Advertisement

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity

  • Peter G. Gruber
  • Johanna Kienesberger
  • Ulrich LangerEmail author
  • Joachim Schöberl
  • Jan Valdman
Chapter
  • 1.3k Downloads
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

The paper reports some results on computational plasticity obtained within the Special Research Program “Numerical and Symbolic Scientific Computing” and within the Doctoral Program “Computational Mathematics” both supported by the Austrian Science Fund FWF under the grants SFB F013 and DK W1214, respectively. Adaptivity and fast solvers are the ingredients of efficient numerical methods. The paper presents fast and robust solvers for both 2D and 3D plastic flow theory problems as well as different approaches to the derivations of a posteriori error estimates. In the last part of the paper higher-order finite elements are used within a new plastic-zone concentrated setup according to the regularity of the solution. The theoretical results obtained are well supported by the results of our numerical experiments.

Keywords

Posteriori Error Estimators Symbolic Scientific Computing Slanting Function Concentrated Finite Element High Order FEM 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ainsworth, M., Senior, B.: An adaptive refinement strategy for hp-finite element computations. In: Proceedings of international centre for mathematical sciences on Grid adaptation in computational PDES: theory and applications, pp. 165–178. Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1998)Google Scholar
  2. 2.
    Alberty, J., Carstensen, C., Zarrabi, D.: Adaptive numerical analysis in primal elastoplasticity with hardening. Comput. Methods Appl. Mech. Eng. 171(3–4), 175–204 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babuska, I., Guo, B.: The h-p version of the finite element method – Part 1: The basic approximation results. Comput. Mech. 1, 21–41 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44(1), 75–102 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Becirovic, A., Paule, P., Pillwein, V., Riese, A., Schneider, C., Schöberl, J.: Hypergeometric summation algorithms for high order finite elements. Computing 78(3), 235–249 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bensoussan, A., Frehse, J.: Regularity results for nonlinear elliptic systems and applications. Applied Mathematical Sciences, vol. 151. Springer, Berlin (2002)Google Scholar
  7. 7.
    Beuchler, S., Eibner, T., Langer, U.: Primal and dual interface concentrated iterative substructuring methods. SIAM J. Numer. Anal. 46(6), 2818–2842 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beuchler, S., Pillwein, V.: Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials. Computing 80(4), 345–375 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral p-FEM. In: Langer, U., Discacciati, M., Keyes, D., Widlund, O., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computational Science and Engineering, vol. 60, pp. 435–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Brokate, M., Carstensen, C., Valdman, J.: A quasi-static boundary value problem in multi-surface elastoplasticity: Part 1 – analysis. Math. Meth. Appl. Sci. 27(14), 1697–1710 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brokate, M., Carstensen, C., Valdman, J.: A quasi-static boundary value problem in multi-surface elastoplasticity: Part 2 – numerical solution. Math. Meth. Appl. Sci. 28(8), 881–901 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carstensen, C.: Nonlinear interface problems in solid mechanics: Finite element and boundary element couplings. Habilitationsschrift, Universität Hannover (1993)Google Scholar
  13. 13.
    Carstensen, C.: Coupling of fem and bem for interface problems in viscoplasticity and plasticity with hardening. SIAM J. Numer. Anal. 33(1), 171–207 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carstensen, C.: Domain decomposition for a non-smooth convex minimization problem and its application to plasticity. Numer. Linear Algebra Appl. 4(3), 177–190 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carstensen, C.: Numerical analysis of the primal elastoplasticity with hardening. Numer. Math. (82), 577–597 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Carstensen, C., Orlando, A., Valdman, J.: A convergent adaptive finite element method for the primal problem of elastoplasticity. Internat. J. Numer. Methods Engrg. 67(13), 1851–1887 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 117–142 (2002)Google Scholar
  19. 19.
    Demkowicz, L., Šolín, P.: Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Engrg. 193(6–8), 449–468 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Eibner, T., Melenk, J.M.: An adaptive strategy for hp-FEM based on testing for analyticity. Comput. Mech. 39(5), 575–595 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, New York (1999)CrossRefzbMATHGoogle Scholar
  23. 23.
    Griesse, R., Meyer, C.: Optimal control of static plasticity with linear kinematic hardening. Tech. rep. (2009). Weierstrass Institute for Applied Analysis and Stochastics, WIAS Preprint 1370Google Scholar
  24. 24.
    Gruber, P., Valdman, J.: Implementation of an elastoplastic solver based on the Moreau-Yosida theorem. Math. Comput. Simul. 76(1–3), 73–81 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gruber, P.G.: Solution of elastoplastic problems based on the Moreau-Yosida theorem. Master’s thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria (2006)Google Scholar
  26. 26.
    Gruber, P.G.: Adaptive strategies for hp-FEM in elastoplasticity. DK-Report 2010-02, Johannes Kepler University Linz, DK W1214 “Doctoral Program on Computational Mathematics” (2010)Google Scholar
  27. 27.
    Gruber, P.G.: Fast solvers and adaptive high-order FEM in elastoplasticity. Ph.D. thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria (2011)Google Scholar
  28. 28.
    Gruber, P.G., Knees, D., Nesenenko, S., Thomas, M.: Analytical and numerical aspects of time-dependent models with internal variables. Z. angew. Math. Mech. 90, 861–902 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gruber, P.G., Valdman, J.: Newton-like solver for elastoplastic problems with hardening and its local super-linear convergence. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2007, pp. 795–803. Springer, Berlin (2008)CrossRefGoogle Scholar
  30. 30.
    Gruber, P.G., Valdman, J.: Solution of one-time-step problems in elastoplasticity by a slant Newton method. SIAM J. Sci. Comput. 31(2), 1558–1580 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Han, W., Reddy, B.D.: Plasticity, Interdisciplinary Applied Mathematics, vol. 9. Springer, New York (1999)Google Scholar
  32. 32.
    Hofinger, A., Valdman, J.: Numerical solution of the two-yield elastoplastic minimization problem. Computing 81(1), 35–52 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Johnson, C.: Existence theorems for plasticity problems. J. Math. Pures Appl. 55, 431–444 (1976)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Johnson, C.: On plasticity with hardening. J. Math. Anal. Appls. 62, 325–336 (1978)CrossRefzbMATHGoogle Scholar
  35. 35.
    Khoromskij, B.N., Melenk, J.M.: Boundary concentrated finite element methods. SIAM J. Numer. Anal. 41(1), 1–36 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kienesberger, J.: Multigrid preconditioned solvers for some elastoplastic problems. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) Proceedings of LSSC 2003, Lecture Notes in Computer Science, vol. 2907, pp. 379–386. Springer, Berlin (2004)Google Scholar
  37. 37.
    Kienesberger, J.: Efficient solution algorithms for elastoplastic problems. Ph.D. thesis, Institute of Computational Mathematics, Johannes Kepler University Linz (2006)Google Scholar
  38. 38.
    Kienesberger, J., Langer, U., Valdman, J.: On a robust multigrid-preconditioned solver for incremental plasticity problems. In: Blaheta, R., Starý, J. (eds.) Proceedings of IMET 2004 – Iterative Methods, Preconditioning & Numerical PDEs, pp. 84–87. Institute of Geonics AS CR Ostrava (2004)Google Scholar
  39. 39.
    Kienesberger, J., Valdman, J.: Multi-yield elastoplastic continuum-modeling and computations. In: Dolejsi, V., Feistauer, M., Felcman, J., Knobloch, P., Najzar, K. (eds.) Numerical mathematics and advanced applications. Proceedings of ENUMATH 2003, pp. 539–548. Springer, Berlin (2004)CrossRefGoogle Scholar
  40. 40.
    Kienesberger, J., Valdman, J.: An efficient solution algorithm for elastoplasticity and its first implementation towards uniform h- and p- mesh refinements. In: Castro, A.B., Gomez, D., Quintela, P., Salgado, P. (eds.) Numerical mathematics and advanced applications: Proceedings of ENUMATH 2005, pp. 1117–1125. Springer, Berlin (2006)CrossRefGoogle Scholar
  41. 41.
    Knees, D., Neff, P.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40, 21–43 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Korneev, V.G., Langer, U.: Approximate solution of plastic flow theory problems. Teubner-Texte zur Mathematik, vol. 69. Teubner-Verlag, Leipzig (1984)Google Scholar
  43. 43.
    Matthies, H.: Existence theorems in thermoplasticity. J. Mécanique 18(4), 695–712 (1979)MathSciNetGoogle Scholar
  44. 44.
    Matthies, H.: Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim. 1(2), 145–160 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Melenk, J.M.: hp-finite element methods for singular perturbations, Lecture Notes in Mathematics, vol. 1796. Springer, Berlin (2002)CrossRefGoogle Scholar
  46. 46.
    Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Neittaanmäki, P., Repin, S.: Reliable methods for computer simulation, Studies in Mathematics and its Applications, vol. 33. Elsevier Science B.V., Amsterdam (2004)Google Scholar
  48. 48.
    Repin, S.: A Posteriori Estimates for Partial Differential Equations, Radon Series on Computational and Applied Matehmatics, vol. 4. Walter de Gruyter, Berlin, New York (2008)CrossRefGoogle Scholar
  49. 49.
    Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16(1), 51–81 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity. Cent. Eur. J. Math. 7(3), 506–519 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Schöberl, J.: Netgen – an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci. 1, 41–52 (1997)CrossRefzbMATHGoogle Scholar
  52. 52.
    Schwab, C.: P- and hp- finite element methods: theory and applications in solid and fluid mechanics. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  53. 53.
    Simo, J.C., Hughes, T.J.R.: Computational inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Springer, New York (1998)Google Scholar
  54. 54.
    Stein, E.: Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley, Chichester (2003)Google Scholar
  55. 55.
    Valdman, J.: Mathematical and numerical analysis of elastoplastic material with multi-surface stress-strain relation. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2002)Google Scholar
  56. 56.
    Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Advances in Numerical Analysis 2009(Article ID 164519), 15 pages (2009). DOI 10.1155/2009/164519Google Scholar
  57. 57.
    Wieners, C.: Multigrid methods for finite elements and the application to solid mechanics. Theorie und Numerik der Prandtl-Reuß Plastizität (2000). Habilitationsschrift, Universität HeidelbergGoogle Scholar
  58. 58.
    Zeidler, E.: Nonlinear functional analysis and its applications. III. Springer-Verlag, New York (1985). Variational methods and optimization, Translated from the German by Leo F. BoronGoogle Scholar
  59. 59.
    Zienkiewicz, O.: The Finite Element Method, 3rd Expanded & rev. ed. edn. McGraw-Hill, New York (1977)Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Peter G. Gruber
    • 1
  • Johanna Kienesberger
    • 1
  • Ulrich Langer
    • 1
    Email author
  • Joachim Schöberl
    • 1
  • Jan Valdman
    • 1
  1. 1.Institute of Computational MathematicsJohannes Kepler University LinzLinzAustria

Personalised recommendations