Skip to main content

Integrating Biomolecular and Clinical Data for Cancer Research: Concepts and Challenges

  • Chapter
  • First Online:
Computational Medicine

Abstract

In this review we describe current concepts and future challenges for integrating biomolecular and clinical data for cancer research. We first highlight the various sources for generating data with specific focus on medium- and large-scale omics approaches as well as relevant public databases. We then give an overview of the computational methods necessary to analyze primary data as well as bioinformatics tools for using databases, extracting pathway information, and reconstructing biomolecular networks. The main focus of this work is on current methodological concepts for data integration as well as integrative data analyses. Using a case study in cancer immunology, we demonstrate the power and the limitations of the used methods. Finally we discuss future challenges and suggest how a combined computational/experimental approaches can lead to new insights into the molecular mechanisms of cancer, and improved diagnosis and prognosis of the disease.

Pornpimol Charoentong and Hubert Hackl contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FACS:

Fluorescence-activated cell sorter

GO:

Gene ontology

miRNA:

MicroRNA

MSI:

Microsatellite instability

PH:

Proportional hazards

qPCR:

Quantitative real-time polymerase chain reaction

SNP:

Single nucleotide polymorphism

TMA:

Tissue microarray

References

  • Ahmed FE, Vos PW, Holbert D (2007) Modeling survival in colon cancer: a methodological review. Mol Cancer 6:15

    Article  PubMed  Google Scholar 

  • Arnott D, Emmert-Buck MR (2010) Proteomic profiling of cancer-opportunities, challenges, and context. J Pathol 222(1):16–20

    Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390

    Article  PubMed  CAS  Google Scholar 

  • Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C, Onofrio RC, Ziaugra L et al (2010) Integrative analysis of the melanoma transcriptome. Genome Res 20:413–427

    Article  PubMed  CAS  Google Scholar 

  • Bertucci F, Finetti P, Birnbaum D, Viens P (2010) Gene expression profiling of inflammatory breast cancer. Cancer 116:2783–2793

    Article  PubMed  CAS  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (2004) The logrank test. Br Med J 328:1073

    Article  Google Scholar 

  • Boros LG, Boros TF (2007) Use of metabolic pathway flux information in anticancer drug design. Ernst Schering Found Symp Proc 4:189–203

    Article  PubMed  Google Scholar 

  • Burnet M (1957) Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1:841–847

    Article  PubMed  CAS  Google Scholar 

  • Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 418–429

    Google Scholar 

  • Carsten W, Claus A (2009) Statistics and informatics in molecular cancer research, 1 edn. Oxford University Press, Oxford

    Google Scholar 

  • Chanrion M, Negre V, Fontaine H, Salvetat N, Bibeau F, Mac Grogan G, Mauriac L, Katsaros D, Molina F, Theillet C, Darbon JM (2008) A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res 14:1744–1752

    Article  PubMed  CAS  Google Scholar 

  • Chaussabel D, Ueno H, Banchereau J, Quinn C (2009) Data management: it starts at the bench. Nat Immunol 10:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Chautard E, Thierry-Mieg N, Ricard-Blum S (2009) Interaction networks: from protein functions to drug discovery. A review. Pathol Biol (Paris) 57:324–333

    Article  CAS  Google Scholar 

  • Cho WC (2010) An omics perspective on cancer research, 1 edn. Springer, Berlin

    Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422:835–847

    Article  PubMed  CAS  Google Scholar 

  • Cox D (1972) Regression models and life tables (with discussion). J Roy Stat Soc B 34:210–211

    Google Scholar 

  • Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, Lluch A, Gray JW, Brown PH, Hilsenbeck SG, Osborne CK, Mills GB et al (2010) Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res 12:R40

    Article  PubMed  Google Scholar 

  • Cui Y, Paules RS (2010) Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 11:573–585

    Article  PubMed  CAS  Google Scholar 

  • Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T, Rees CA, Cherry JM, Botstein D, Brown PO, Alizadeh AA (2003) SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 31:219–223

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  • Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. WIREs Syst Biol Med 2:438–459

    Article  CAS  Google Scholar 

  • El Yazidi-Belkoura I, Adriaenssens E, Vercoutter-Edouart AS, Lemoine J, Nurcombe V, Hondermarck H (2002) Proteomics of breast cancer: outcomes and prospects. Technol Cancer Res Treat 1:287–296

    Google Scholar 

  • Engle LJ, Simpson CL, Landers JE (2006) Using high-throughput SNP technologies to study cancer. Oncogene 25:1594–1601

    Article  PubMed  CAS  Google Scholar 

  • Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704–2715

    Article  PubMed  CAS  Google Scholar 

  • Forster J, Gombert AK, Nielsen J (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79:703–712

    Article  PubMed  CAS  Google Scholar 

  • Frelinger J, Ottinger J, Gouttefangeas C, Chan C (2010) Modeling flow cytometry data for cancer vaccine immune monitoring. Cancer Immunol Immunother 59:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Furge KA, Tan MH, Dykema K, Kort E, Stadler W, Yao X, Zhou M, Teh BT (2007) Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene 26:1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Garcia O, Saveanu C, Cline M, Fromont-Racine M, Jacquier A, Schwikowski B, Aittokallio T (2007) GOlorize: a cytoscape plug-in for network visualization with gene ontology-based layout and coloring. Bioinformatics 23:394–396

    Article  PubMed  CAS  Google Scholar 

  • Ge H, Walhout AJ, Vidal M (2003) Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 19:551–560

    Article  PubMed  CAS  Google Scholar 

  • Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68

    Article  PubMed  CAS  Google Scholar 

  • Ghanekar SA, Maecker HT (2003) Cytokine flow cytometry: multiparametric approach to immune function analysis. Cytotherapy 5:1–6

    Article  PubMed  CAS  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  • Greshock J, Nathanson K, Martin AM, Zhang L, Coukos G, Weber BL, Zaks TZ (2007) Cancer cell lines as genetic models of their parent histology: analyses based on array comparative genomic hybridization. Cancer Res 67:3594–3600

    Article  PubMed  CAS  Google Scholar 

  • Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ, Taft RJ, Rizzi E, Askarian-Amiri M, Bonnal RJ, Callari M, Mignone F et al (2009) A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics 10:163

    Article  PubMed  Google Scholar 

  • Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81:1331–1338

    Article  PubMed  CAS  Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a systems biology disease. Biosystems 83:81–90

    Article  PubMed  CAS  Google Scholar 

  • Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 103:17402–17407

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37:W115–W121

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    Article  PubMed  Google Scholar 

  • Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416

    Article  PubMed  CAS  Google Scholar 

  • Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109

    Article  PubMed  Google Scholar 

  • Kallioniemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662

    Article  PubMed  CAS  Google Scholar 

  • Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. JASA 53:457–481

    Google Scholar 

  • Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14

    Article  PubMed  CAS  Google Scholar 

  • Kim G, Minig L, Kohn EC (2009) Proteomic profiling in ovarian cancer. Int J Gynecol Cancer 19(Suppl 2):S2–S6

    Article  PubMed  Google Scholar 

  • Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8

    Article  PubMed  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  Google Scholar 

  • Lau AT, Chiu JF (2009) Biomarkers of lung-related diseases: current knowledge by proteomic approaches. J Cell Physiol 221:535–543

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia MA, Geyer FC, Natrajan R, Kreike B, Mackay A, Grigoriadis A, Reis-Filho JS, Weigelt B (2010) Transcriptomic analysis of tubular carcinomas of the breast reveals similarities and differences with molecular subtype-matched ductal and lobular carcinomas. J Pathol 222(1):64–75

    Google Scholar 

  • McGuffin MJ, Jurisica I (2009) Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans Vis Comput Graph 15:937–944

    Article  PubMed  Google Scholar 

  • Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287

    Article  PubMed  CAS  Google Scholar 

  • Mlecnik B, Scheideler M, Hackl H, Hartler J, Sanchez-Cabo F, Trajanoski Z (2005) PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Res 33:W633–W637

    Article  PubMed  CAS  Google Scholar 

  • Mlecnik B, Sanchez-Cabo F, Charoentong P, Bindea G, Pages F, Berger A, Galon J, Trajanoski Z (2010) Data integration and exploration for the identification of molecular mechanisms in tumor-immune cells interaction. BMC Genomics 11(Suppl 1):S7

    Google Scholar 

  • Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, Su X, Pui CH et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–764

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM, Anderson ML, Matzuk MM (2010) A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24:447–463

    Article  PubMed  CAS  Google Scholar 

  • Onay VU, Briollais L, Knight JA, Shi E, Wang Y, Wells S, Li H, Rajendram I, Andrulis IL, Ozcelik H (2006) SNP-SNP interactions in breast cancer susceptibility. BMC Cancer 6:114

    Article  PubMed  Google Scholar 

  • Oswald J, Jorgensen B, Pompe T, Kobe F, Salchert K, Bornhauser M, Ehninger G, Werner C (2004) Comparison of flow cytometry and laser scanning cytometry for the analysis of CD34+ hematopoietic stem cells. Cytometry A 57:100–107

    Article  PubMed  Google Scholar 

  • Pandzic Jaksic V, Gizdic B, Miletic Z, Ostovic KT, Jaksic O (2010) Monocytes in metabolic disorders – opportunities for flow cytometry contributions. Coll Antropol 34:319–325

    Google Scholar 

  • Perrone EE, Theoharis C, Mucci NR, Hayasaka S, Taylor JM, Cooney KA, Rubin MA (2000) Tissue microarray assessment of prostate cancer tumor proliferation in African-American and white men. J Natl Cancer Inst 92:937–939

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer transcriptome. Nat Genet 37(Suppl):S31–S37

    Article  PubMed  CAS  Google Scholar 

  • Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi OP, Sauter G (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975

    PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Shih Ie M, Wang TL (2005) Apply innovative technologies to explore cancer genome. Curr Opin Oncol 17:33–38

    Google Scholar 

  • Siegel PM, Muller WJ (2010) Transcription factor regulatory networks in mammary epithelial development and tumorigenesis. Oncogene 29:2753–2759

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram K, Mungaamuri SK, Wajapeyee N (2002) DNA microarray technology and its applications in cancer biology. Appl Genomics Proteomics 1:1–10

    Google Scholar 

  • Sorensen KD, Orntoft TF (2010) Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn 10:49–64

    Article  PubMed  Google Scholar 

  • Srinivas PR, Verma M, Zhao Y, Srivastava S (2002) Proteomics for cancer biomarker discovery. Clin Chem 48:1160–1169

    PubMed  CAS  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  PubMed  CAS  Google Scholar 

  • Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stohr R, Hartmann A, Wullich B, Grasser F (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8:529–538

    Article  PubMed  CAS  Google Scholar 

  • Tainsky MA (2009) Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta 1796:176–193

    PubMed  CAS  Google Scholar 

  • Taktak AF, Fisher AC (2006) Outcome prediction in cancer, 1 edn. Elsevier, Amsterdam

    Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Google Scholar 

  • Wang E (2010) Cancer systems biology, 1 edn. Chapman & Hall/CRC, London

    Google Scholar 

  • Wang Y, Armstrong SA (2007) Genome-wide SNP analysis in cancer: leukemia shows the way. Cancer Cell 11:308–309

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gotoh O (2010) Inference of cancer-specific gene regulatory networks using soft computing rules. Gene Regul Syst Biol 4:19–34

    Article  CAS  Google Scholar 

  • Wolkenhauer O, Auffray C, Baltrusch S, Bluthgen N, Byrne H, Cascante M, Ciliberto A, Dale T, Drasdo D, Fell D, Ferrell JE Jr, Gallahan D et al (2010) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer Res 70:12–13

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11:R53

    Article  PubMed  Google Scholar 

  • Zhu J, Yao X (2009) Use of DNA methylation for cancer detection: promises and challenges. Int J Biochem Cell Biol 41:147–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jerome Galon or Zlatko Trajanoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Charoentong, P., Hackl, H., Mlecnik, B., Bindea, G., Galon, J., Trajanoski, Z. (2012). Integrating Biomolecular and Clinical Data for Cancer Research: Concepts and Challenges. In: Trajanoski, Z. (eds) Computational Medicine. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0947-2_9

Download citation

Publish with us

Policies and ethics