Symbolic Analysis for Boundary Problems: From Rewriting to Parametrized Gröbner Bases

  • Markus RosenkranzEmail author
  • Georg Regensburger
  • Loredana Tec
  • Bruno Buchberger
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


We review our algebraic framework for linear boundary problems (concentrating on ordinary differential equations). Its starting point is an appropriate algebraization of the domain of functions, which we have named integro-differential algebras. The algebraic treatment of boundary problems brings up two new algebraic structures whose symbolic representation and computational realization is based on canonical forms in certain commutative and noncommutative polynomial domains. The first of these, the ring of integro-differential operators, is used for both stating and solving linear boundary problems. The other structure, called integro-differential polynomials, is the key tool for describing extensions of integro-differential algebras. We use the canonical simplifier for integro-differential polynomials for generating an automated proof establishing a canonical simplifier for integro-differential operators. Our approach is fully implemented in the Theorema system; some code fragments and sample computations are included.


Canonical Simplifier Integro-differential Operator Linear Boundary Problem Rota Baxter Algebras Axioms Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge gratefully the support received from the SFB F013 in Subproject F1322 (principal investigators Bruno Buchberger and Heinz W. Engl), in earlier stages also Subproject F1302 (Buchberger) and Subproject F1308 (Engl). This support from the Austrian Science Fund (FWF) was not only effective in its financial dimension (clearly a necessary but not a sufficient condition for success), but also in a “moral” dimension: The stimulating atmosphere created by the unique blend of symbolic and numerical communities in this SFB – in particular the Hilbert Seminar mentioned in Sect. 1 – has been a key factor in building up the raw material for our studies.

Over and above his general role in the genesis and evolution of the SFB F1322, we would like to thank Heinz W. Engl for encouragement, critical comments and helpful suggestions, not only but especially in the early stages of this project.

Loredana Tec is a recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences at the Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz. Georg Regensburger was partially supported by the Austrian Science Fund (FWF): J 3030-N18.

We would also like to thank an anonymous referee for giving us plenty of helpful suggestions and references that certainly increased the value of this article.


  1. 1.
    Aichinger, E., Pilz, G.F.: A survey on polynomials and polynomial and compatible functions. In: Proceedings of the Third International Algebra Conference, pp. 1–16. Kluwer, Acad. Publ., Dordrecht (2003)Google Scholar
  2. 2.
    Albrecher, H., Constantinescu, C., Pirsic, G., Regensburger, G., Rosenkranz, M.: An algebraic operator approach to the analysis of Gerber-Shiu functions. Insurance Math. Econom. 46, 42–51 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aschenbrenner, M., Hillar, C.J.: An algorithm for finding symmetric Gröbner bases in infinite dimensional rings. In: D. Jeffrey (ed.) Proceedings of ISSAC ’08, pp. 117–123. ACM, New York NY, USA(2008)Google Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and all that. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Bavula, V.V.: The group of automorphisms of the algebra of polynomial integro-differential operators (2009).
  6. 6.
    Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra (2009).
  7. 7.
    Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Becker, T., Weispfenning, V.: Gröbner bases, Graduate Texts in Mathematics, vol. 141. Springer, New York (1993). A computational approach to commutative algebra, In cooperation with Heinz KredelGoogle Scholar
  9. 9.
    Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29(2), 178–218 (1978)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bilge, A.H.: A REDUCE program for the integration of differential polynomials. Comput. Phys. Comm. 71(3), 263–268 (1992)CrossRefGoogle Scholar
  11. 11.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: Proceedings of ISSAC ’95, pp. 158–166. ACM, New York (1995)Google Scholar
  12. 12.
    Boulier, F., Ollivier, F., Lazard, D., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput. 20(1), 73–121 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bourbaki, N.: Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). Springer-Verlag, Berlin (1998)Google Scholar
  14. 14.
    Brouwer, A.E., Draisma, J.: Equivariant Gröbner bases and the Gaussian two-factor model (2009).
  15. 15.
    Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary conditions. Trans. Amer. Math. Soc. 198, 73–92 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Brown, R.C., Krall, A.M.: n-th order ordinary differential systems under Stieltjes boundary conditions. Czechoslovak Math. J. 27(1), 119–131 (1977)MathSciNetGoogle Scholar
  17. 17.
    Buchberger, B.: A Critical-Pair/Completion Algorithm for Finitely Generated Ideals in Rings. In: E. Boerger, G. Hasenjaeger, D. Roedding (eds.) Logic and Machines: Decision Problems and Complexity, LNCS, vol. 171, pp. 137–161 (1984)Google Scholar
  18. 18.
    Buchberger, B.: History and basic features of the critical-pair/completion procedure. J. Symbolic Comput. 3(1-2), 3–38 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4, 374–383 (1970). English translation: An algorithmical criterion for the solvability of a system of algebraic equations. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications, Cambridge University Press (1998)Google Scholar
  20. 20.
    Buchberger, B.: Introduction to Gröbner bases. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications. Cambridge University Press (1998)Google Scholar
  21. 21.
    Buchberger, B.: Groebner Rings. Contributed talk at International Conference on Computational Algebraic Geometry, University of Hyderabad, India (2001)Google Scholar
  22. 22.
    Buchberger, B.: Groebner rings and modules. In: S. Maruster, B. Buchberger, V. Negru, T. Jebelean (eds.) Proceedings of SYNASC 2001, pp. 22–25 (2001)Google Scholar
  23. 23.
    Buchberger, B.: Groebner Rings in Theorema: A Case Study in Functors and Categories. Tech. Rep. 2003-49, Johannes Kepler University Linz, Spezialforschungsbereich F013 (2003)Google Scholar
  24. 24.
    Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). Ph.D. thesis, Univ. of Innsbruck (1965). English translation published in J. Symbolic Comput. 41(3-4), 475–511 (2006)Google Scholar
  25. 25.
    Buchberger, B.: Groebner bases in Theorema using functors. In: J. Faugere, D. Wang (eds.) Proceedings of SCC ’08, pp. 1–15. LMIB Beihang University Press (2008)Google Scholar
  26. 26.
    Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. J. Appl. Log. 4(4), 359–652 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Buchberger, B., Loos, R.: Algebraic simplification. In: Computer algebra, pp. 11–43. Springer, Vienna (1983)Google Scholar
  28. 28.
    Bueso, J., Gómez Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Springer (2003)Google Scholar
  29. 29.
    Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26(2), 187–227 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronoto-London (1955)zbMATHGoogle Scholar
  31. 31.
    Cohn, P.M.: Introduction to Ring Theory. Springer, London (2000)CrossRefGoogle Scholar
  32. 32.
    Cohn, P.M.: Further Algebra and Applications. Springer-Verlag, London (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Cohn, P.M.: Basic Algebra: Groups, Rings and Fields. Springer, London (2003)CrossRefGoogle Scholar
  34. 34.
    Cucker, F., Shub, M. (eds.): Foundations of Computational Mathematics. Springer (1997). See for other FoCM based publications
  35. 35.
    Gelfand, I.M., Dikiĭ, L.A.: Fractional powers of operators, and Hamiltonian systems. Funkcional. Anal. i Priložen. 10(4), 13–29 (1976). English translation: Functional Anal. Appl. 10 (1976), no. 4, 259–273 (1977)Google Scholar
  36. 36.
    Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer algebra handbook. Springer-Verlag, Berlin (2003)zbMATHGoogle Scholar
  37. 37.
    Guo, L.: Baxter algebras and differential algebras. In: Differential algebra and related topics (Newark, NJ, 2000), pp. 281–305. World Sci. Publ., River Edge, NJ (2002)Google Scholar
  38. 38.
    Guo, L.: What isa Rota-Baxter algebra? Notices Amer. Math. Soc. 56(11), 1436–1437 (2009)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Algebra 212(3), 522–540 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Guo, L., Sit, W.Y.: Enumeration and generating functions of differential Rota-Baxter words. Math. Comput. Sci. (2011).
  41. 41.
    Guo, L., Sit, W.Y.: Enumeration and generating functions of Rota-Baxter words. Math. Comput. Sci. (2011).
  42. 42.
    Helton, J., Stankus, M.: NCGB 4.0: A noncommutative Gröbner basis package for mathematica (2010).
  43. 43.
    Hillar, C.J., Sullivant, S.: Finite Gröbner bases in infinite dimensional polynomial rings and applications (2009).
  44. 44.
    Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms ii: Differential systems. In: U. Langer, F. Winkler (eds.) Symbolic and Numerical Scientific Computations, Lecture Notes in Computer Science, vol. 2630. Springer (2003)Google Scholar
  45. 45.
    Hule, H.: Polynome über universalen Algebren. Monatsh. Math. 73, 329–340 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Keigher, W.F.: On the ring of Hurwitz series. Comm. Algebra 25(6), 1845–1859 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146(3), 291–304 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kolchin, E.: Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54. Academic Press, New York (1973)Google Scholar
  49. 49.
    Korporal, A., Regensburger, G., Rosenkranz, M.: A Maple package for integro-differential operators and boundary problems. ACM Commun. Comput. Algebra 44(3), 120–122 (2010). Also presented as a poster at ISSAC ’10Google Scholar
  50. 50.
    Köthe, G.: Topological Vector Spaces (Volume I). Springer, New York (1969)CrossRefGoogle Scholar
  51. 51.
    La Scala, R., Levandovskyy, V.: Letterplace ideals and non-commutative Gröbner bases. J. Symbolic Comput. 44(10), 1374–1393 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Lang, S.: Real and Functional Analysis, Graduate Texts in Mathematics, vol. 142. Springer, New York (1993)CrossRefGoogle Scholar
  53. 53.
    Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)Google Scholar
  54. 54.
    Lausch, H., Nöbauer, W.: Algebra of Polynomials, North-Holland Mathematical Library, vol. 5. North-Holland Publishing Co., Amsterdam (1973)CrossRefGoogle Scholar
  55. 55.
    Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and future. In: Mathematical software—ICMS 2006, LNCS, vol. 4151, pp. 144–157. Springer, Berlin (2006)Google Scholar
  56. 56.
    Levandovskyy, V.: Gröbner basis implementations: Functionality check and comparison. Website (2008).
  57. 57.
    Madlener, K., Reinert, B.: String rewriting and Gröbner bases—a general approach to monoid and group rings. In: Symbolic rewriting techniques, Progr. Comput. Sci. Appl. Logic, vol. 15, pp. 127–180. Birkhäuser, Basel (1998)Google Scholar
  58. 58.
    Madlener, K., Reinert, B.: Gröbner bases in non-commutative reduction rings. In: B. Buchberger, F. Winkler (eds.) Gröbner Bases and Applications, pp. 408–420. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  59. 59.
    Madlener, K., Reinert, B.: Non-commutative reduction rings. Rev. Colombiana Mat. 33(1), 27–49 (1999)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Mikusiński, J.: Operational Calculus. Pergamon Press, New York (1959)zbMATHGoogle Scholar
  61. 61.
    Mora, F.: Groebner bases for non-commutative polynomial rings. In: AAECC-3: Proceedings of the 3rd International Conference on Algebraic Algorithms and Error-Correcting Codes, pp. 353–362. Springer, London, UK (1986)Google Scholar
  62. 62.
    Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci. 134(1), 131–173 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Nashed, M.Z., Votruba, G.F.: A unified operator theory of generalized inverses. In: M.Z. Nashed (ed.) Generalized Inverses and Applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973), pp. 1–109. Academic Press, New York (1976)Google Scholar
  64. 64.
    van der Put, M., Singer, M.F.: Galois Theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 328. Springer, Berlin (2003)CrossRefGoogle Scholar
  65. 65.
    Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. (2) 68, 210–220 (1958)Google Scholar
  66. 66.
    Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4) 188(1), 123–151 (2009)Google Scholar
  67. 67.
    Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: J.P. May (ed.) Proceedings of ISSAC ’09, pp. 287–294. ACM, New York, NY, USA (2009)Google Scholar
  68. 68.
    Reutenauer, C.: Free Lie Algebras, vol. 7. The Clarendon Press Oxford University Press, New York (1993)zbMATHGoogle Scholar
  69. 69.
    Rosenkranz, M.: The Green’s algebra: A polynomial approach to boundary value problems. Phd thesis, Johannes Kepler University, Research Institute for Symbolic Computation (2003). Also available as RISC Technical Report 03-05, July 2003Google Scholar
  70. 70.
    Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value problems via non-commutative Gröbner bases. Appl. Anal. 82, 655–675 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput. 43(8), 515–544 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: D. Jeffrey (ed.) Proceedings of ISSAC ’08, pp. 261–268. ACM, New York (2008)CrossRefGoogle Scholar
  74. 74.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: V.P. Gerdt, E.W. Mayr, E.H. Vorozhtsov (eds.) Computer Algebra in Scientific Computing. Proceedings of the 11th International Workshop (CASC 2009), LNCS, vol. 5743, pp. 269–283. Springer, Berlin (2009)CrossRefGoogle Scholar
  75. 75.
    Rota, G.C.: Baxter algebras and combinatorial identities (I, II). Bull. Amer. Math. Soc. 75, 325–334 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Rota, G.C.: Ten mathematics problems I will never solve. Mitt. Dtsch. Math.-Ver. (2), 45–52 (1998)MathSciNetGoogle Scholar
  77. 77.
    Salvy, B., Zimmerman, P.: Gfun: a maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)CrossRefzbMATHGoogle Scholar
  78. 78.
    Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: Proceedings of ISSAC ’89, pp. 17–25. ACM, New York (1989)Google Scholar
  79. 79.
    Seiler, W.: Computer algebra and differential equations: An overview. mathPAD 7, 34–49 (1997)Google Scholar
  80. 80.
    Stakgold, I.: Green’s Functions and Boundary Value Problems. John Wiley & Sons, New York (1979)zbMATHGoogle Scholar
  81. 81.
    Stifter, S.: A generalization of reduction rings. J. Symbolic Comput. 4(3), 351–364 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Stifter, S.: Gröbner bases of modules over reduction rings. J. Algebra 159(1), 54–63 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Tec, L., Regensburger, G., Rosenkranz, M., Buchberger, B.: An automated confluence proof for an infinite rewrite system parametrized over an integro-differential algebra. In: K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (eds.) Mathematical Software - Proceedings of ICMS 2010., LNCS, vol. 6327, pp. 245–248. Springer (2010)Google Scholar
  84. 84.
    Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In: Proceedings of ISSAC ’96, pp. 226–231. ACM, New York (1996)Google Scholar
  85. 85.
    Ufnarovski, V.: Introduction to noncommutative Gröbner bases theory. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications, pp. 259–280. Cambridge University Press (1998)Google Scholar
  86. 86.
    Ufnarovskij, V.A.: Combinatorial and asymptotic methods in algebra. In: Algebra, VI, Encyclopaedia Math. Sci., vol. 57, pp. 1–196. Springer, Berlin (1995)Google Scholar
  87. 87.
    Windsteiger, W.: Building up hierarchical mathematical domains using functors in Theorema. Electr. Notes Theor. Comput. Sci. 23(3), 401–419 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Markus Rosenkranz
    • 1
    Email author
  • Georg Regensburger
    • 2
    • 3
  • Loredana Tec
    • 4
  • Bruno Buchberger
    • 4
  1. 1.School of Mathematics, Statistics and Actuarial Science (SMSAS)University of KentCanterburyUK
  2. 2.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  3. 3.INRIA Saclay – Île de France, Project DISCOGif-sur-Yvette CedexFrance
  4. 4.Research Institute for Symbolic Computation (RISC)Johannes Kepler UniversityHagenbergAustria

Personalised recommendations