Advertisement

Linear Partial Differential Equations and Linear Partial Differential Operators in Computer Algebra

  • Ekaterina ShemyakovaEmail author
  • Franz Winkler
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

In this survey paper we describe our recent contributions to symbolic algorithmic problems in the theory of Linear Partial Differential Operators (LPDOs). Such operators are derived from Linear Partial Differential Equations in the usual way. The theory of LPDOs has a long history, dealing with problems such as the determination of differential invariants, factorization, and exact methods of integration. The study of constructive factorization have led us to the notion of obstacles to factorization, to the construction of a full generating set of invariants for bivariate LPDOs of order 3, to necessary and sufficient conditions for the existence of a factorization in terms of generating invariants, and a result concerning multiple factorizations of LPDOs. We give links to our further work on generalizations of these results to n-variate LPDOs of arbitrary order.

Keywords

Linear Partial Differential Operators (LPDOs) Invariant Laplacian Laplace Transformation Method Incomplete Factorization Formal Adjoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Austrian Science Foundation (FWF) in the projects SFB F013/F1304 and DIFFOP, Nr. P20336-N18.

References

  1. 1.
    Anderson, I., Juras, M.: Generalized Laplace invariants and the method of Darboux. Duke J. Math. 89, 351–375 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, I., Kamran, N.: The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane. Duke J. Math. 87, 265–319 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Athorne, C.: A z ×r toda system. Phys. Lett. A. 206, 162–166 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blumberg, H.: Über algebraische Eigenschaften von linearen homogenen Differentialausdrücken. Ph.D. thesis, Göttingen (1912)Google Scholar
  5. 5.
    Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vol 2. Gauthier-Villars, Paris (1889)zbMATHGoogle Scholar
  6. 6.
    Dini, U.: Sopra una classe di equazioni a derivate parziali di second ordine con un numero qualunque di variabili. Atti Acc. Naz. dei Lincei. Mem. Classe fis., mat., nat. 4(5), 121–178 (1901) (also Opere III (1901), 489–566)Google Scholar
  7. 7.
    Dini, U.: Sopra una classe di equazioni a derivate parziali di second ordine. Atti Acc. Naz. dei Lincei. Mem. Classe fis., mat., nat., 4(5), 431–467 (1902) (also Opere III (1902), 613–660)Google Scholar
  8. 8.
    Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta Appl. Math. 51(2), 161–213 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55(2), 127–208 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Forsyth, A.R.: Theory of Differential Equations, vol. VI. Cambridge University Press, Cambridge (1906)Google Scholar
  11. 11.
    Goursat, E.: Leçons sur l’intégration des équations aux dérivées partielles du seconde ordre a deux variables indépendants, vol. 2. Paris (1898)Google Scholar
  12. 12.
    Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equations. Computing 73(2), 179–197 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Grigoriev, D., Schwarz, F.: Generalized loewy-decomposition of d-modules. In: ISSAC ’05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, pp. 163–170. ACM (2005)Google Scholar
  14. 14.
    Athorne, C., Yilmaz, H.: The geometrically invariant form of evolution equations. J. Phys. A. 35, 2619–2625 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Juras, M.: Generalized laplace invariants and classical integration methods for second order scalar hyperbolic partial differential equations in the plane. Proceedings of the Conference Differential Geometry and Applications, pp. 275–284. Brno, Czech Republic (1996)Google Scholar
  16. 16.
    Kartashova, E.: A hierarchy of generalized invariants for linear partial differential operators. TMPh (Journal of Theoretical and Mathematical Physics), 147(3), 839–846 (2006)Google Scholar
  17. 17.
    Kolchin, E.: Differential Algebra and Algebraic Groups. Academic, New York (1973)zbMATHGoogle Scholar
  18. 18.
    Li, Z., Schwarz, F., Tsarev, S.P.: Factoring systems of linear pdes with finite-dimensional solution spaces. J. Symb. Comput. 36(3–4), 443–471 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Loewy, A.: Über reduzible lineare homogene Differentialgleichungen. Math. Ann. 56, 549—584 (1903)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lorenz, A.: Jet Groupoids, Natural Bundles and the Vessiot Equivalence Method. Ph.D. thesis. RWTH Aachen University (2009)Google Scholar
  21. 21.
    Miller, F.H.: Reducible and Irreducible Linear Differential Operators. Ph.D. thesis, Columbia University (1932)Google Scholar
  22. 22.
    Le Roux, J.: Extensions de la méthode de laplace aux équations linéaires aux derivées partielles d’ordre supérieur au second. Bull. Soc. Math. de France 27, 237–262 (1899) A digitized copy is obtainable from http://www.numdam.org/
  23. 23.
    Schwarz, F.: Algorithmic Lie Theory for Solving Ordinary Differential Equations. Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2008)zbMATHGoogle Scholar
  24. 24.
    Shemyakova, E.: A full system of invariants for third-order linear partial differential operators. Lect. Notes Comput. Sci. 4120, 360–369 (2006)Google Scholar
  25. 25.
    Shemyakova, E.: The parametric factorizations of second-, third- and fourth-order linear partial differential operators on the plane. Math. Comput. Sci. 1(2), 225–237 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shemyakova, E.: Invariant properties of third-order non-hyperbolic linear partial differential operators. Lect. Notes Comput. Sci. 5625, 154–169 (2009)CrossRefGoogle Scholar
  27. 27.
    Shemyakova, E.: Multiple factorizations of bivariate linear partial differential operators. LNCS 5743, 299–309 (2009)Google Scholar
  28. 28.
    Shemyakova, E., Mansfield, E.: Moving frames for Laplace invariants. Proceedings of ISSAC’08 (The International Symposium on Symbolic and Algebraic Computation), pp. 295–302 (2008)Google Scholar
  29. 29.
    Sokolov, V.V., Startsev, S.Ya., Zhiber, A.V.: On non-linear darboux integrable hyperbolic equations. Dokl. Acad. Nauk 343(6), 746–748 (1995)Google Scholar
  30. 30.
    Shemyakova, E., Winkler, F.: Obstacle to factorization of LPDOs. In: Dumas J.-G. (ed.) Proceedings of Transgressive Computing 2006, Conference in Granada Spain, pp. 435–441, Grenoble, France (2006) Universite J. FourierGoogle Scholar
  31. 31.
    Shemyakova, E., Winkler, F.: A full system of invariants for third-order linear partial differential operators in general form. Lect. Notes Comput. Sci. 4770, 360–369 (2007)CrossRefGoogle Scholar
  32. 32.
    Shemyakova, E., Winkler, F.: Obstacles to the factorization of linear partial differential operators into several factors. Program. Comput. Softw. 33(2), 67–73 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Shemyakova, E., Winkler, F.: On the invariant properties of hyperbolic bivariate third-order linear partial differential operators. LNAI 5081 (2007)Google Scholar
  34. 34.
    Cassidy, P.J., Singer, M.F.: A Jordan-Höder theorem for differential algebraic groups. Elsevier, Amsterdam (2010)Google Scholar
  35. 35.
    Sokolov, V.V., Zhiber, A.V.: On the darboux integrable hyperbolic equations. Phys. Lett. A 208, 303–308 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tsarev, S.P., Shemyakova, E.: Differential transformations of parabolic second-order operators in the plane. Proc. Steklov Inst. Math. (Moscow) 266, 219–227 (2009). http://arxiv.org/ abs/0811.1492, submitted on 10 Nov 2008
  37. 37.
    Tsarev, S.P.: Factorization of linear partial differential operators and darboux integrability of nonlinear pdes. SIGSAM Bull. 32(4), 21–28 (1998). also Computer Science e-print cs.SC/9811002 at http://arxiv.org/abs/cs/9811002, submitted on 31 Oct 1998
  38. 38.
    Tsarev, S.P.: Generalized laplace transformations and integration of hyperbolic systems of linear partial differential equations. In: ISSAC ’05: Proceedings of the 2005 international symposium on Symbolic and algebraic computation, New York, NY, USA, pp. 325–331. ACM (2005)Google Scholar
  39. 39.
    Tsarev, S.P.: On factorization and solution of multidimensional linear partial differential equations. In: Computer Algebra 2006: Latest Advances in Symbolic Algorithms: Proceedings of the Waterloo Workshop in Computer Algebra 2006, Ontario, Canada, 10–12 April 2006, p. 181. World Scientific, Singapore (2007)Google Scholar
  40. 40.
    Wu, M.: On Solutions of Linear Functional Systems and Factorization of Modules over Laurent-Ore Algebras. Ph.D. thesis, Beijing (2005)Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.RISCJohannes Kepler UniversityLinzAustria

Personalised recommendations