Skip to main content

Physical Phantom of Craniospinal Hydrodynamics

  • Conference paper
  • First Online:
Hydrocephalus

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 113))

Abstract

Introduction: Inside the craniospinal system, blood, and cerebrospinal fluid (CSF) interactions occurring through volume exchanges are still not well understood. We built a physical model of this global hydrodynamic system. The main objective was to study, in controlled conditions, CSF–blood interactions to better understand the phenomenon underlying pathogenesis of hydrocephalus.

Materials and methods: A structure representing the cranium is connected to the spinal channel. The cranium is divided into compartments mimicking anatomical regions such as ventricles or aqueduct cerebri. Resistive and compliant characteristics of blood and CSF compartments can be assessed or measured using pressure and flow sensors incorporated in the model. An arterial blood flow input is generated by a programmable pump. Flows and pressures inside the system are simultaneously recorded.

Results: Preliminary results show that the model can mimic venous and CSF flows in response to arterial pressure input. Pulse waveforms and volume flows were measured and confirmed that they partially replicated the data previously obtained with phase-contrast magnetic resonance imaging. The phantom shows that CSF oscillations directly result from arteriovenous flow, and intracranial pressure measurements show that the model obeys an exponential relationship between pressure and intracranial volume expansion.

Conclusion: The phantom will be useful to investigate the hydrodynamic hypotheses underlying development of hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal GC, Berman BM, Stark L (1969) A lumped parameter model of the cerebrospinal fluid system. IEEE Trans Biomed Eng 16(1):45–53

    Article  PubMed  CAS  Google Scholar 

  2. Alperin N, Hushek SG, Lee SH, Sivaramakrishnan A, Lichtor T (2005) MRI study of cerebral blood flow and CSF flow dynamics in an upright posture: the effect of posture on the intracranial compliance and pressure. Acta Neurochir Suppl 95:177–181

    Article  PubMed  CAS  Google Scholar 

  3. Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME (2007) A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng 54(3):483–491

    Article  PubMed  Google Scholar 

  4. Baledent O, Fin L, Khuoy L, Ambarki K, Gauvin AC, Gondry-Jouet C, Meyer ME (2006) Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color Doppler. J Magn Reson Imaging 24(5):995–1004

    Article  PubMed  Google Scholar 

  5. Baledent O, Gondry-Jouet C, Meyer ME, De Marco G, Le Gars D, Henry-Feugeas MC, Idy-Peretti I (2004) Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol 39(1):45–55

    Article  PubMed  Google Scholar 

  6. Baledent O, Henry-Feugeas MC, Idy-Peretti I (2001) Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 36(7):368–377

    Article  PubMed  CAS  Google Scholar 

  7. Bateman GA (2009) Cerebral blood flow and hydrocephalus. J Neurosurg Pediatr 3(3):244

    Article  PubMed  Google Scholar 

  8. Bateman GA, Loiselle AM (2007) Can MR measurement of intracranial hydrodynamics and compliance differentiate which patient with idiopathic normal pressure hydrocephalus will improve following shunt insertion? Acta Neurochir (Wien) 149(5):455–462

    Article  CAS  Google Scholar 

  9. Bradley WG Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2):523–529

    PubMed  Google Scholar 

  10. Egnor M, Rosiello A, Zheng L (2001) A model of intracranial pulsations. Pediatr Neurosurg 35(6):284–298

    Article  PubMed  CAS  Google Scholar 

  11. Enzmann DR, Pelc NJ (1991) Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178(2):467–474

    PubMed  CAS  Google Scholar 

  12. Feinberg DA, Mark AS (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 163(3):793–799

    PubMed  CAS  Google Scholar 

  13. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34(5):370–380

    Article  PubMed  CAS  Google Scholar 

  14. Henry-Feugeas MC, Idy-Peretti I, Baledent O, Poncelet-Didon A, Zannoli G, Bittoun J, Schouman-Claeys E (2000) Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn Reson Imaging 18(4):387–395

    Article  PubMed  CAS  Google Scholar 

  15. Kim DJ, Czosnyka Z, Keong N, Radolovich DK, Smielewski P, Sutcliffe MP, Pickard JD, Czosnyka M (2009) Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery 64(3):494–501

    Article  PubMed  Google Scholar 

  16. Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn R (2009) A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol 59(6):729–759

    Article  PubMed  Google Scholar 

  17. Luetmer PH, Huston J, Friedman JA, Dixon GR, Petersen RC, Jack CR, McClelland RL, Ebersold MJ (2002) Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50(3):534–543

    PubMed  Google Scholar 

  18. Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43(5):523–534

    Article  PubMed  CAS  Google Scholar 

  19. Nitz WR, Bradley WG Jr, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, Herbst MD (1992) Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 183(2):395–405

    PubMed  CAS  Google Scholar 

  20. Piechnik SK, Czosnyka M, Harris NG, Minhas PS, Pickard JD (2001) A model of the cerebral and cerebrospinal fluid circulations to examine asymmetry in cerebrovascular reactivity. J Cereb Blood Flow Metab 21(2):182–192

    Article  PubMed  CAS  Google Scholar 

  21. Rekate HL, Brodkey JA, Chizeck HJ, el Sakka W, Ko WH (1988) Ventricular volume regulation: a mathematical model and computer simulation. Pediatr Neurosci 14(2):77–84

    Article  PubMed  CAS  Google Scholar 

  22. Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME (2007) Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab 27(9):1563–1572

    Article  PubMed  Google Scholar 

  23. Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Baledent O (2009) A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab 29(6):1208–1215

    Article  PubMed  Google Scholar 

  24. Ursino M, Lodi CA (1997) A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol 82(4):1256–1269

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by European Community Grant Interreg (inter-regional cooperation between university hospitals of Amiens and Cambridge).

Conflicts of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Balédent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this paper

Cite this paper

Bouzerar, R., Czosnyka, M., Czosnyka, Z., Balédent, O. (2012). Physical Phantom of Craniospinal Hydrodynamics. In: Aygok, G., Rekate, H. (eds) Hydrocephalus. Acta Neurochirurgica Supplementum, vol 113. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0923-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0923-6_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0922-9

  • Online ISBN: 978-3-7091-0923-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics