risoe.dtu.dk.Google Scholar
  5. Anonymous. RotorOpt perfects rotor design. LM Glasfiber News Letter, 5, 2007.Google Scholar
  6. Anonymous. Mecano, SAMTECH, Liege Science Park, Rue des Chasseurs-Ardennais, 8, B-4031 Liége (Angleur), Belgium, www.samcef.com.Google Scholar
  7. Anonymous. Simpack, SIMPACK AG, Friedrichshafener Strasse 1, 82205 Gilching, Germany, www.simpack.com.Google Scholar
  8. O.A. Bauchau, C.L. Bottasso, and Y.G. Nikishkov. Modeling rotorcraft dynamics with finite element multibody procedures. Mathematics and Computer Modeling 33:1113–1137, 2001.MATHCrossRefGoogle Scholar
  9. O.A. Bauchau, C.L. Bottasso, and L. Trainelli. Robust integration schemes for flexible multibody systems. Computer Methods in Applied Mechanics and Engineering, 192:395–420, 2003.MathSciNetMATHCrossRefGoogle Scholar
  10. O.A. Bauchau, A. Laulusa. Review of contemporary approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics, 3:011005, 2008.CrossRefGoogle Scholar
  11. O.A. Bauchau, A. Epple, and C.L. Bottasso. Scaling of constraints and augmented lagrangian formulations in multibody dynamics simulations. ASME Journal of Computational and Nonlinear Dynamics, 4:021007, 2009.CrossRefGoogle Scholar
  12. O.A. Bauchau, and J. Rodriguez. Formulation of modal based elements in nonlinear, flexible multibody dynamics. Journal of Multiscale Computational Engineering, 1:161–180, 2003.CrossRefGoogle Scholar
  13. V. Bertogalli, S. Bittanti, and M. Lovera. Simulation and identification of helicopter rotor dynamics using a general-purpose multibody code. Journal of the Franklin Institute, 336:783–797, 1999.CrossRefGoogle Scholar
  14. P. Betsch, and S. Leyendecker. The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. International Journal for Numerical Methods in Engineering, 67:499–552, 2006.MathSciNetMATHCrossRefGoogle Scholar
  15. S. Bittanti, and P. Colaneri. Invariant representations of discrete-time periodic systems. Automatica, 36:1777–1793, 2000.MathSciNetMATHGoogle Scholar
  16. M. Borri, L. Trainelli, and C.L. Bottasso. On representations and parameterizations of motion. Multibody Systems Dynamics, 4:129–193, 2000.MathSciNetMATHCrossRefGoogle Scholar
  17. M. Borri, L. Trainelli, and A. Croce. The embedded projection method: a general index reduction procedure for constrained system dynamics. Computer Methods in Applied Mechanics and Engineering, 195:6974–6992, 2006.MathSciNetMATHCrossRefGoogle Scholar
  18. E.A. Bossanyi. GH Bladed theory manual. Garrad Hassan and Partners Limited, Document No. 282/BR/009, Bristol, UK, 2008.Google Scholar
  19. C.L. Bottasso, O.A. Bauchau, and A. Cardona. Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM Journal on Scientific Computing, 29:397–414, 2007.MathSciNetMATHCrossRefGoogle Scholar
  20. C.L. Bottasso, F. Campagnolo, and A. Croce. Computational procedures for the multi-disciplinary constrained optimization of wind turbines. Scientific Report DIA-SR 10-02, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, January 2010.Google Scholar
  21. C.L. Bottasso, A. Croce. Advanced control laws for variable-speed wind turbines and supporting enabling technologies. Scientific Report DIA-SR 09-01, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, January 2009.Google Scholar
  22. C.L. Bottasso, A. Croce, C.E.D. Riboldi, and Y. Nam. Power curve tracking in the presence of a tip speed constraint. Renewable Energy, under review, 2009. Also: Scientific Report DIA-SR 09-04, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, March 2009.Google Scholar
  23. C.L. Bottasso, D. Dopico, L. Trainelli. On the optimal scaling of index three DAEs in multibody dynamics. Multibody Systems Dynamics, 19:3–20, 2008.MathSciNetMATHCrossRefGoogle Scholar
  24. O. Brüls, P. Duysinx, and J.C. Golinval. The global modal parameterization for non-linear model-order reduction in flexible multibody dynamics. International Journal for Numerical Methods in Engineering, 69:948–977, 2007.MathSciNetMATHCrossRefGoogle Scholar
  25. T. Burten, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind Energy Handbook. John Wiley & Sons Ltd, West Sussex, England, 2001.CrossRefGoogle Scholar
  26. A. Cardona. An Integrated Approach to Mechanism Analysis. PhD thesis, Université de Liège, Belgium, 1996.Google Scholar
  27. N.P. Duineveld. FOCUS5: an integrated wind turbine design tool. In Proceedings of the 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May, 2008.Google Scholar
  28. J. Fehr, and P. Eberhard. Error-controlled model reduction in flexible multibody dynamics. Journal of Computational and Nonlinear Dynamics, 5:031005, 2010.CrossRefGoogle Scholar
  29. P. Fuglsang, and H.A. Madsen. Optimization method for wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 80:191–206, 1999.CrossRefGoogle Scholar
  30. L. Fuglsang. Integrated design of turbine rotors. In Proceedings of the European Wind Energy Conference & Exhibition EWEC 2008, Brussels, Belgium, 31 March–3 April, 2008.Google Scholar
  31. C. Gear, B. Leimkuhler, and G. Gupta. Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics, 12–13:77–90, 1985.MathSciNetCrossRefGoogle Scholar
  32. M. Gèradin, and A. Cardona. Flexible Multibody Dynamics: a Finite Element Approach. John Wiley & Sons Ltd, West Sussex, England, 2001.Google Scholar
  33. V. Giavotto, M. Borri, P. Mantegazza, and G. Ghiringhelli. Anisotropic beam theory and applications. Computers & Structures, 16:403–413, 1983.MATHCrossRefGoogle Scholar
  34. E. Hairer, and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems (2nd edn). Springer-Verlag, 1996.Google Scholar
  35. M.O.L. Hansen. Aerodynamics of Wind Turbines (2nd edn). Earthscan, London, UK, and Sterling, VA, USA, 2008.Google Scholar
  36. J.M. Jonkman. NREL structural and aeroelastic codes. In Proceedings of the 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May, 2008.Google Scholar
  37. J.M. Jonkman, and M.L. Buhl Jr. FAST User’s Guide. NREL Techical Report, NREL/EL-500-38230, Golden, CO, USA, August, 2005.Google Scholar
  38. J.M. Jonkman, and M.L. Buhl Jr. Development and verification of a fully coupled simulator for offshore wind turbines. In Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit, Wind Energy Symposium, Reno, Nevada January 82–11, 2007.Google Scholar
  39. M. Jureczko, M. Pawlak, and A. Mezyk. Optimization of wind turbine blades. Journal of Material Processing Technology, 167:463–471, 2005.CrossRefGoogle Scholar
  40. D. Laird. NuMAD: blade structural analysis. In Proceedings of the 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May, 2008.Google Scholar
  41. A. Laulusa, and O.A. Bauchau. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 3:011004, 2008.CrossRefGoogle Scholar
  42. K. Lee, W. Joo, K. Kim, D. Lee, K. Lee, and J. Park. Numerical optimization using improvement of the design space feasibility for Korean offshore horizontal axis wind turbine blade. In Proceedings of the European Wind Energy Conference & Exhibition EWEC 2007, Milan, Italy, 7–10 May, 2007.Google Scholar
  43. M. Lehner, and P. Eberhard. A two-step approach for model reduction in flexible multibody dynamics. Multibody Systems Dynamics, 17:157–176, 2007.MathSciNetMATHCrossRefGoogle Scholar
  44. K.Y. Maalawi, and M.A. Badr. A practical approach for selecting optimum wind rotors. Renewable Energy, 28:803–822, 2003.CrossRefGoogle Scholar
  45. J.F. Manwell, J.G. McGowan, and A.L. Rogers. Wind Energy Explained — Theory, Design and Application. John Wiley & Sons Ltd, West Sussex, England, 2002.CrossRefGoogle Scholar
  46. J. Méndez, and D. Greiner. Wind blade chord and twist angle optimization using genetic algorithms. In Proceedings of the Fifth International Conference on Engineering Computational Technology, Las Palmas de Gran Canaria, Spain, 12–15 September, 2006.Google Scholar
  47. N. Orlandea, M. Chace, and D. Calahan. A sparsity oriented approach to the dynamic analysis and design of mechanical systems. Part I and II. ASME Journal of Engineering for Industry, 99:773–784, 1977.CrossRefGoogle Scholar
  48. S. Øye. FLEX 4 simulation of wind turbine dynamics. In Proceedings of the International Energy Agency, Annex XI, 28th Meeting of Experts, Lyngby, Denmark, 11–12 April 1996.Google Scholar
  49. P. Passon, M. Kühn, S. Butterfield, J. Jonkman, T. Camp, and T.J. Larsen. OC3-benchmark exercise of aero-elastic offshore wind turbine codes. In Proceedings of the Science of Making Torque from Wind, Journal of Physics: Conference Series 75:012071, 2007.CrossRefGoogle Scholar
  50. D.A. Peters, and C.J. He. Finite state induced flow models — Part II: three-dimensional rotor disk. Journal of Aircraft, 32:323–333, 1995.CrossRefGoogle Scholar
  51. L. Petzold, and P. Lötstedt. Numerical solution of nonlinear differential equations with algebraic constraints II: practical implications. SIAM Journal on Scientific and Statistical Computing, 7:721–733, 1986.CrossRefGoogle Scholar
  52. S.R.J. Powles, the effects of tower shadow on the dynamics of a horizontalaxis wind turbine. Wind Engineering, 7:26–42, 1983.Google Scholar
  53. A.A. Shabana. Dynamics of Multibody Systems (2nd edn). Cambridge University Press, 1998.Google Scholar
  54. K.A. Stol, and G.S. Bir. User’s guide for SymDyn, Version 1.2. NREL Techincal Report, NREL/EL-500-33845, Golden, CO, US, November 2003.Google Scholar
  55. W. Xudong, W.Z. Shen, W.J. Zhu, J.N. Sørensen, and C. Jin. Blade optimization for wind turbines. In Proceedings of the European Wind Energy Conference & Exhibition EWEC 2009, Marseille, France, 16–19 March, 2009.Google Scholar
  56. V. Vaughn. Wind Energy — Renewable Energy and the Environment. CRC Press, 2009.Google Scholar
  57. M.O.L. Hansen. Aerodynamics of Wind Turbines (2nd edn). Earthscan, London 2009.Google Scholar
  58. E.N. Jacobs, A. Sherman. Airfoil section characteristics as affected by variations of the Reynolds number NACA Report n-586, Langley Research Center, Hampton VA 1937.Google Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • Alberto Zasso
    • 1
  • Paolo Schito
    • 1
  • Carlo L. Bottasso
    • 2
  • Alessandro Croce
    • 2
  1. 1.Dipartimento di MeccanicaPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanoItaly

Personalised recommendations