Skip to main content

Aero-Servo-Elastic Design of Wind Turbines: Numerical and Wind Tunnel Modeling Contribution

  • Chapter
Environmental Wind Engineering and Design of Wind Energy Structures

Part of the book series: CISM Courses and Lectures ((CISM,volume 531))

Abstract

The main purpose of this contribution is to provide a basic understanding of the fundamental interaction mechanism between the wind flow and the wind turbine, responsible for the power generation, as well as for the aerodynamic and inertial loading of the machine. A specific focus will be given at this proposal to the role of the control laws by which the turbine is operated, in determining both the performance as well as the structural loading of the machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anonymous. Wind turbines — Part 1: design requirements; Part 2: design requirements for small wind turbines; Part 11: acoustic noise measurement techniques. International Standard IEC 61400, 2005–2006.

    Google Scholar 

  • Anonymous. Adams, MSC.Software Corporation, 2 MacArthur Place, Santa Ana, CA 92707, USA www.mscsoftware.com.

    Google Scholar 

  • Anonymous. ECN BOT, ECN Wind Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands, epos.ecn.nl.

    Google Scholar 

  • Anonymous. HAWC2, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde, Denmark, www.risoe.dtu.dk.

    Google Scholar 

  • Anonymous. RotorOpt perfects rotor design. LM Glasfiber News Letter, 5, 2007.

    Google Scholar 

  • Anonymous. Mecano, SAMTECH, Liege Science Park, Rue des Chasseurs-Ardennais, 8, B-4031 Liége (Angleur), Belgium, www.samcef.com.

    Google Scholar 

  • Anonymous. Simpack, SIMPACK AG, Friedrichshafener Strasse 1, 82205 Gilching, Germany, www.simpack.com.

    Google Scholar 

  • O.A. Bauchau, C.L. Bottasso, and Y.G. Nikishkov. Modeling rotorcraft dynamics with finite element multibody procedures. Mathematics and Computer Modeling 33:1113–1137, 2001.

    Article  MATH  Google Scholar 

  • O.A. Bauchau, C.L. Bottasso, and L. Trainelli. Robust integration schemes for flexible multibody systems. Computer Methods in Applied Mechanics and Engineering, 192:395–420, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  • O.A. Bauchau, A. Laulusa. Review of contemporary approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics, 3:011005, 2008.

    Article  Google Scholar 

  • O.A. Bauchau, A. Epple, and C.L. Bottasso. Scaling of constraints and augmented lagrangian formulations in multibody dynamics simulations. ASME Journal of Computational and Nonlinear Dynamics, 4:021007, 2009.

    Article  Google Scholar 

  • O.A. Bauchau, and J. Rodriguez. Formulation of modal based elements in nonlinear, flexible multibody dynamics. Journal of Multiscale Computational Engineering, 1:161–180, 2003.

    Article  Google Scholar 

  • V. Bertogalli, S. Bittanti, and M. Lovera. Simulation and identification of helicopter rotor dynamics using a general-purpose multibody code. Journal of the Franklin Institute, 336:783–797, 1999.

    Article  Google Scholar 

  • P. Betsch, and S. Leyendecker. The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. International Journal for Numerical Methods in Engineering, 67:499–552, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Bittanti, and P. Colaneri. Invariant representations of discrete-time periodic systems. Automatica, 36:1777–1793, 2000.

    MathSciNet  MATH  Google Scholar 

  • M. Borri, L. Trainelli, and C.L. Bottasso. On representations and parameterizations of motion. Multibody Systems Dynamics, 4:129–193, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Borri, L. Trainelli, and A. Croce. The embedded projection method: a general index reduction procedure for constrained system dynamics. Computer Methods in Applied Mechanics and Engineering, 195:6974–6992, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • E.A. Bossanyi. GH Bladed theory manual. Garrad Hassan and Partners Limited, Document No. 282/BR/009, Bristol, UK, 2008.

    Google Scholar 

  • C.L. Bottasso, O.A. Bauchau, and A. Cardona. Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM Journal on Scientific Computing, 29:397–414, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  • C.L. Bottasso, F. Campagnolo, and A. Croce. Computational procedures for the multi-disciplinary constrained optimization of wind turbines. Scientific Report DIA-SR 10-02, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, January 2010.

    Google Scholar 

  • C.L. Bottasso, A. Croce. Advanced control laws for variable-speed wind turbines and supporting enabling technologies. Scientific Report DIA-SR 09-01, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, January 2009.

    Google Scholar 

  • C.L. Bottasso, A. Croce, C.E.D. Riboldi, and Y. Nam. Power curve tracking in the presence of a tip speed constraint. Renewable Energy, under review, 2009. Also: Scientific Report DIA-SR 09-04, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, March 2009.

    Google Scholar 

  • C.L. Bottasso, D. Dopico, L. Trainelli. On the optimal scaling of index three DAEs in multibody dynamics. Multibody Systems Dynamics, 19:3–20, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Brüls, P. Duysinx, and J.C. Golinval. The global modal parameterization for non-linear model-order reduction in flexible multibody dynamics. International Journal for Numerical Methods in Engineering, 69:948–977, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Burten, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind Energy Handbook. John Wiley & Sons Ltd, West Sussex, England, 2001.

    Book  Google Scholar 

  • A. Cardona. An Integrated Approach to Mechanism Analysis. PhD thesis, Université de Liège, Belgium, 1996.

    Google Scholar 

  • N.P. Duineveld. FOCUS5: an integrated wind turbine design tool. In Proceedings of the 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May, 2008.

    Google Scholar 

  • J. Fehr, and P. Eberhard. Error-controlled model reduction in flexible multibody dynamics. Journal of Computational and Nonlinear Dynamics, 5:031005, 2010.

    Article  Google Scholar 

  • P. Fuglsang, and H.A. Madsen. Optimization method for wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 80:191–206, 1999.

    Article  Google Scholar 

  • L. Fuglsang. Integrated design of turbine rotors. In Proceedings of the European Wind Energy Conference & Exhibition EWEC 2008, Brussels, Belgium, 31 March–3 April, 2008.

    Google Scholar 

  • C. Gear, B. Leimkuhler, and G. Gupta. Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics, 12–13:77–90, 1985.

    Article  MathSciNet  Google Scholar 

  • M. Gèradin, and A. Cardona. Flexible Multibody Dynamics: a Finite Element Approach. John Wiley & Sons Ltd, West Sussex, England, 2001.

    Google Scholar 

  • V. Giavotto, M. Borri, P. Mantegazza, and G. Ghiringhelli. Anisotropic beam theory and applications. Computers & Structures, 16:403–413, 1983.

    Article  MATH  Google Scholar 

  • E. Hairer, and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems (2nd edn). Springer-Verlag, 1996.

    Google Scholar 

  • M.O.L. Hansen. Aerodynamics of Wind Turbines (2nd edn). Earthscan, London, UK, and Sterling, VA, USA, 2008.

    Google Scholar 

  • J.M. Jonkman. NREL structural and aeroelastic codes. In Proceedings of the 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May, 2008.

    Google Scholar 

  • J.M. Jonkman, and M.L. Buhl Jr. FAST User’s Guide. NREL Techical Report, NREL/EL-500-38230, Golden, CO, USA, August, 2005.

    Google Scholar 

  • J.M. Jonkman, and M.L. Buhl Jr. Development and verification of a fully coupled simulator for offshore wind turbines. In Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit, Wind Energy Symposium, Reno, Nevada January 82–11, 2007.

    Google Scholar 

  • M. Jureczko, M. Pawlak, and A. Mezyk. Optimization of wind turbine blades. Journal of Material Processing Technology, 167:463–471, 2005.

    Article  Google Scholar 

  • D. Laird. NuMAD: blade structural analysis. In Proceedings of the 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May, 2008.

    Google Scholar 

  • A. Laulusa, and O.A. Bauchau. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 3:011004, 2008.

    Article  Google Scholar 

  • K. Lee, W. Joo, K. Kim, D. Lee, K. Lee, and J. Park. Numerical optimization using improvement of the design space feasibility for Korean offshore horizontal axis wind turbine blade. In Proceedings of the European Wind Energy Conference & Exhibition EWEC 2007, Milan, Italy, 7–10 May, 2007.

    Google Scholar 

  • M. Lehner, and P. Eberhard. A two-step approach for model reduction in flexible multibody dynamics. Multibody Systems Dynamics, 17:157–176, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  • K.Y. Maalawi, and M.A. Badr. A practical approach for selecting optimum wind rotors. Renewable Energy, 28:803–822, 2003.

    Article  Google Scholar 

  • J.F. Manwell, J.G. McGowan, and A.L. Rogers. Wind Energy Explained — Theory, Design and Application. John Wiley & Sons Ltd, West Sussex, England, 2002.

    Book  Google Scholar 

  • J. Méndez, and D. Greiner. Wind blade chord and twist angle optimization using genetic algorithms. In Proceedings of the Fifth International Conference on Engineering Computational Technology, Las Palmas de Gran Canaria, Spain, 12–15 September, 2006.

    Google Scholar 

  • N. Orlandea, M. Chace, and D. Calahan. A sparsity oriented approach to the dynamic analysis and design of mechanical systems. Part I and II. ASME Journal of Engineering for Industry, 99:773–784, 1977.

    Article  Google Scholar 

  • S. Øye. FLEX 4 simulation of wind turbine dynamics. In Proceedings of the International Energy Agency, Annex XI, 28th Meeting of Experts, Lyngby, Denmark, 11–12 April 1996.

    Google Scholar 

  • P. Passon, M. Kühn, S. Butterfield, J. Jonkman, T. Camp, and T.J. Larsen. OC3-benchmark exercise of aero-elastic offshore wind turbine codes. In Proceedings of the Science of Making Torque from Wind, Journal of Physics: Conference Series 75:012071, 2007.

    Article  Google Scholar 

  • D.A. Peters, and C.J. He. Finite state induced flow models — Part II: three-dimensional rotor disk. Journal of Aircraft, 32:323–333, 1995.

    Article  Google Scholar 

  • L. Petzold, and P. Lötstedt. Numerical solution of nonlinear differential equations with algebraic constraints II: practical implications. SIAM Journal on Scientific and Statistical Computing, 7:721–733, 1986.

    Article  Google Scholar 

  • S.R.J. Powles, the effects of tower shadow on the dynamics of a horizontalaxis wind turbine. Wind Engineering, 7:26–42, 1983.

    Google Scholar 

  • A.A. Shabana. Dynamics of Multibody Systems (2nd edn). Cambridge University Press, 1998.

    Google Scholar 

  • K.A. Stol, and G.S. Bir. User’s guide for SymDyn, Version 1.2. NREL Techincal Report, NREL/EL-500-33845, Golden, CO, US, November 2003.

    Google Scholar 

  • W. Xudong, W.Z. Shen, W.J. Zhu, J.N. Sørensen, and C. Jin. Blade optimization for wind turbines. In Proceedings of the European Wind Energy Conference & Exhibition EWEC 2009, Marseille, France, 16–19 March, 2009.

    Google Scholar 

  • V. Vaughn. Wind Energy — Renewable Energy and the Environment. CRC Press, 2009.

    Google Scholar 

  • M.O.L. Hansen. Aerodynamics of Wind Turbines (2nd edn). Earthscan, London 2009.

    Google Scholar 

  • E.N. Jacobs, A. Sherman. Airfoil section characteristics as affected by variations of the Reynolds number NACA Report n-586, Langley Research Center, Hampton VA 1937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Zasso, A., Schito, P., Bottasso, C.L., Croce, A. (2011). Aero-Servo-Elastic Design of Wind Turbines: Numerical and Wind Tunnel Modeling Contribution. In: Baniotopoulos, C.C., Borri, C., Stathopoulos, T. (eds) Environmental Wind Engineering and Design of Wind Energy Structures. CISM Courses and Lectures, vol 531. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0953-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0953-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0952-6

  • Online ISBN: 978-3-7091-0953-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics