Approximate Implicitization of Space Curves

  • Martin Aigner
  • Bert JüttlerEmail author
  • Adrien Poteaux
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


The process of implicitization generates an implicit representation of a curve or surface from a given parametric one. This process is potentially interesting for applications in Computer Aided Design, where the robustness and efficiency of intersection algorithm can be improved by simultaneously considering implicit and parametric representations. This paper gives an brief survey of the existing techniques for approximate implicitization of hyper surfaces. In addition it describes a framework for the approximate implicitization of space curves.


Approximate Implicitization Space Curve Hyper Surface Sampson Distance field Gradient Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aigner, M., Jüttler, B.: Hybrid curve fitting. Computing 79, 237–247 (2007)zbMATHGoogle Scholar
  2. 2.
    Aigner, M., Jüttler, B.: Robust fitting of implicitly defined surfaces using Gauss–Newton–type techniques. Visual Comput. 25, 731–741 (2009)CrossRefGoogle Scholar
  3. 3.
    Aigner, M., Jüttler, B., Kim, M.-S.: Analyzing and enhancing the robustness of implicit representations. In Geometric Modelling and Processing, pp. 131–142. IEEE Press (2004)Google Scholar
  4. 4.
    Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer, Secaucus (1998)CrossRefGoogle Scholar
  5. 5.
    Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by moving quadrics for rational surfaces with no base points. J. Symb. Comput. 29(3), 419–440 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, Secaucus, NJ, USA (2005)zbMATHGoogle Scholar
  7. 7.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer, Secaucus, NJ, USA (2007)CrossRefGoogle Scholar
  8. 8.
    Dixon, A.L.: The eliminant of three quantics in two independents variables. Proc. London Math. Soc. 6, 49–69 (1908)Google Scholar
  9. 9.
    Dokken, T.: Aspects of Intersection Algorithms and Approximation. PhD thesis, University of Oslo (1997)Google Scholar
  10. 10.
    Dokken, T.: Approximate implicitization. In Mathematical Methods for Curves and Surfaces, pp. 81–102. Vanderbilt University Press, Nashville, TN (2001)Google Scholar
  11. 11.
    Dokken, T., Kellerman, H.K., Tegnander, C.: An approach to weak approximate implicitization. In Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 103–112. Vanderbilt University, Nashville, TN, USA (2001)Google Scholar
  12. 12.
    Dokken, T., Thomassen, J.: Overview of approximate implicitization. In Topics in Algebraic Geometry and Geometric Modeling, vol. 334, pp. 169–184. Amer. Math. Soc., Providence, RI (2003)Google Scholar
  13. 13.
    Feichtinger, R., Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Dual evolution of planar parametric spline curves and T–spline level sets. Comput. Aided Des. 40, 13–24 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Feichtinger, R., Jüttler, B., Yang, H.: Particle-based T-spline level set evolution for 3D object reconstruction with range and volume constraints. In: Cunningham, S., Skala, V. (eds.) Proc. WSCG, pp. 49–56. University of Plzen, Union Press (2008)Google Scholar
  15. 15.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A K Peters Wellesley, MA (1993)zbMATHGoogle Scholar
  16. 16.
    Jüttler, B., Felis, A.: Least–squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jüttler, B., Wurm, E.: Approximate implicitization via curve fitting. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Symposium on Geometry Processing, pp. 240–247. New York, Eurographics/ACM Press (2003)Google Scholar
  18. 18.
    Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences. vol. 153, Springer, New York (2003)Google Scholar
  19. 19.
    Pratt, V.: Direct least-squares fitting of algebraic surfaces. SIGGRAPH Comput. Graph. 21(4), 145–152 (1987)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Salmon, G.: A treatise on the analytic geometry of three dimensions. Hodges, Figgis and Co., 4th ed. (1882)Google Scholar
  21. 21.
    Sederberg, T.W.: Implicit and parametric curves and surfaces for computer aided geometric design. PhD thesis, Purdue University, West Lafayette, IN, USA (1983)Google Scholar
  22. 22.
    Sederberg, T.W., Chen, F.: Implicitization using moving curves and surfaces. Comput. Graph. 29(Annual Conference Series), 301–308 (1995)Google Scholar
  23. 23.
    Sederberg, T.W., Parry, S.R.: Comparison of three curve intersection algorithms. Comput. Aided Des. 18(1), 58–64 (1986)CrossRefGoogle Scholar
  24. 24.
    Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)CrossRefGoogle Scholar
  25. 25.
    Wurm, E.: Approximate Techniques for the Implicitisation and Parameterisation of Surfaces. PhD thesis, Johannes Kepler University, Linz, Austria (2005)Google Scholar
  26. 26.
    Wurm, E., Thomassen, J.B., Jüttler, B., Dokken, T.: Comparative benchmarking of methods for approximate implicitization. In: Neamtu, M., Lucian, M. (eds.) Geometric Modeling and Computing: Seattle 2003, pp. 537–548. Nashboro Press, Brentwood (2004)Google Scholar
  27. 27.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In Shape Modeling International, pp. 247–252. IEEE Press (2006)Google Scholar
  28. 28.
    Yang, H., Jüttler, B.: Evolution of T-spline level sets for meshing non–uniformly sampled and incomplete data. Visual Comput. 24, 435–448 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.University of LilleLilleFrance

Personalised recommendations