Synaptic Plasticity pp 265-284

Part of the Advances in Experimental Medicine and Biology book series (volume 970)

Developmental Plasticity of the Dendritic Compartment: Focus on the Cytoskeleton

  • Malgorzata Urbanska
  • Lukasz Swiech
  • Jacek Jaworski
Chapter

Abstract

Plasticity, the ability to undergo lasting changes in response to a stimulus, is an important attribute of neurons. It allows proper development and underlies learning, memory, and the recovery of the nervous system after severe injuries. Often, an outcome of neuronal plasticity is a structural plasticity manifested as a change of neuronal morphology. In this chapter, we focus on the structural plasticity of dendritic arbors and spines during development. Dendrites receive and compute synaptic inputs from other neurons. The number of dendrites and their branching pattern are strictly correlated with the function of a particular neuron and the geometry of the connections it receives. The development of proper dendritic tree morphology depends on the interplay between genetic programming and extracellular signals. Spines are tiny actin-rich dendritic protrusions that harbor excitatory synapses. No consensus has been reached regarding how dendritic spines form, and several models of spine morphogenesis exist. Nevertheless, most researchers agree that spinogenesis is an important target for structural plasticity. In this chapter, we discuss examples of such plasticity and describe the principles and molecular mechanisms underlying this process, focusing mostly on the regulation of the cytoskeleton during dendrito- and spinogenesis.

Keywords

Actin dynamics Cytoskeleton Dendritogenesis Dendritic spines Microtubules 

References

  1. Acebes, A., & Ferrus, A. (2000). Cellular and molecular features of axon collaterals and dendrites. Trends in Neurosciences, 23, 557–565.PubMedGoogle Scholar
  2. Ackermann, M., & Matus, A. (2003). Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nature Neuroscience, 6, 1194–1200.PubMedGoogle Scholar
  3. Ahuja, R., Pinyol, R., Reichenbach, N., Custer, L., Klingensmith, J., Kessels, M. M., & Qualmann, B. (2007). Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell, 131, 337–350.PubMedGoogle Scholar
  4. Akum, B. F., Chen, M., Gunderson, S. I., Riefler, G. M., Scerri-Hansen, M. M., & Firestein, B. L. (2004). Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nature Neuroscience, 7, 145–152.PubMedGoogle Scholar
  5. Arellano, J. I., Benavides-Piccione, R., Defelipe, J., & Yuste, R. (2007). Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 1, 131–143.PubMedGoogle Scholar
  6. Bjorkblom, B., Ostman, N., Hongisto, V., Komarovski, V., Filen, J. J., Nyman, T. A., Kallunki, T., Courtney, M. J., & Coffey, E. T. (2005). Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: Role of microtubule-associated protein 2 as an effector. The Journal of Neuroscience, 25, 6350–6361.PubMedGoogle Scholar
  7. Bourne, J., & Harris, K. M. (2007). Do thin spines learn to be mushroom spines that remember? Current Opinion in Neurobiology, 17, 381–386.PubMedGoogle Scholar
  8. Bradley, P., & Berry, M. (1976). The effects of reduced climbing and parallel fibre input on Purkinje cell dendritic growth. Brain Research, 109, 133–151.PubMedGoogle Scholar
  9. Bramham, C. R. (2008). Local protein synthesis, actin dynamics, and LTP consolidation. Current Opinion in Neurobiology, 18, 524–531.PubMedGoogle Scholar
  10. Brigman, J. L., Wright, T., Talani, G., Prasad-Mulcare, S., Jinde, S., Seabold, G. K., Mathur, P., Davis, M. I., Bock, R., Gustin, R. M., et al. (2010). Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. The Journal of Neuroscience, 30, 4590–4600.PubMedGoogle Scholar
  11. Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167–179.PubMedGoogle Scholar
  12. Calabrese, B., Wilson, M. S., & Halpain, S. (2006). Development and regulation of dendritic spine synapses. Physiology (Bethesda, MD), 21, 38–47.Google Scholar
  13. Chen, H., & Firestein, B. L. (2007). RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. The Journal of Neuroscience, 27, 8378–8386.PubMedGoogle Scholar
  14. Chen, Y., Wang, P. Y., & Ghosh, A. (2005). Regulation of cortical dendrite development by Rap1 signaling. Molecular and Cellular Neuroscience, 28, 215–228.PubMedGoogle Scholar
  15. Choi, J. H., Bertram, P. G., Drenan, R., Carvalho, J., Zhou, H. H., & Zheng, X. F. (2002). The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Reports, 3, 988–994.PubMedGoogle Scholar
  16. Conde, C., & Caceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience, 10, 319–332.PubMedGoogle Scholar
  17. Dotti, C. G., Sullivan, C. A., & Banker, G. A. (1988). The establishment of polarity by hippocampal neurons in culture. The Journal of Neuroscience, 8, 1454–1468.PubMedGoogle Scholar
  18. Espinosa, J. S., Wheeler, D. G., Tsien, R. W., & Luo, L. (2009). Uncoupling dendrite growth and patterning: Single-cell knockout analysis of NMDA receptor 2B. Neuron, 62, 205–217.PubMedGoogle Scholar
  19. Ethell, I. M., & Pasquale, E. B. (2005). Molecular mechanisms of dendritic spine development and remodeling. Progress in Neurobiology, 75, 161–205.PubMedGoogle Scholar
  20. Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629–635.PubMedGoogle Scholar
  21. Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research: Brain Research Reviews, 39, 29–54.PubMedGoogle Scholar
  22. Firestein, B. L., Brenman, J. E., Aoki, C., Sanchez-Perez, A. M., El-Husseini, A. E., & Bredt, D. S. (1999). Cypin: A cytosolic regulator of PSD-95 postsynaptic targeting. Neuron, 24, 659–672.PubMedGoogle Scholar
  23. Frost, N. A., Kerr, J. M., Lu, H. E., & Blanpied, T. A. (2010a). A network of networks: Cytoskeletal control of compartmentalized function within dendritic spines. Current Opinion in Neurobiology, 20, 578–587.PubMedGoogle Scholar
  24. Frost, N. A., Shroff, H., Kong, H., Betzig, E., & Blanpied, T. A. (2010b). Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron, 67, 86–99.PubMedGoogle Scholar
  25. Furutani, Y., Matsuno, H., Kawasaki, M., Sasaki, T., Mori, K., & Yoshihara, Y. (2007). Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. The Journal of Neuroscience, 27, 8866–8876.PubMedGoogle Scholar
  26. Gao, F. B., & Bogert, B. A. (2003). Genetic control of dendritic morphogenesis in Drosophila. Trends in Neurosciences, 26, 262–268.PubMedGoogle Scholar
  27. Gao, F. B., Brenman, J. E., Jan, L. Y., & Jan, Y. N. (1999). Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes & Development, 13, 2549–2561.Google Scholar
  28. Gaudilliere, B., Konishi, Y., de la Iglesia, N., Yao, G., & Bonni, A. (2004). A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron, 41, 229–241.PubMedGoogle Scholar
  29. Georges, P. C., Hadzimichalis, N. M., Sweet, E. S., & Firestein, B. L. (2008). The yin-yang of dendrite morphology: Unity of actin and microtubules. Molecular Neurobiology, 38, 270–284.PubMedGoogle Scholar
  30. Grabham, P. W., Seale, G. E., Bennecib, M., Goldberg, D. J., & Vallee, R. B. (2007). Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. The Journal of Neuroscience, 27, 5823–5834.PubMedGoogle Scholar
  31. Grove, M., Demyanenko, G., Echarri, A., Zipfel, P. A., Quiroz, M. E., Rodriguiz, R. M., Playford, M., Martensen, S. A., Robinson, M. R., Wetsel, W. C., et al. (2004). ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Molecular and Cellular Biology, 24, 10905–10922.PubMedGoogle Scholar
  32. Harris, K. M. (1999). Structure, development, and plasticity of dendritic spines. Current Opinion in Neurobiology, 9, 343–348.PubMedGoogle Scholar
  33. Hayashi, Y., & Majewska, A. K. (2005). Dendritic spine geometry: Functional implication and regulation. Neuron, 46, 529–532.PubMedGoogle Scholar
  34. Hayashi, K., Ohshima, T., & Mikoshiba, K. (2002). Pak1 is involved in dendrite initiation as a downstream effector of Rac1 in cortical neurons. Molecular and Cellular Neuroscience, 20, 579–594.PubMedGoogle Scholar
  35. Hering, H., & Sheng, M. (2001). Dendritic spines: Structure, dynamics and regulation. Nature Reviews Neuroscience, 2, 880–888.PubMedGoogle Scholar
  36. Hering, H., & Sheng, M. (2003). Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. The Journal of Neuroscience, 23, 11759–11769.PubMedGoogle Scholar
  37. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E., & Svoboda, K. (2006). Experience-dependent and cell-type-specific spine growth in the neocortex. Nature, 441, 979–983.PubMedGoogle Scholar
  38. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C., & Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron, 57, 719–729.PubMedGoogle Scholar
  39. Hoogenraad, C. C., & Bradke, F. (2009). Control of neuronal polarity and plasticity – A renaissance for microtubules? Trends in Cell Biology, 19, 669–676.PubMedGoogle Scholar
  40. Hotulainen, P., & Hoogenraad, C. C. (2010). Actin in dendritic spines: Connecting dynamics to function. The Journal of Cell Biology, 189, 619–629.PubMedGoogle Scholar
  41. Hotulainen, P., Llano, O., Smirnov, S., Tanhuanpaa, K., Faix, J., Rivera, C., & Lappalainen, P. (2009). Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. The Journal of Cell Biology, 185, 323–339.PubMedGoogle Scholar
  42. Hu, X., Viesselmann, C., Nam, S., Merriam, E., & Dent, E. W. (2008). Activity-dependent dynamic microtubule invasion of dendritic spines. The Journal of Neuroscience, 28, 13094–13105.PubMedGoogle Scholar
  43. Iki, J., Inoue, A., Bito, H., & Okabe, S. (2005). Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. European Journal of Neuroscience, 22, 2985–2994.PubMedGoogle Scholar
  44. Jacobs, T., Causeret, F., Nishimura, Y. V., Terao, M., Norman, A., Hoshino, M., & Nikolic, M. (2007). Localized activation of p21-activated kinase controls neuronal polarity and morphology. The Journal of Neuroscience, 27, 8604–8615.PubMedGoogle Scholar
  45. Jaffe, A. B., & Hall, A. (2005). Rho GTPases: Biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedGoogle Scholar
  46. Jan, Y. N., & Jan, L. Y. (2010). Branching out: Mechanisms of dendritic arborization. Nature Reviews Neuroscience, 11, 316–328.PubMedGoogle Scholar
  47. Jaworski, J., Hoogenraad, C. C., & Akhmanova, A. (2008). Microtubule plus-end tracking proteins in differentiated mammalian cells. The International Journal of Biochemistry & Cell Biology, 40, 619–637.Google Scholar
  48. Jaworski, J., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., Camera, P., Spangler, S. A., Di Stefano, P., Demmers, J., et al. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron, 61, 85–100.PubMedGoogle Scholar
  49. Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C., & Sheng, M. (2005). Control of dendritic arborization by the phosphoinositide-3’-kinase-Akt-mammalian target of rapamycin pathway. The Journal of Neuroscience, 25, 11300–11312.PubMedGoogle Scholar
  50. Ji, Y., Lu, Y., Yang, F., Shen, W., Tang, T. T., Feng, L., Duan, S., & Lu, B. (2010). Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nature Neuroscience, 13, 302–309.PubMedGoogle Scholar
  51. Jimenez-Mateos, E. M., Paglini, G., Gonzalez-Billault, C., Caceres, A., & Avila, J. (2005). End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis. Journal of Neuroscience Research, 80, 350–359.PubMedGoogle Scholar
  52. Kapitein, L. C., Schlager, M. A., Kuijpers, M., Wulf, P. S., van Spronsen, M., Mackintosh, F. C., & Hoogenraad, C. C. (2010). Mixed microtubules steer dynein-driven cargo transport into dendrites. Current Biology, 20, 290–299.PubMedGoogle Scholar
  53. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., & Noguchi, J. (2010a). Structural dynamics of dendritic spines in memory and cognition. Trends in Neurosciences, 33, 121–129.PubMedGoogle Scholar
  54. Kasai, H., Hayama, T., Ishikawa, M., Watanabe, S., Yagishita, S., & Noguchi, J. (2010b). Learning rules and persistence of dendritic spines. European Journal of Neuroscience, 32, 241–249.PubMedGoogle Scholar
  55. Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10, 981–991.PubMedGoogle Scholar
  56. Knott, G., & Holtmaat, A. (2008). Dendritic spine plasticity–current understanding from in vivo studies. Brain Research Reviews, 58, 282–289.PubMedGoogle Scholar
  57. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., & Fuchs, E. (2003). ACF7: An essential integrator of microtubule dynamics. Cell, 115, 343–354.PubMedGoogle Scholar
  58. Konur, S., & Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron, 46, 401–405.PubMedGoogle Scholar
  59. Korobova, F., & Svitkina, T. (2010). Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Molecular Biology of the Cell, 21, 165–176.PubMedGoogle Scholar
  60. Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J., & Wu, G. Y. (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. The Journal of Neuroscience, 25, 11288–11299.PubMedGoogle Scholar
  61. Lansbergen, G., & Akhmanova, A. (2006). Microtubule plus end: A hub of cellular activities. Traffic, 7, 499–507.PubMedGoogle Scholar
  62. Laxson, L. C., & King, J. S. (1983). The development of the Purkinje cell in the cerebellar cortex of the opossum. The Journal of Comparative Neurology, 214, 290–308.PubMedGoogle Scholar
  63. Lee, H., Engel, U., Rusch, J., Scherrer, S., Sheard, K., & Van Vactor, D. (2004). The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron, 42, 913–926.PubMedGoogle Scholar
  64. Lee, A., Li, W., Xu, K., Bogert, B. A., Su, K., & Gao, F. B. (2003). Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development, 130, 5543–5552.PubMedGoogle Scholar
  65. Li, Z., Aizenman, C. D., & Cline, H. T. (2002). Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron, 33, 741–750.PubMedGoogle Scholar
  66. Li, Z., Van Aelst, L., & Cline, H. T. (2000). Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nature Neuroscience, 3, 217–225.PubMedGoogle Scholar
  67. Liu, Z., Steward, R., & Luo, L. (2000). Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature Cell Biology, 2, 776–783.PubMedGoogle Scholar
  68. Lohmann, C., Myhr, K. L., & Wong, R. O. (2002). Transmitter-evoked local calcium release stabilizes developing dendrites. Nature, 418, 177–181.PubMedGoogle Scholar
  69. Majewska, A., & Sur, M. (2003). Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation. Proceedings of the National Academy of Sciences of the United States of America, 100, 16024–16029.PubMedGoogle Scholar
  70. Marrs, G. S., Green, S. H., & Dailey, M. E. (2001). Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nature Neuroscience, 4, 1006–1013.PubMedGoogle Scholar
  71. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766.PubMedGoogle Scholar
  72. McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex, 10, 963–973.PubMedGoogle Scholar
  73. Michaelsen, K., Murk, K., Zagrebelsky, M., Dreznjak, A., Jockusch, B. M., Rothkegel, M., & Korte, M. (2010). Fine-tuning of neuronal architecture requires two profilin isoforms. Proceedings of the National Academy of Sciences of the United States of America, 107, 15780–15785.PubMedGoogle Scholar
  74. Mizrahi, A. (2007). Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nature Neuroscience, 10, 444–452.PubMedGoogle Scholar
  75. Mizrahi, A., & Katz, L. C. (2003). Dendritic stability in the adult olfactory bulb. Nature Neuroscience, 6, 1201–1207.PubMedGoogle Scholar
  76. Muley, P. D., McNeill, E. M., Marzinke, M. A., Knobel, K. M., Barr, M. M., & Clagett-Dame, M. (2008). The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Developmental Neurobiology, 68, 1441–1453.PubMedGoogle Scholar
  77. Nakayama, A. Y., Harms, M. B., & Luo, L. (2000). Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. The Journal of Neuroscience, 20, 5329–5338.PubMedGoogle Scholar
  78. Okamoto, K., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 7, 1104–1112.PubMedGoogle Scholar
  79. Parrish, J. Z., Emoto, K., Kim, M. D., & Jan, Y. N. (2007). Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annual Review of Neuroscience, 30, 399–423.PubMedGoogle Scholar
  80. Penzes, P., Beeser, A., Chernoff, J., Schiller, M. R., Eipper, B. A., Mains, R. E., & Huganir, R. L. (2003). Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron, 37, 263–274.PubMedGoogle Scholar
  81. Pinyol, R., Haeckel, A., Ritter, A., Qualmann, B., & Kessels, M. M. (2007). Regulation of N-WASP and the Arp2/3 complex by Abp1 controls neuronal morphology. PloS One, 2, e400.PubMedGoogle Scholar
  82. Podkowa, M., Zhao, X., Chow, C. W., Coffey, E. T., Davis, R. J., & Attisano, L. (2010). Microtubule stabilization by bone morphogenetic protein receptor-mediated scaffolding of c-Jun N-terminal kinase promotes dendrite formation. Molecular and Cellular Biology, 30, 2241–2250.PubMedGoogle Scholar
  83. Pontrello, C. G., & Ethell, I. M. (2009). Accelerators, brakes, and gears of actin dynamics in dendritic spines. The Open Neuroscience Journal, 3, 67–86.PubMedGoogle Scholar
  84. Portera-Cailliau, C., Pan, D. T., & Yuste, R. (2003). Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. The Journal of Neuroscience, 23, 7129–7142.PubMedGoogle Scholar
  85. Poulain, F. E., & Sobel, A. (2010). The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Molecular and Cellular Neuroscience, 43, 15–32.PubMedGoogle Scholar
  86. Prokop, A., Uhler, J., Roote, J., & Bate, M. (1998). The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons. The Journal of Cell Biology, 143, 1283–1294.PubMedGoogle Scholar
  87. Redmond, L., & Ghosh, A. (2005). Regulation of dendritic development by calcium signaling. Cell Calcium, 37, 411–416.PubMedGoogle Scholar
  88. Redmond, L., Kashani, A. H., & Ghosh, A. (2002). Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron, 34, 999–1010.PubMedGoogle Scholar
  89. Rocca, D. L., Martin, S., Jenkins, E. L., & Hanley, J. G. (2008). Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nature Cell Biology, 10, 259–271.PubMedGoogle Scholar
  90. Rosso, S. B., Sussman, D., Wynshaw-Boris, A., & Salinas, P. C. (2005). Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nature Neuroscience, 8, 34–42.PubMedGoogle Scholar
  91. Sala, C., Cambianica, I., & Rossi, F. (2008). Molecular mechanisms of dendritic spine development and maintenance. Acta Neurobiologiae Experimentalis (Wars), 68, 289–304.Google Scholar
  92. Saneyoshi, T., Fortin, D. A., & Soderling, T. R. (2010). Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Current Opinion in Neurobiology, 20, 108–115.PubMedGoogle Scholar
  93. Satoh, D., Sato, D., Tsuyama, T., Saito, M., Ohkura, H., Rolls, M. M., Ishikawa, F., & Uemura, T. (2008). Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nature Cell Biology, 10, 1164–1171.PubMedGoogle Scholar
  94. Schubert, V., & Dotti, C. G. (2007). Transmitting on actin: Synaptic control of dendritic architecture. Journal of Cell Science, 120, 205–212.PubMedGoogle Scholar
  95. Segal, M. (2001). Rapid plasticity of dendritic spine: Hints to possible functions? Progress in Neurobiology, 63, 61–70.PubMedGoogle Scholar
  96. Sekino, Y., Kojima, N., & Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochemistry International, 51, 92–104.PubMedGoogle Scholar
  97. Sekino, Y., Tanaka, S., Hanamura, K., Yamazaki, H., Sasagawa, Y., Xue, Y., Hayashi, K., & Shirao, T. (2006). Activation of N-methyl-D-aspartate receptor induces a shift of drebrin distribution: Disappearance from dendritic spines and appearance in dendritic shafts. Molecular and Cellular Neuroscience, 31, 493–504.PubMedGoogle Scholar
  98. Siegrist, S. E., & Doe, C. Q. (2007). Microtubule-induced cortical cell polarity. Genes & Development, 21, 483–496.Google Scholar
  99. Sin, W. C., Haas, K., Ruthazer, E. S., & Cline, H. T. (2002). Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature, 419, 475–480.PubMedGoogle Scholar
  100. Soderling, S. H., Guire, E. S., Kaech, S., White, J., Zhang, F., Schutz, K., Langeberg, L. K., Banker, G., Raber, J., & Scott, J. D. (2007). A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. The Journal of Neuroscience, 27, 355–365.PubMedGoogle Scholar
  101. Stuart, G., Spruston, N., & Häusser, M. (2007). Dendrites (2nd ed.). Oxford: Oxford University Press.Google Scholar
  102. Swiech, L., Blazejczyk, M., Urbanska, M., Pietruszka, P., Dortland ,B.R., Malik, A.R., Wulf, P.S., Hoogenraad, C.C., & Jaworski, J. (2011). CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology. J Neurosci., 31, 4555–4568.Google Scholar
  103. Tada, T., & Sheng, M. (2006). Molecular mechanisms of dendritic spine morphogenesis. Current Opinion in Neurobiology, 16, 95–101.PubMedGoogle Scholar
  104. Takemoto-Kimura, S., Ageta-Ishihara, N., Nonaka, M., Adachi-Morishima, A., Mano, T., Okamura, M., Fujii, H., Fuse, T., Hoshino, M., Suzuki, S., et al. (2007). Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma. Neuron, 54, 755–770.PubMedGoogle Scholar
  105. Tashiro, A., Minden, A., & Yuste, R. (2000). Regulation of dendritic spine morphology by the rho family of small GTPases: Antagonistic roles of Rac and Rho. Cerebral Cortex, 10, 927–938.PubMedGoogle Scholar
  106. Tatavarty, V., Kim, E. J., Rodionov, V., & Yu, J. (2009). Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PloS One, 4, e7724.PubMedGoogle Scholar
  107. Terabayashi, T., Itoh, T. J., Yamaguchi, H., Yoshimura, Y., Funato, Y., Ohno, S., & Miki, H. (2007). Polarity-regulating kinase partitioning-defective 1/microtubule affinity-regulating kinase 2 negatively regulates development of dendrites on hippocampal neurons. The Journal of Neuroscience, 27, 13098–13107.PubMedGoogle Scholar
  108. Threadgill, R., Bobb, K., & Ghosh, A. (1997). Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron, 19, 625–634.PubMedGoogle Scholar
  109. Tolias, K. F., Bikoff, J. B., Burette, A., Paradis, S., Harrar, D., Tavazoie, S., Weinberg, R. J., & Greenberg, M. E. (2005). The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron, 45, 525–538.PubMedGoogle Scholar
  110. Tran, T. S., Rubio, M. E., Clem, R. L., Johnson, D., Case, L., Tessier-Lavigne, M., Huganir, R. L., Ginty, D. D., & Kolodkin, A. L. (2009). Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature, 462, 1065–1069.PubMedGoogle Scholar
  111. Ultanir, S. K., Kim, J. E., Hall, B. J., Deerinck, T., Ellisman, M., & Ghosh, A. (2007). Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 19553–19558.PubMedGoogle Scholar
  112. Urbanska, M., Blazejczyk, M., & Jaworski, J. (2008). Molecular basis of dendritic arborization. Acta Neurobiologiae Experimentalis (Wars), 68, 264–288.Google Scholar
  113. van Spronsen, M., & Hoogenraad, C. C. (2010). Synapse pathology in psychiatric and neurologic disease. Current Neurology and Neuroscience Reports, 10, 207–214.PubMedGoogle Scholar
  114. Wayman, G. A., Impey, S., Marks, D., Saneyoshi, T., Grant, W. F., Derkach, V., & Soderling, T. R. (2006). Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron, 50, 897–909.PubMedGoogle Scholar
  115. Wegner, A. M., Nebhan, C. A., Hu, L., Majumdar, D., Meier, K. M., Weaver, A. M., & Webb, D. J. (2008). N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. Journal of Biological Chemistry, 283, 15912–15920.PubMedGoogle Scholar
  116. Wu, J. I., Lessard, J., Olave, I. A., Qiu, Z., Ghosh, A., Graef, I. A., & Crabtree, G. R. (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56, 94–108.PubMedGoogle Scholar
  117. Wu, G. Y., Zou, D. J., Rajan, I., & Cline, H. (1999). Dendritic dynamics in vivo change during neuronal maturation. The Journal of Neuroscience, 19, 4472–4483.PubMedGoogle Scholar
  118. Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., & Kasai, H. (2008). Principles of long-term dynamics of dendritic spines. The Journal of Neuroscience, 28, 13592–13608.PubMedGoogle Scholar
  119. Yoshihara, Y., De Roo, M., & Muller, D. (2009). Dendritic spine formation and stabilization. Current Opinion in Neurobiology, 19, 146–153.PubMedGoogle Scholar
  120. Yu, X., & Malenka, R. C. (2003). Beta-catenin is critical for dendritic morphogenesis. Nature Neuroscience, 6, 1169–1177.PubMedGoogle Scholar
  121. Yuste, R. (2010). Dendritic spines. Cambridge: MIT Press.Google Scholar
  122. Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: Insights from ultrastructural and imaging studies. Nature Reviews Neuroscience, 5, 24–34.PubMedGoogle Scholar
  123. Zhang, W., & Benson, D. L. (2000). Development and molecular organization of dendritic spines and their synapses. Hippocampus, 10, 512–526.PubMedGoogle Scholar
  124. Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H., & Snider, W. D. (2004). NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron, 42, 897–912.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Malgorzata Urbanska
    • 1
  • Lukasz Swiech
    • 1
  • Jacek Jaworski
    • 1
  1. 1.International Institute of Molecular and Cell BiologyWarsawPoland

Personalised recommendations