Advertisement

Sound and Complete Verification Condition Generator for Functional Recursive Programs

  • Nikolaj PopovEmail author
  • Tudor Jebelean
Chapter
  • 1.3k Downloads
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

We present a method for verifying recursive functional programs by defining a verification condition generator (VCG) which covers the most frequent type of recursive programs. These programs may operate on arbitrary domains. We prove soundness and completeness of the VCG and this provides a warranty that any system based on our results will be sound. We introduce here the notion of completeness of a VCG as a duality of soundness. Completeness is important for the following two reasons: theoretically, it is the dual of soundness and practically, it helps debugging. Any counterexample for the failing verification condition will carry over to a counterexample for the given program and specification. Moreover, the failing proof gives information about the place of the bug. Furthermore, we introduce a specialized strategy for termination. The termination problem is reduced to the termination of a simplified version of the program. The conditions for the simplified versions are identical for special classes of functional programs, thus they are highly reusable.

Keywords

Input Condition Program Schema Symbolic Execution Verification Condition Total Correctness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    de Bakker, J.W., Scott, D.: A Theory of Programs. In IBM Seminar, Vienna, Austria (1969)Google Scholar
  3. 3.
    Bernhard, B., Reiner, H., Peter, H.S. (ed.): Verification of Object-Oriented Software: The KeY Approach. vol. 4334, LNCS, Springer (2007)Google Scholar
  4. 4.
    Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin (2004)Google Scholar
  5. 5.
    Blanqui, F., Hinderer, S., Coupet-Grimal, S., Delobel, W., Kroprowski, A.: CoLoR, a Coq Library on Rewriting and Termination. In: Geser, A., Søndergaard, H. (eds.) Proceedings of 8th International Workshop on Termination, Seattle, WA, USA (2006)Google Scholar
  6. 6.
    Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic Press Professional, Incorporation, San Diego, CA, USA (1988)zbMATHGoogle Scholar
  7. 7.
    Buchberger, B.: Algorithm Supported Mathematical Theory Exploration: A Personal View and Stragegy. In: Buchberger, B. John Campbell, (eds.) Proceedings of AISC 2004 (7th International Conference on Artificial Intelligence and Symbolic Computation), Springer Lecture Notes in Artificial Intelligence, vol. 3249, pp. 236–250. Springer, Berlin 22–24 (2004)Google Scholar
  8. 8.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria (1965). (English translation Journal of Symbolic Computation 41 (2006) 475–511).Google Scholar
  9. 9.
    Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (eds.) Multidimensional Systems Theory – Progress, Directions and Open Problems in Multidimensional Systems, pp. 184–232. Reidel Publishing Company, Dodrecht, Boston, Lancaster (1985)Google Scholar
  10. 10.
    Buchberger, B.: Towards the Automated Synthesis of a Groebner Bases Algorithm. RACSAM – Revista de la Real Academia de Ciencias (Review of the Spanish Royal Academy of Science), Serie A: Mathematicas, 98(1), 65–75 (2004)Google Scholar
  11. 11.
    Buchberger, B., Affenzeller, M., Ferscha, A., Haller, M., Jebelean, T., Klement, E.P., Paule, P., Pomberger, G., Schreiner, W., Stubenrauch, R., Wagner, R., Weiß, G., Windsteiger, W.: Hagenberg Research. Springer, 1st edition (2009)Google Scholar
  12. 12.
    Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards Computer-Aided Mathematical Theory Exploration. J. Appl. Logic pp. 470–504 (2006)Google Scholar
  13. 13.
    Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Vasaru, D., Windsteiger, W.: The Theorema Project: A Progress Report. In Calculemus 2000: Integration of Symbolic Computation and Mechanized Reasoning, Calculemus (2000)Google Scholar
  14. 14.
    Buchberger, B., Lichtenberger, F.: Mathematics for Computer Science I – The Method of Mathematics (in German). Springer, 2nd edition (1981)Google Scholar
  15. 15.
    Chlipala, A.: A Verified Compiler for an Impure Functional Language. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’10), pp. 237–248. New York, NY, USA (2010)Google Scholar
  16. 16.
    Floyd, R.W.: Assigning Meanings to Programs. In Proceedings of Symphosia in Applied Mathematics 19, pp. 19–37 (1967)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gordon, M.: From LCF to HOL: A Short History. pp. 169–185. MIT Press, MA, USA (2000)Google Scholar
  18. 18.
    Greibach, S.A.: Theory of Program Structures: Schemes, Semantics, Verification. Springer, New York, Secaucus, NJ, USA (1985)zbMATHGoogle Scholar
  19. 19.
    Hildebrand, B.F.: Introduction to Numerical Analysis: 2nd Edition. Dover Publications, New York, NY, USA (1987)zbMATHGoogle Scholar
  20. 20.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12(10), 576–580 (1969)CrossRefzbMATHGoogle Scholar
  21. 21.
  22. 22.
    Homeier, P.V., Martin, D.F.: Secure Mechanical Verification of Mutually Recursive Procedures. Inf. Comput. 187(1), 1–19 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Neil, I.: Computability and Complexity. In: Edward, N. Zalta, (eds) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition). http://plato.stanford.edu/archives/fall2008/entries/computability
  24. 24.
    Kaufmann, M., Moore, J.S.: An Industrial Strength Theorem Prover for a Logic Based on Common Lisp. Software Eng. 23(4), 203–213 (1997)CrossRefGoogle Scholar
  25. 25.
    Langford, W.J., Broadbent, T.A.A., Goodstein, R.L.: Obituary: Professor Eric Harold Neville. Math. Gaz. 48(364), 131–145 (1964)Google Scholar
  26. 26.
    Rustan, K., Leino, M., Peter, M., Jan, S.: Verification of Concurrent Programs with Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) Foundations of Security Analysis and Design V, pp. 195–222. Springer, New York (2009)Google Scholar
  27. 27.
    Loeckx, J., Sieber, K.: The Foundations of Program Verification. Teubner, 2nd edition (1987)Google Scholar
  28. 28.
    Luckham, D.C., Park, D.M.R., Paterson, M.: On Formalised Computer Programs. J. Comput. Syst. Sci. 4(3), 220–249 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)zbMATHGoogle Scholar
  30. 30.
    Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification Condition Generation Via Theorem Proving. In: Hermann, M., Voronkov, A. (eds.) In Proceedings of the 13th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2006), LNCS, vol. 4246, pp. 362–376. Phnom Penh, Cambodia (2006)CrossRefGoogle Scholar
  31. 31.
    Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)CrossRefGoogle Scholar
  32. 32.
    Neville, E.H.: Iterative Interpolation. J. Indian Math. Soc. 20, 87–120 (1934)Google Scholar
  33. 33.
    Peter, R.: Rekursive Funktionen in der Komputer-Theorie. Verlag d. ungarisch. Akademie d. Wiss., Budapest (1976)Google Scholar
  34. 34.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2 edition (1992)Google Scholar
  35. 35.
    PVS group: PVS Specification and Verification System. http://pvs.csl.sri.com (2004)
  36. 36.
    Smith, D.R.: Top-Down Synthesis of Divide-and-Conquer algorithms. Artif. Intell. 27(1), 43–96 (1985)CrossRefzbMATHGoogle Scholar
  37. 37.
  38. 38.
    van der Voort, M.: Introducing Well-founded Function Definitions in HOL. In Higher Order Logic Theorem Proving and its Applications: Proceedings of the IFIP TC10/WG10.2 Workshop, pp. 117–132 (1992)Google Scholar
  39. 39.
    Walter, S.B., Lawrence, H.L.: Theory of Computation. Wiley, New York, NY, USA (1974)Google Scholar
  40. 40.
    Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana, S. Scott, Lecture Notes in Computer Science. vol. 3600, Springer (2006)Google Scholar
  41. 41.
    Zee, K., Kuncak, V., Rinard, M.C.: Full Functional Verification of Linked Data Structures. In Proceedings of the 30th ACM Conference on Programming Language Design and Implementation, pp. 349–361 (2008)Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations