Skip to main content

Impact of STAT5 on Normal Tissue Development and Cancer

  • Chapter
  • First Online:
Jak-Stat Signaling : From Basics to Disease

Abstract

STAT5A and STAT5B are two closely related transcription factors that transduce signals from cytokines and growth factors. Two tissues that rely upon STAT5 for lineage commitment and differentiation are the mammary gland and the haematopoietic system. During pregnancy, mammary epithelial cells undergo extensive proliferation and differentiation to generate milk-producing alveolar structures. Alveologenesis is abrogated in the absence of both STAT5A and B and fat pad transplantation experiments demonstrated that while the ability of stem cells to generate ductal outgrowths was not affected by loss of STAT5A/B, the alveolar compartment failed to develop in pregnant mice. In contrast, in the haematopoietic system, STAT5A and B control both stem and progenitor cell fate and are essential for the development of immune cells of the T, B and NK lineages. Aberrant STAT5 activity has major consequences and can induce tumours of both the blood and breast, in addition to other tissues. The mechanisms of constitutive STAT5 activity are manifold and include mutation of the upstream kinase JAK2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen TJ, Xie J et al (2003) Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem 278(29):27287–27292

    PubMed  CAS  Google Scholar 

  • Barash I (2006) Stat5 in the mammary gland: controlling normal development and cancer. J Cell Physiol 209(2):305–313

    PubMed  CAS  Google Scholar 

  • Baxter EJ, Scott LM et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061

    PubMed  CAS  Google Scholar 

  • Brockman JL, Schroeder MD et al (2002) PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol Endocrinol 16(4):774–784

    PubMed  CAS  Google Scholar 

  • Burdon TG, Demmer J et al (1994a) The mammary factor MPBF is a prolactin-induced transcriptional regulator which binds to STAT factor recognition sites. FEBS Lett 350(2–3):177–182

    PubMed  CAS  Google Scholar 

  • Burdon TG, Maitland KA et al (1994b) Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol Endocrinol 8(11):1528–1536

    PubMed  CAS  Google Scholar 

  • Caffarel MM, Zaragoza R et al (2012) Constitutive activation of JAK2 in mammary epithelium elevates Stat5 signalling, promotes alveologenesis and resistance to cell death, and contributes to tumourigenesis. Cell Death Differ 19(3):511–522

    PubMed  CAS  Google Scholar 

  • Clark J, Edwards S et al (2003) Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 22(8):1247–1252

    PubMed  CAS  Google Scholar 

  • Cotarla I, Ren S et al (2004) Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 108(5):665–671

    PubMed  CAS  Google Scholar 

  • Creamer BA, Sakamoto K et al (2010) Stat5 promotes survival of mammary epithelial cells through transcriptional activation of a distinct promoter in Akt1. Mol Cell Biol 30(12):2957–2970

    PubMed  CAS  Google Scholar 

  • Croker BA, Kiu H et al (2008) SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 19(4):414–422

    PubMed  CAS  Google Scholar 

  • Cui Y, Riedlinger G et al (2004) Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24(18):8037–8047

    PubMed  CAS  Google Scholar 

  • Dagvadorj A, Kirken RA et al (2008) Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Cancer Res 14(5):1317–1324

    PubMed  CAS  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19(1):1–11

    PubMed  CAS  Google Scholar 

  • Eilon T, Groner B et al (2007) Tumors caused by overexpression and forced activation of Stat5 in mammary epithelial cells of transgenic mice are parity-dependent and developed in aged, postestropausal females. Int J Cancer 121(9):1892–1902

    PubMed  CAS  Google Scholar 

  • Engblom D, Kornfeld JW et al (2007) Direct glucocorticoid receptor-Stat5 interaction in hepatocytes controls body size and maturation-related gene expression. Genes Dev 21(10):1157–1162

    PubMed  CAS  Google Scholar 

  • Ferbeyre G, Moriggl R (2011) The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochim Biophys Acta 1815:104–114

    PubMed  Google Scholar 

  • Fernandez I, Touraine P et al (2010) Prolactin and human tumourogenesis. J Neuroendocrinol 22(7):771–777

    PubMed  CAS  Google Scholar 

  • Frasor J, Park K et al (2001) Differential roles for signal transducers and activators of transcription 5a and 5b in PRL stimulation of ERalpha and ERbeta transcription. Mol Endocrinol 15(12):2172–2181

    PubMed  CAS  Google Scholar 

  • Friedbichler K, Kerenyi MA et al (2010) Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood 116(9):1548–1558

    PubMed  CAS  Google Scholar 

  • Gesbert F, Griffin JD (2000) Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 96(6):2269–2276

    PubMed  CAS  Google Scholar 

  • Gillanders EM, Xu J et al (2004) Combined genome-wide scan for prostate cancer susceptibility genes. J Natl Cancer Inst 96(16):1240–1247

    PubMed  CAS  Google Scholar 

  • Gu L, Vogiatzi P et al (2010) Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer 17(2):481–493

    PubMed  CAS  Google Scholar 

  • Gutzman JH, Rugowski DE et al (2007) Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene 26(43):6341–6348

    PubMed  CAS  Google Scholar 

  • Haffner MC, Petridou B et al (2007) Favorable prognostic value of SOCS2 and IGF-I in breast cancer. BMC Cancer 7:136

    PubMed  Google Scholar 

  • Happ B, Groner B (1993) The activated mammary gland specific nuclear factor (MGF) enhances in vitro transcription of the beta-casein gene promoter. J Steroid Biochem Mol Biol 47(1–6):21–30

    PubMed  CAS  Google Scholar 

  • Hennighausen L, Robinson GW (2005) Information networks in the mammary gland. Nat Rev Mol Cell Biol 6(9):715–725

    PubMed  CAS  Google Scholar 

  • Horita M, Andreu EJ et al (2000) Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 191(6):977–984

    PubMed  CAS  Google Scholar 

  • Hosui A, Kimura A et al (2009) Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-{beta} and STAT3 activation. J Exp Med 206(4):819–831

    PubMed  CAS  Google Scholar 

  • Hsiao JR, Jin YT et al (2003) Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis. Br J Cancer 89(2):344–349

    PubMed  CAS  Google Scholar 

  • Huang M, Dorsey JF et al (2002) Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 21(57):8804–8816

    PubMed  CAS  Google Scholar 

  • Humphreys RC, Hennighausen L (1999) Signal transducer and activator of transcription 5a influences mammary epithelial cell survival and tumorigenesis. Cell Growth Differ 10(10):685–694

    PubMed  CAS  Google Scholar 

  • Iavnilovitch E, Cardiff RD et al (2004) Deregulation of Stat5 expression and activation causes mammary tumors in transgenic mice. Int J Cancer 112(4):607–619

    PubMed  CAS  Google Scholar 

  • Isaacs JT, Isaacs WB (2004) Androgen receptor outwits prostate cancer drugs. Nat Med 10(1):26–27

    PubMed  CAS  Google Scholar 

  • Johnson KJ, Peck AR et al (2010) PTP1B suppresses prolactin activation of Stat5 in breast cancer cells. Am J Pathol 177(6):2971–2983

    PubMed  CAS  Google Scholar 

  • Kazansky AV, Spencer DM et al (2003) Activation of signal transducer and activator of transcription 5 is required for progression of autochthonous prostate cancer: evidence from the transgenic adenocarcinoma of the mouse prostate system. Cancer Res 63(24):8757–8762

    PubMed  CAS  Google Scholar 

  • Koppikar P, Lui VW et al (2008) Constitutive activation of signal transducer and activator of transcription 5 contributes to tumor growth, epithelial-mesenchymal transition, and resistance to epidermal growth factor receptor targeting. Clin Cancer Res 14(23):7682–7690

    PubMed  CAS  Google Scholar 

  • Lai SY, Johnson FM (2010) Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 13(3):67–78

    PubMed  CAS  Google Scholar 

  • Lai SY, Childs EE et al (2005) Erythropoietin-mediated activation of JAK-STAT signaling contributes to cellular invasion in head and neck squamous cell carcinoma. Oncogene 24(27):4442–4449

    PubMed  CAS  Google Scholar 

  • Lee TK, Man K et al (2006) Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial-mesenchymal transition. Cancer Res 66(20):9948–9956

    PubMed  CAS  Google Scholar 

  • Leong PL, Xi S et al (2002) Differential function of STAT5 isoforms in head and neck cancer growth control. Oncogene 21(18):2846–2853

    PubMed  CAS  Google Scholar 

  • Levine RL, Wadleigh M et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397

    PubMed  CAS  Google Scholar 

  • Levis M, Allebach J et al (2002) A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99(11):3885–3891

    PubMed  CAS  Google Scholar 

  • Li S, Rosen JM (1995) Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol Cell Biol 15(4):2063–2070

    PubMed  CAS  Google Scholar 

  • Li H, Ahonen TJ et al (2004) Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res 64(14):4774–4782

    PubMed  CAS  Google Scholar 

  • Li H, Zhang Y et al (2005) Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin Cancer Res 11(16):5863–5868

    PubMed  CAS  Google Scholar 

  • Li T, Sotgia F et al (2006) Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. Am J Pathol 168(6):1998–2013

    PubMed  CAS  Google Scholar 

  • Li G, Miskimen KL et al (2010) STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood 115(7):1416–1424

    PubMed  CAS  Google Scholar 

  • Liao Z, Lutz J et al (2010) Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer. Int J Biochem Cell Biol 42(2):186–192

    PubMed  CAS  Google Scholar 

  • Liu X, Robinson GW et al (1995) Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 92(19):8831–8835

    PubMed  CAS  Google Scholar 

  • Liu X, Robinson GW et al (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11(2):179–186

    PubMed  CAS  Google Scholar 

  • Long W, Wagner KU et al (2003) Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 130(21):5257–5268

    PubMed  CAS  Google Scholar 

  • Martino A, Holmes JH IV et al (2001) Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. J Immunol 166(3):1723–1729

    PubMed  CAS  Google Scholar 

  • Matsumura I, Kitamura T et al (1999) Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J 18(5):1367–1377

    PubMed  CAS  Google Scholar 

  • Migone TS, Lin JX et al (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269(5220):79–81

    PubMed  CAS  Google Scholar 

  • Mirmohammadsadegh A, Hassan M et al (2006) STAT5 phosphorylation in malignant melanoma is important for survival and is mediated through SRC and JAK1 kinases. J Invest Dermatol 126(10):2272–2280

    PubMed  CAS  Google Scholar 

  • Moriggl R, Sexl V et al (2005) Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 7(1):87–99

    PubMed  CAS  Google Scholar 

  • Nevalainen MT, Xie J et al (2004) Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol 22(11):2053–2060

    PubMed  CAS  Google Scholar 

  • Oakes SR, Robertson FG et al (2007) Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene 26(4):543–553

    PubMed  CAS  Google Scholar 

  • Olayioye MA, Beuvink I et al (1999) ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 274(24):17209–17218

    PubMed  CAS  Google Scholar 

  • Ormandy CJ, Binart N et al (1997) Mammary gland development in prolactin receptor knockout mice. J Mammary Gland Biol Neoplasia 2(4):355–364

    PubMed  CAS  Google Scholar 

  • Ozanne BW, Spence HJ et al (2007) Transcription factors control invasion: AP-1 the first among equals. Oncogene 26(1):1–10

    PubMed  CAS  Google Scholar 

  • Park DS, Lee H et al (2002) Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell 13(10):3416–3430

    PubMed  CAS  Google Scholar 

  • Pensa S, Watson CJ et al (2009) Stat3 and the inflammation/acute phase response in involution and breast cancer. J Mammary Gland Biol Neoplasia 14(2):121–129

    PubMed  Google Scholar 

  • Raccurt M, Tam SP et al (2003) Suppressor of cytokine signalling gene expression is elevated in breast carcinoma. Br J Cancer 89(3):524–532

    PubMed  CAS  Google Scholar 

  • Ren S, Cai HR et al (2002) Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 21(27):4335–4339

    PubMed  CAS  Google Scholar 

  • Rose-Hellekant TA, Arendt LM et al (2003) Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 22(30):4664–4674

    PubMed  CAS  Google Scholar 

  • Sanchez-Ceja SG, Reyes-Maldonado E et al (2006) Differential expression of STAT5 and Bcl-xL, and high expression of Neu and STAT3 in non-small-cell lung carcinoma. Lung Cancer 54(2):163–168

    PubMed  CAS  Google Scholar 

  • Schindler C, Shuai K et al (1992) Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257(5071):809–813

    PubMed  CAS  Google Scholar 

  • Schwaller J, Parganas E et al (2000) Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 6(3):693–704

    PubMed  CAS  Google Scholar 

  • Shan L, Yu M et al (2004) Possible role of Stat5a in rat mammary gland carcinogenesis. Breast Cancer Res Treat 88(3):263–272

    PubMed  CAS  Google Scholar 

  • Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3(11):900–911

    PubMed  CAS  Google Scholar 

  • Sloan EK, Stanley KL et al (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23(47):7893–7897

    PubMed  CAS  Google Scholar 

  • Sotgia F, Williams TM et al (2006) Caveolin-1 deficiency (−/−) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. Am J Pathol 168(1):292–309

    PubMed  CAS  Google Scholar 

  • Strauss BL, Bratthauer GL et al (2006) STAT 5a expression in the breast is maintained in secretory carcinoma, in contrast to other histologic types. Hum Pathol 37(5):586–592

    PubMed  CAS  Google Scholar 

  • Sultan AS, Xie J et al (2005) Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 24(5):746–760

    PubMed  CAS  Google Scholar 

  • Tan SH, Nevalainen MT (2008) Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer 15(2):367–390

    PubMed  CAS  Google Scholar 

  • Tang JZ, Zuo ZH et al (2010) Signal transducer and activator of transcription (STAT)-5A and STAT5B differentially regulate human mammary carcinoma cell behavior. Endocrinology 151(1):43–55

    PubMed  CAS  Google Scholar 

  • Teglund S, McKay C et al (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93(5):841–850

    PubMed  CAS  Google Scholar 

  • Tran TH, Utama FE et al (2010) Prolactin inhibits BCL6 expression in breast cancer through a Stat5a-dependent mechanism. Cancer Res 70(4):1711–1721

    PubMed  CAS  Google Scholar 

  • Udy GB, Towers RP et al (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94(14):7239–7244

    PubMed  CAS  Google Scholar 

  • Vafaizadeh V, Klemmt P et al (2010) Mammary epithelial reconstitution with gene-modified stem cells assigns roles to Stat5 in luminal alveolar cell fate decisions, differentiation, involution, and mammary tumor formation. Stem Cells 28(5):928–938

    PubMed  CAS  Google Scholar 

  • Verdier F, Rabionet R et al (1998) A sequence of the CIS gene promoter interacts preferentially with two associated STAT5A dimers: a distinct biochemical difference between STAT5A and STAT5B. Mol Cell Biol 18(10):5852–5860

    PubMed  CAS  Google Scholar 

  • Wagner KU, Rui H (2008) Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 13(1):93–103

    PubMed  Google Scholar 

  • Wagner KU, Boulanger CA et al (2002) An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129(6):1377–1386

    PubMed  CAS  Google Scholar 

  • Wagner KU, Krempler A et al (2004) Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 24(12):5510–5520

    PubMed  CAS  Google Scholar 

  • Wakao H, Schmitt-Ney M et al (1992) Mammary gland-specific nuclear factor is present in lactating rodent and bovine mammary tissue and composed of a single polypeptide of 89 kDa. J Biol Chem 267(23):16365–16370

    PubMed  CAS  Google Scholar 

  • Wang TC, Cardiff RD et al (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671

    PubMed  CAS  Google Scholar 

  • Wang Z, Li G et al (2009) Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood 113(20):4856–4865

    PubMed  CAS  Google Scholar 

  • Watson CJ, Miller WR (1995) Elevated levels of members of the STAT family of transcription factors in breast carcinoma nuclear extracts. Br J Cancer 71(4):840–844

    PubMed  CAS  Google Scholar 

  • Watson CJ, Gordon KE et al (1991) Interaction of DNA-binding proteins with a milk protein gene promoter in vitro: identification of a mammary gland-specific factor. Nucleic Acids Res 19(23):6603–6610

    PubMed  CAS  Google Scholar 

  • Wellings SR, Jensen HM et al (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55(2):231–273

    PubMed  CAS  Google Scholar 

  • Williams TM, Cheung MW et al (2003) Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 14(3):1027–1042

    PubMed  CAS  Google Scholar 

  • Williams TM, Sotgia F et al (2006) Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am J Pathol 169(5):1784–1801

    PubMed  CAS  Google Scholar 

  • Wintermantel TM, Bock D et al (2005) The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol Endocrinol 19(2):340–349

    PubMed  CAS  Google Scholar 

  • Xi S, Zhang Q et al (2003) Constitutive activation of Stat5b contributes to carcinogenesis in vivo. Cancer Res 63(20):6763–6771

    PubMed  CAS  Google Scholar 

  • Xia Z, Sait SN et al (2001) Truncated STAT proteins are prevalent at relapse of acute myeloid leukemia. Leuk Res 25(6):473–482

    PubMed  CAS  Google Scholar 

  • Yamaji D, Na R et al (2009) Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 23(20):2382–2387

    PubMed  CAS  Google Scholar 

  • Yamashita H, Iwase H et al (2003) Naturally occurring dominant-negative Stat5 suppresses transcriptional activity of estrogen receptors and induces apoptosis in T47D breast cancer cells. Oncogene 22(11):1638–1652

    PubMed  CAS  Google Scholar 

  • Yamashita H, Nishio M et al (2006) Stat5 expression predicts response to endocrine therapy and improves survival in estrogen receptor-positive breast cancer. Endocr Relat Cancer 13(3):885–893

    PubMed  CAS  Google Scholar 

  • Yao Z, Cui Y et al (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci USA 103(4):1000–1005

    PubMed  CAS  Google Scholar 

  • Yao Z, Kanno Y et al (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109(10):4368–4375

    PubMed  CAS  Google Scholar 

  • Yip SS, Crew AJ et al (2000) Up-regulation of the protein tyrosine phosphatase SHP-1 in human breast cancer and correlation with GRB2 expression. Int J Cancer 88(3):363–368

    PubMed  CAS  Google Scholar 

  • Yu H, Pardoll D et al (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    PubMed  CAS  Google Scholar 

  • Yu JH, Zhu BM et al (2010) The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B negatively regulate cell proliferation through the activation of cyclin-dependent kinase inhibitor 2b (Cdkn2b) and Cdkn1a expression. Hepatology 52(5):1808–1818

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine J. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Caffarel, M.M., Watson, C.J. (2012). Impact of STAT5 on Normal Tissue Development and Cancer. In: Decker, T., Müller, M. (eds) Jak-Stat Signaling : From Basics to Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0891-8_18

Download citation

Publish with us

Policies and ethics