Skip to main content

Chemistry of the Immunomodulatory Macrolide Ascomycin and Related Analogues

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products Vol. 94

Abstract

Ascomycin and its close homologue tacrolimus are highly complex macrocyclic natural compounds isolated from the fermentation broths of Streptomyces hygroscopicus var. ascomyceticus and Streptomyces tsukubaensis. They are potent T-cell inhibitors of the phosphatase calcineurin, as is cyclosporin A, which, apart from its therapeutic value to inhibit transplant rejection, was found in the 1980s to be highly efficacious after oral application in the treatment of inflammatory skin diseases. However, efforts failed in rendering this calcineurin inhibitor as a topical agent to minimize its systemic side effects. Using a new and human-related skin inflammation model, calcineurin inhibitors of the ascomycin- and tacrolimus-type were shown to be highly effective after topical application and thus provided the first pharmacological evidence of a novel class of anti-inflammatory agents for topical treatment. The following extensive medicinal chemistry efforts finally resulted in the selection of the ascomycin derivative pimecrolimus for development, due to its favorable pharmacological and safety profiles. Since 2001/2, the new class of topical calcineurin inhibitors, represented by pimecrolimus cream and tacrolimus ointment, has become the first and only alternative to topical corticosteroids for the treatment of the inflammatory skin diseases atopic dermatitis. The presently available biological properties and clinical data of pimecrolimus are summarized.

Medicinal chemistry efforts aimed at an understanding of the structure-activity relationships required a detailed understanding of the chemical properties of the highly complex macrolactam structure of ascomycin and its derivatives, and elaboration and establishment of methodologies to selectively protect, modify and transform the structural elements. This chapter summarizes for the first time the extensive chemical efforts from our laboratories and also discusses the work published by others in this field.

Owing to the complex structure in the macrophilin binding tricarbonyl domain, the active compounds exist as mixtures of several isomers. The potential equilibrium products including “furano-ascomycins” have been synthesized. The tricarbonyl moiety is highly sensitive and undergoes a benzilic acid-type of rearrangement, and this has been elaborated for synthesizing labeled ascomycins. Protocols have been developed resulting in selective reactions of diazomethane with tacrolimus. A new class of derivatives termed “cyclo-ascomycins” arising through cyclization in the binding domain has been synthesized. In addition to the synthesis of various other derivatives through selective reactions in the tricarbonyl region, photochemical investigations have led to novel modifications on the pipecolic acid unit. Protocols have been developed for cleavage of the C-1−C-9 unit comprising pipecolic acid and modification of the fragment to new analogues featuring new amino acids in place of pipecolic acid. In the effector side of the molecule, analogues have been prepared through allylic oxidation at C-18, epimerization of C-21, modification of the C-21−allyl side chain through Grubbs’ cross metathesis reactions, and dehydration of the C-24−OH followed by selective addition reactions to the resulting enone. On the cyclohexyl part of the molecule, demethylation, introduction of additional hydroxy groups, extensive derivatization of the C-33−OH, and ring contractions have been achieved. The ring-contracted derivative, SDZ 281–240, was the first topical calcineurin inhibitor to demonstrate clinical proof of concept in patients with an inflammatory skin disease. Furthermore, the cyclohexyl-methylidene group was replaced successfully with several moieties. The synthesis of iso-ascomycin, a ring contracted derivative, and its further chemistry are summarized.

In conclusion, the chapter summarizes the extensive chemistry and biology studies on a natural product, which have resulted in a novel therapy approved worldwide. This underscores the importance of natural products as a versatile source of novel structures with unique biological acitivities.

M.A.R.C. Bulusu and K. Baumann are former employees of Novartis Institutes for BioMedical Research Vienna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goto T, Kino T, Hatanaka H, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1991) FK506: Historical Perspectives. Transplant Proc 23: 2713

    CAS  Google Scholar 

  2. Goto T, Kino T, Hatanaka H, Nishiyama M, Okuhara M, Kosaka M, Aoki H, Imanaka H (1987) Discovery of FK-506, a Novel Immunosuppressant Isolated from Streptomyces tsukubaensis. Transplant Proc 19: 4

    CAS  Google Scholar 

  3. Tanaka H, Kuroda A, Marusawa H, Hashimoto M, Hatanaka H, Kino T, Goto T, Okuhara M (1987) Physicochemical Properties of FK-506, a Novel Immunosuppressant Isolated from Streptomyces tskubaensis. Transplant Proc 19 (Suppl 6): 11

    CAS  Google Scholar 

  4. Arai T, Koyama Y, Suenaga T, Honda H (1962) Ascomycin as Antifungal Antibiotic. J Antibiotics 15 (Ser. A): 231

    CAS  Google Scholar 

  5. Hatanaka H, Iwami M, Kino T, Goto T, Okuhara M (1988) FR-900520 and FR-900523, Novel Immunosuppressants Isolated from a Streptomyces. I. Taxonomy of the Producing Strain. J Antibiotics 41: 1586

    CAS  Google Scholar 

  6. Hatanaka H, Kino T, Miyata S, Inamura N, Kuroda A, Goto T, Tanaka H, Okuhara M (1988) FR-900520 and FR-900523, Novel Immunosuppressants Isolated from a Streptomyces. II. Fermentation, Isolation and Physicochemical and Biological Characteristics. J Antibiotics 41: 1592

    CAS  Google Scholar 

  7. Morisaki M, Arai T (1992) Identity of Immunosuppressant FR-900520 with Ascomycin. J Antibiotics 45: 126

    CAS  Google Scholar 

  8. Borris RP, Wicker LS, Zink DL, Lien T (1990) Eur Pat Appl EP 358508; Chem Abstr 113: 38913

    Google Scholar 

  9. Fleissner G, Haecker H, Kuesters E, Penn G (2001) PCT Int Appl WO 0190110; Chem Abstr 136: 4783

    Google Scholar 

  10. Junker B, Reddy J, Olewinski R, Gailliot P, Byrne K, Gbewonyo K (1998) Secondary Metabolite Scale-Up to Minimize Homolog Impurity Levels. Biotechnol Bioengineer 59: 595

    CAS  Google Scholar 

  11. Hatanaka H, Kino T, Asano M, Goto T, Tanaka H, Okuhara M (1989) FK-506 Related Compounds Produced by Streptomyces tsukubaensis No. 9993. J Antibiotics 42: 620

    CAS  Google Scholar 

  12. Chen TS, Arison BH, Wicker LS, Inamine ES, Monaghan RL (1992) Microbial Transformation of Immunosuppressive Compounds. I. Desmethylation of FK 506 and Immunomycin (FR 900520). J Antibiotics 45: 118

    CAS  Google Scholar 

  13. Haag M, Baumann K, Billich A, Bulusu M, Fehr T, Grassberger M, Haidl E, Schulz G, Sanglier JJ (1998) Bioconversion of Ascomycin and its 6-Alkoxy Derivatives. J Mol Catal B: Enzymat 5: 389

    CAS  Google Scholar 

  14. Arison BH, Inamine ES, Chen SST, Wicker LS (1990) Eur Pat Appl EP 378321; Chem Abstr 115: 112812

    Google Scholar 

  15. Shafiee A, Kaplan L, Dumont F, Colwell LF, Arison BH (1992) Can Pat Appl CA 2071066; Chem Abstr 118: 253402

    Google Scholar 

  16. Schueler W, Christians U, Schmieder P, Schiebel HM, Holze I, Sewing KF, Kessler H (1993) 159. Structural Investigations of 13-O-Desmethyl-FK506 and its Isomers Generated by in vitro Metabolism of FK506 Using Human Liver Microsomes. Helv Chim Acta 76: 2288

    CAS  Google Scholar 

  17. Revill WP, Voda J, Reeves CR, Chung L, Schirmer A, Ashley G, Carney JR, Fardis M, Carreras CW, Zhou Y, Feng L, Tucker E, Robinson D, Gold BG (2002) Genetically Engineered Analogs of Ascomycin for Nerve Regeneration. J Pharmacol Exp Ther 302: 1278

    CAS  Google Scholar 

  18. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a New Antifungal Antibiotic. I. Taxonomy of the Producing Streptomycete and Isolation of the Active Principle. J Antibiotics 28: 721

    CAS  Google Scholar 

  19. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a New Antifungal Antibiotic. II. Fermentation, Isolation and Characterization. J Antibiotics 28: 727

    CAS  Google Scholar 

  20. Martel RR, Klicius J, Galet S (1977) Inhibition of the Immune Response by Rapamycin, a New Antifungal Antibiotic. Can J Physiol Pharmacol 55: 48

    CAS  Google Scholar 

  21. Meiser BM, Wang J, Morris RE (1989) Rapamycin: A new and highly active immunosuppressive macrolide with an efficacy superior to cyclosporine. In: Melchers F (ed) Progress in Immunology, vol VII: Proceedings of the 7th International Congress of Immunology, Springer-Verlag Berlin Heidelberg, p 1195

    Google Scholar 

  22. Morris RE, Meiser BM, Wu J, Shorthouse R, Wang J (1991) Use of Rapamycin for the Suppression of Alloimmune Reactions in vivo: Schedule Dependence, Tolerance Inductions, Synergy with Cyclosporine and FK 506, and Effect of Host-Versus-Graft and Graft-Versus-Host Reactions. Transplant Proc 23: 521

    CAS  Google Scholar 

  23. Fehr T, Sanglier JJ, Schuler W, Gschwind L, Ponelle M, Schilling W, Wioland C (1996) Antascomycins A, B, C, D and E. Novel FKBP12 Binding Compounds from a Micromonospora Strain. J Antibiotics 49: 230

    CAS  Google Scholar 

  24. Meingassner JG, Stuetz A (1992) Immunosuppressive Macrolides of the Type FK506: A Novel Class of Topical Agents for Treatment of Skin Diseases? J Invest Dermatol 98: 851

    CAS  Google Scholar 

  25. Rappersberger K, Meingassner JG, Födinger D, Putz E, Fialla R, Tong D, Stuetz A, Wolff K (1996) Clearing of Psoriasis by a Novel Macrolide. J Invest Dermatol 106: 701

    CAS  Google Scholar 

  26. Stuetz A, Grassberger MA, Baumann K, Edmunds AJF, Hiestand P, Meingassner JG, Nussbaumer P, Schuler W, Zenke G (1993) Immunophilins as Drug Targets. In: Testa B, Kyburz E, Fuhrer W, Giger R (eds) Perspectives in Medicinal Chemistry. Verl Helvetica Chimica Acta, Basel, p 427

    Google Scholar 

  27. Grassberger M, Meingassner J, Stuetz A, Wolff K (1998) Ascomycins. In: Roenigk HH, Maibach HI (eds) Psoriasis, 3rd edn. Marcel Dekker, Inc. New York, Basel, Hong Kong, Chapter 66, p 769

    Google Scholar 

  28. Stuetz A, Baumann K, Grassberger M, Wolff K, Meingassner JG (2006) Discovery of Topical Calcineurin Inhibitors and Pharmacological Profile of Pimecrolimus. Int Arch Allergy Immunol 141: 199

    CAS  Google Scholar 

  29. Grassberger M, Baumruker T, Enz A, Hiestand P, Hultsch T, Kalthoff F, Schuler W, Schulz M, Werner FJ, Winiski A, Wolff B, Zenke G (1999) A Novel Anti-inflammatory Drug, SDZ ASM 981, for the Treatment of Skin Diseases: in vitro Pharmacology. Br J Dermatol 141: 264

    CAS  Google Scholar 

  30. Kalthoff FS, Winiski A, Fichtinger P, Schwendinger B, Wang S, Weishaeupl C, Stuetz A (2007) Differential Inhibition of Primary versus Pre-activated T Cells by Pimecrolimus but not by Tacrolimus in vitro. Int Arch Allergy Immunol 142: 255

    CAS  Google Scholar 

  31. Hultsch T, Müller KD, Meingassner JG, Grassberger M, Schopf RE, Knop J (1998) Ascomycin Macrolactam Derivative SDZ ASM 981 Inhibits the Release of Granule Associated Mediators and of Newly Synthesized Cytokines in RBL 2 H3 Mast Cells in an Immunophilin-Dependent Manner. Arch Dermatol. Res 290: 501

    CAS  Google Scholar 

  32. Kalthoff F, Chung J, Musser P, Stuetz A (2003) Pimecrolimus does not Affect the Differentiation, Maturation and Function of Human Monocyte-Derived Dendritic Cells, in Contrast to Corticosteroids. Clin Exp Immunol 133: 350

    CAS  Google Scholar 

  33. Büchau A, Schauber J, Hultsch T, Stuetz A, Gallo R (2008) Pimecrolimus Enhances Antimicrobial Peptide Expression in Keratinocytes. J Invest Dermatol 128: 2646

    Google Scholar 

  34. Billich A, Aschauer H, Aszody A, Stuetz A (2004) Percutaneous Absorption of Drugs Used in Atopic Eczema: Pimecrolimus Permeates Less Through Skin than Corticosteroids and Tacrolimus. Int J Pharmaceutics 269: 29

    CAS  Google Scholar 

  35. Meingassner JG, Aschauer H, Stuetz A, Billich A. (2005) Pimecrolimus Permeates Less than Tacrolimus Through Normal, Inflamed or Corticosteroid Pre-treated Skin. Exp Dermatol 14: 752

    CAS  Google Scholar 

  36. Meingassner JG, Grassberger M, Fahrngruber H, Moore HD, Schuurman H, Stütz A (1997) A Novel Anti-inflammatory Drug, SDZ ASM 981, for the Topical and Oral Treatment of Skin Diseases: in vivo Pharmacology. Br J Dermatol 137: 568

    CAS  Google Scholar 

  37. Meingassner JG, Kowalsky E, Schwendinger H, Elbe-Buerger A, Stuetz A (2003) Pimecrolimus does not Affect Langerhans Cells in Murine Epidermis, in Contrast to Corticosteroids. Br J Dermatol 149: 853

    CAS  Google Scholar 

  38. Hoetzenecker W, Meingassner JG, Ecker R, Stingl G, Stuetz A, Elbe-Buerger A (2004) Corticosteroids but not Pimecrolimus Affect Viability, Maturation and Immune Function of Murine Epidermal Langerhans Cells. J Invest Dermatol 122: 673

    CAS  Google Scholar 

  39. Hoetzenecker W, Ecker R, Kopp T, Stuetz A, Stingl G, Elbe-Bürger A (2005) Pimecrolimus Leads to an Apoptosis-induced Depletion of T Cells but not Langerhans Cells in Patients with Atopic Dermatitis: Results from a Randomized, Double-blind, Vehicle-controlled Clinical Trial. J Allergy Clin Immunol 115: 1276

    CAS  Google Scholar 

  40. Meingassner JG, Fahrngruber H, Bavandi A (2003) Pimecrolimus Inhibits the Elicitation Phase but does not Suppress the Sensitization Phase in Murine Contact Hypersensitivity, in Contrast to Tacrolimus and Cyclosporin A. J Invest Dermatol 121: 77

    CAS  Google Scholar 

  41. Bavandi A, Fahngruber H, Aschauer A, Hartmann B, Meingassner JG, Kalthoff FS (2006) Pimecrolimus and Tacrolimus Differ in their Inhibition of Lymphocyte Activation During the Sensitization Phase of Contact Hypersensitivity. J Dermatol Sci 43: 117

    CAS  Google Scholar 

  42. Stuetz A, Grassberger M, Meingassner JG (2001) Pimecrolimus (Elidel®, SDZ ASM 981) – Preclinical Pharmacological Profile and Skin Selectivity. Sem Cutan Med Surg 20: 233

    CAS  Google Scholar 

  43. Nell B, Walde I, Billich A, Vit P, Meingassner JG (2005) The Effect of Topical Pimecrolimus on Keratoconjunctivitis Sicca and Chronic Superficial Keratitis in Dogs: Results from an Exploratory Study. Vet Ophthal 8: 39

    CAS  Google Scholar 

  44. Hiestand PC, Feifel R, Stuetz A (2003) Pimecrolimus (SDZASM981, Elidel®) is Highly Effective in Two Rat Models of Rheumatoid Arthritis. Inflammat Res (Suppl. 2): S 157

    Google Scholar 

  45. Moore H, Tyldesley M, Martland A, Edjlalipour M (2003) Pimecrolimus Protects Mice from Developing T Cell-induced Inflammatory Bowel Disease without Systemic Immunosuppression, in Contrast to Tacrolimus or Cyclosporine A. J Invest Dermatol 121, Abstr. 868

    Google Scholar 

  46. Wolff K, Stuetz A (2004) Pimecrolimus for the Treatment of Inflammatory Skin Disease. Expert Opin Pharmacother 5: 643

    CAS  Google Scholar 

  47. Grassberger M, Steinhoff M, Schneider D, Luger TA (2004) Pimecrolimus – an Anti-inflammatory Drug Targeting the Skin. Exp Dermatol 13: 721

    CAS  Google Scholar 

  48. Spergel JM (2009) Pimecrolimus Cream in the Management of Patients with Atopic Eczema. Clin Cos Invest Dermatol 2: 85

    CAS  Google Scholar 

  49. Erchen J, Sunderkoetter C, Luger T, Steinhoff M (2008) Calcineurin Inhibitors for Treatment of Atopic Dematitis. Expert Opin Pharmacother 9: 3009

    Google Scholar 

  50. Luger T, Paul C (2007) Potential New Indications of Topical Calcineurin Inhibitors. Dermatology 215 (Suppl 1): 45

    CAS  Google Scholar 

  51. Hebert AA (2006) Review of Pimecrolimus Cream 1% for Treatment of Mild to Moderate Atopic Dermatitis. Clin Ther 28: 1972

    CAS  Google Scholar 

  52. Rappersberger K, Komar M, Ebelin ME, Scott G, Burtin P, Greig G, Kehren J, Chibout SD, Holter W, Richter L, Oberbauer R, Cordier A, Stuetz A, Wolff K (2002) Pimecrolimus Identifies a Common Genomic Anti-inflammatory Profile, is Clinically Highly Effective in Psoriasis and is Well Tolerated. J Invest Dermatol 119: 876

    CAS  Google Scholar 

  53. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1991) Atomic Structure of FKBP-FK506, an Immunophilin-Immunosuppressant Complex. Science 252: 839

    Google Scholar 

  54. Lepre CA, Thomson JA, Moore JM (1992) Solution Structure of FK506 bound to FKBP-12. FEBS Lett 302: 89

    CAS  Google Scholar 

  55. Van Duyne GD, Standaert RF, Karplus P, Schreiber SL, Clardy J (1993) Atomic Structures of the Human Immunophilin FKBP-12 Complexes with FK506 and Rapamycin. J Mol Biol 229: 105

    Google Scholar 

  56. Griffith JP, Kim J, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA (1995) X-Ray Structure of Calcineurin Inhibited by the Immunophilin-Immunospressant FKBP12-FK506 Complex. Cell 82: 507

    CAS  Google Scholar 

  57. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW (1995) Crystal Structures of Human Calcineurin and the Human FKBP12-FK506-Calcineurin Complex. Nature 378: 641

    CAS  Google Scholar 

  58. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a Common Target of Cyclophilin-Cyclosporin A and FKBP-FK506 Complexes. Cell 66: 807

    CAS  Google Scholar 

  59. Motamedi H, Shafiee A, Cai SJ, Streicher SL, Arison BH, Miller RR (1996) Characterization of Methyltransferase and Hydroxylase Genes Involved in the Biosynthesis of the Immunosuppressants FK506 and FK520. J Bacteriol 178: 5243

    CAS  Google Scholar 

  60. Karuso P, Kessler H, Mierke DF (1990) Solution Structure of FK506 from Nuclear Magnetic Resonance and Molecular Dynamics. J Am Chem Soc 112: 9434

    CAS  Google Scholar 

  61. Meadows RP, Nettesheim DG, Xu RX, Olejniczak ET, Petros AM, Holzman TF, Severin J, Gubbins E, Smith H, Fesik SW (1993) Three-Dimensional Structure of the FK506 Binding Protein/Ascomycin Complex in Solution by Heteronuclear Three- and Four-Dimensional NMR. Biochemistry 32: 754

    CAS  Google Scholar 

  62. Namiki Y, Kihara N, Koda S, Hane K, Yasuda T (1993) Tautomeric Phenomenon of a Novel Immunosuppressant (FK506) in Solution. I. Isolation and Structure Determination of Tautomeric Compounds. J Antibiotics 46: 1149

    CAS  Google Scholar 

  63. Gailliot FP, Natishan TK, Ballard JM, Reamer RA, Kuczynski D, McManemin GJ, Egan RS, Buckland BC (1994) Isolation and Characterization of the Major Equilibrium Product of FK-520. J Antibiotics 47: 806

    CAS  Google Scholar 

  64. Baumann K, Oberhauser B, Grassberger MA, Haidl G, Schulz G (1995) Synthesis and Oxidative Cleavage of the Major Equilibrium Products of Ascomycin and FK506. Tetrahedron Lett 36: 2231

    CAS  Google Scholar 

  65. Baumann K, Oberhauser B, Strnadt G, Knapp H, Schulz G, Grassberger MA (1999) Conversion of Ascomycin into its Furano-Isomers. Synlett S1: 877

    Google Scholar 

  66. Baumann K, Damont A, Högenauer K, Steck A (2002) Poster presented at the 1st International SPECS and BioSPECS Symposium, Delft, the Netherlands, September 18–21, Abstract book: 64

    Google Scholar 

  67. Shevchenko VP, Nagaev IYu, Myasoedov NF, Andres H, Moenius T, Susan A (2004) Synthesis of Tritiated Cyclosporin A and FK506 by Metal-Catalyzed Hydrogen Isotope Exchange. J Lab Comp Radiopharm 47: 407

    CAS  Google Scholar 

  68. Baumann K, Haidl E, Högenauer K, Kollenz G, Schulz G, Weber HP (1996) Poster presented at the 17th European Colloquium on Heterocyclic Chemistry, Regensburg, Germany, October 6–9, Abstract book: 211

    Google Scholar 

  69. Högenauer K, Diploma work (1997) Department of Organic Chemistry, Karl Franzens University, Graz, Austria

    Google Scholar 

  70. Baumann K, Högenauer K, Knapp H, Bacher M, Steck A, Wagner T (2005) On the Reactivity of Ascomycin at the Binding Domain. Part 3: Reactivity of the Binding Domain towards Diazomethane. Tetrahedron 61: 4819

    CAS  Google Scholar 

  71. Baumann K, et al. Novartis Institutes for BioMedical Research Vienna, Austria, unpublished results

    Google Scholar 

  72. Edmunds AJF, Baumann K, Grassberger M, Schulz G (1991) Highly Selective Reactions of FK506 with Diazomethane. Tetrahedron Lett 32: 7039

    CAS  Google Scholar 

  73. Fisher MJ, Chow K, Villalobos A, Danishefsky SJ (1991) On the Remarkable Propensity for Carbon-Carbon Bond Cleavage Reations in the C8-C10 Region of FK-506. J Org Chem 56: 2900

    CAS  Google Scholar 

  74. Grassberger MA, Baumann K (1993) Macrolide Immunosuppressants. Exp Opin Ther Pat 3: 931

    Google Scholar 

  75. Askin D, Reamer RA, Joe D, Volante RP, Shinkai I (1989) Chemistry of FK-506: Benzilic Acid Rearrangement of the Tricarbonyl System. Tetrahedron Lett 30: 671

    CAS  Google Scholar 

  76. Askin D, Jones TK, Reamer RA, Volante RP, Shinkai I (1990) Eur Pat Appl EP 364031; Chem Abstr 113: 152155

    Google Scholar 

  77. Baumann K, Bacher M, Damont A, Högenauer K, Steck A (2003) On the Reactivity of Ascomycin at the Binding Domain. Part 1: Liberation of the Tricarbonyl Portion of Ascomycin. Tetrahedron 59: 10075

    CAS  Google Scholar 

  78. Baumann K, Bacher M, Steck A, Wagner T (2004) On the Reactivity of Ascomycin at the Binding Domain. Part 2: Hydroxide Mediated Rearrangement Reactions. Tetrahedron 60: 5965

    CAS  Google Scholar 

  79. Baumann K (1993) Eur Pat Appl EP 569337; Chem Abstr 122: 187265

    Google Scholar 

  80. Koch G, Jeck R, Hartmann O, Kuesters E (2001) Selective Synthesis of a New Ascomycin Rearrangement Product (SDZ ASD732) on a Pilot Plant Scale. Org Proc Res Devel 5: 211

    CAS  Google Scholar 

  81. Wang-Fan W, Kusters E, Mak CP, Wang Y (2000) Application of Centrifugal Counter-Current Chromatography to the Separation of Macrolide Antibiotic Analogues. II. Determination of Partition Coefficients in Comparison with the Shake-Flask Method. J Liq Chomatogr Rel Technol 23: 1365

    CAS  Google Scholar 

  82. Kusters E, Heuer C, Wieckhusen D (2000) Purification of an Ascomycin Derivative with Simulated Moving Bed Chromatography. A Case Study. J Chromatogr A 874: 155

    CAS  Google Scholar 

  83. Baumann K, Bacher M, Damont A, Steck A (2004) Selective Transformation of Ascomycin into 11-epi-Ascomycin. Tetrahedron Lett 45: 549

    CAS  Google Scholar 

  84. Baumann K, Strnadt G, Knapp H, Schulz G, Haidl E, Weber HP (1996) Poster presented at the 17th European Colloquium on Heterocyclic Chemistry, Regensburg, Germany, October 6–9, Abstract book: 167

    Google Scholar 

  85. Baumann K, Meingassner J, Schulz G, Steck A, Grassberger M (2000) Lecture given at the XVIth International Symposium on Medicinal Chemistry, Bologna, Italy, September 18–22, Abstract book: 103

    Google Scholar 

  86. Emmer G, Weber-Roth S (1992) Synthesis of Derivatives of FK506 and FR900520: Modifications at the Binding Domain. Tetrahedron 48: 5861

    CAS  Google Scholar 

  87. Nussbaumer P, Grassberger M, Schulz G (1992) C9-Imino and C10-Amino Derivatives of Ascomycin (21-Ethyl FK506). Tetrahedron Lett 33: 3845

    CAS  Google Scholar 

  88. Baumann K, Knapp H, Strnadt G, Schulz G, Grassberger MA (1999) Carbonyl to Methylene Conversions at the Tricarbonyl Portion of the Ascomycin Derivatives. Tetrahedron Lett 40: 7761

    CAS  Google Scholar 

  89. Nussbaumer P, Grassberger MA, Hiestand P, Schuler W, Schulz G, Zenke G (1992) Poster presented at the XIIth International Symposium on Medicinal Chemistry, Basel, Switzerland, September 13–17, Abstract book: 347

    Google Scholar 

  90. Namiki Y, Kihara N (1992) PCT Int Appl WO 9213862; Chem Abstr 117: 233717

    Google Scholar 

  91. Namiki Y, Kihara N (1992) Brit. Pat. Appl. GB 2249787; Chem. Abstr. 117: 150803

    Google Scholar 

  92. Bulusu ARCM, Waldstaetten P, Tricotet T, Rochais C, Steck A, Bacher M, Schulz G, Meingassner JG, Hiestand P, Zenke G, Schuler W, Wagner T (2009) New Derivatives of Ascomycin with Modifications in the Amino Acid Region - Synthesis and Biological Activities and X-Ray Crystal Structure of 5,6-Dehydroascomycin. Helv Chim Acta 92: 839

    CAS  Google Scholar 

  93. Bulusu ARCM, Haidl EH, Schulz G, Waldstaetten P, Grassberger M (1999) Novel Derivatives of Ascomycin through Photochemistry. Ind J Chem 38B:1159

    CAS  Google Scholar 

  94. Bulusu, A.R.C.M. (1994) Eur Pat Appl EP 626385; Chem Abstr 122: 213857

    Google Scholar 

  95. Bulusu M, Waldstaetten P, Schulz G, Grassberger M (2004) Novel Analogs of Ascomycin with Modifications in the Amino Acid through Photochemistry: the Synthesis of 5,6-Dehydroascomycin. Tetrahedron Lett 45: 2523

    CAS  Google Scholar 

  96. Moenius T, Baumann K, Bulusu M, Schweitzer A, Voges R (2001) Labelling of Pharmacologically Active Macrocycles. In: Pleiss U, Voges R (eds) Synthesis and Applications of Isotopically Labelled Compounds, vol 7. John Wiley Sons, Chichester, UK, p 424

    Google Scholar 

  97. Bulusu M, Waldstaetten P, Tricotet T, Rochais C, Steck A, Bacher M (2004) Synthesis of 6-Vinyl and 5-Vinylproline Analogues of Ascomycin. Tetrahedron Lett 45: 5833

    CAS  Google Scholar 

  98. Jones TK, Askin D, Mills SG, Reamer RA, Desmond R, Volante RP, Tschaen DM, Shinkai I (1990) Eur Pat Appl EP 378318; Chem Abstr 114: 81436

    Google Scholar 

  99. Coleman RS, Danishefsky SJ (1989) Degradation and Manipulations of the Immunosuppressant FK506: Preparation of Potential Synthetic Intermediates. Heterocycles 28: 157

    CAS  Google Scholar 

  100. Horvath A, Grassberger MA, Haidl E, Schulz G (2001) Lecture given at the Fall Meeting of the Swiss Chemical Society, October 12, Zürich, Switzerland

    Google Scholar 

  101. Goulet MT, Mills SG, Parsons WH, Rupprecht KM, Wyvratt MJ (1993) Chemistry of FK506. In Lukacs G (ed) Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products. Springer, Berlin, p 141

    Google Scholar 

  102. Luengo JI, Rozamus LW, Holt DA (1993) Efficient Removal of Pipecolinate from Rapamycin and FK506 by Reaction with n-Bu4N+CN-. Tetrahedron Lett 34: 4599

    CAS  Google Scholar 

  103. Cooper ME, Donald DK, Tanaka H (1991) Eur Pat Appl EP 444829; Chem Abstr 115: 279490

    Google Scholar 

  104. Askin D, Reamer RA, Joe D, Volante RP, Shinkai I (1990) Synthesis of the Novel Sarcosine and Proline (FK525) Analogs of FK-506: Rearrangement of the FK506 Allylic System. J Org Chem 55: 5448

    CAS  Google Scholar 

  105. Bulusu M, Waldstaetten P, Tricotett T, Schulz G (2004) Selective Photochemical Cleavage of an α-Ketoamide in a Highly Functionalised Macrolide Ascomycin. Tetrahedron Lett 45: 2527

    CAS  Google Scholar 

  106. Skytte DM, Frydenvang K, Hansen L, Nielsen PG, Jaroszewski JW (2010) Synthesis and Characterization of an Epimer of Tacrolimus, an Immunosuppressive Drug. J Nat Prod 73: 776

    CAS  Google Scholar 

  107. Wiedeman PE, Fesik SW, Petros AM, Nettesheim DG, Mollison KW, Lane BC, Or YS, Luly JR (1999) Retention of Immunosuppressant Activity in an Ascomycin Analogue Lacking a Hydrogen-Bonding Interaction with FKBP 12. J Med Chem 42: 4456

    CAS  Google Scholar 

  108. Clemons PA, Gladstone BG, Chao ED, Seth A, Chao ED, Foley MA, Schreiber SL (2002) Synthesis of Calcineurin-Resistant Derivatives of FK506 and Selection of Compensatory Receptors. Chem Biol 9: 49

    CAS  Google Scholar 

  109. Marinec PS, Evans CG, Gibbons GS, Tarnowski MA, Overbeek DL, Gestwicki JE (2009) Synthesis of Orthogonally Reactive FK506 Derivatives via Olefin Cross Metathesis. Bioorg Med Chem 17: 5763

    CAS  Google Scholar 

  110. Kawai M, Lane BC, Hsieh GC, Mollison KW, Carter GW, Luly JR (1993) Structure-Activity Profiles of Macrolactam Immunosuppressant FK506 Analogues. Fed Eur Biochem Soc 316: 107

    CAS  Google Scholar 

  111. Horvath A, Grassberger MA, Schulz G, Haidl E, Sperner H, Steck A (2000) Regioselective Carbon-Carbon Bond Formation in the Effector Domain of Ascomycin. Tetrahedron 56: 7469

    CAS  Google Scholar 

  112. Nussbaumer P, Grassberger MA, Schulz G (1999) Synthesis of Ascomycin and FK 506 Derivatives with Modified Effector Domain. Tetrahedron Lett 40: 3869

    CAS  Google Scholar 

  113. Or YS, Clark RF, Xie Q, McAlpine J, Whittern DN, Henry R, Luly JR (1993) The Chemistry of Ascomycin: Structure Determination and Synthesis of Pyrazole Analogues. Tetrahedron 49: 8771

    CAS  Google Scholar 

  114. Kawai M, Gunawardana IWK, Mollison KW, Hsieh GC, Lane BC, Luly JR (1998) Studies on an Immunosuppressive Macrolactam, Ascomycin: Synthesis of a C-33 Hydroxyl Derivative. Bioorg Med Chem Lett 8: 935

    CAS  Google Scholar 

  115. Ok HO, Szumiloski JL, Beattie TR, Goulet MT, Strauch MJ, Dumont FJ, Wyvratt MJ (1997) C32-Amino Derivatives of the Immunosuppressant Ascomycin. Bioorg Med Chem Lett 7: 2199

    CAS  Google Scholar 

  116. Baumann K, Emmer G (1991) Can Pat. Appl CA 2029694; Chem. Abstr 116; 128509

    Google Scholar 

  117. Baumann K, Emmer G (1994) US Pat Appl US 5352671; Chem Abstr 122: 187265

    Google Scholar 

  118. Baumann K, Emmer G (1991) Eur Pat Appl EP 427680; Chem Abstr 115: 231991

    Google Scholar 

  119. Hersperger R, Schuler W, Zenke G (1999) Preparation and Immunosuppressive Activity of 32-(O)-Acylated and 32-(O)-Thioacylated Analogues of Ascomycin. Bioorg Med Chem Lett 9: 227

    CAS  Google Scholar 

  120. Goulet MT, Hodkey DW, Staruch MJ, Dumont FJ, Cryan JG, Parsons WH, Wyvratt MJ (1994) Alkyl Ether Analogs of the FK506 Related Immunosuppressive Macrolide L-683,590 (Ascomycin). Bioorg Med Chem Lett 4: 921

    CAS  Google Scholar 

  121. Goulet MT, McAlpine SR, Staruch MJ, Koprak S, Dumont FJ, Cryan JG, Wiederrecht GJ, Rosa R, Wilusz MB, Peterson LB, Wyvratt MJ, Parsons WH (1998) C(32)-O-Imidazol-2-yl-methyl Ether Derivatives of the Immunosuppressant Ascomycin with Improved Therapeutic Potential. Bioorg Med Chem Lett 8: 2253

    CAS  Google Scholar 

  122. Song Z, DeMarco A, Zhao M, Corley EG, Thompson AS, McNamara J, Li Y, Rieger D, Sohar P, Mathre DJ, Tschaen DM, Reamer RA, Huntington MF, Ho G-J, Tsay F-R, Emerson K, Shuman R, Grabowski EJJ, Reider PJ (1999) Highly Chemoselective Trichloroacetimidate-Mediated Alkylation of Ascomycin: A Convergent, Practical Synthesis of the Immunosuppressant L-733,725. J Org Chem 64: 1859

    CAS  Google Scholar 

  123. Egan MAMcE, Dean DC, Marks TM, Song Z, Melillo DG (2000) Carbon-14 Labeling of a Potential New Immunoregulant Agent. J Lab Comp Radiopharm 43: 1095

    CAS  Google Scholar 

  124. Goulet MT, Sinclair PJ, Wong F, Staruch MJ, Dumont FJ, Cryan JG, Wiederrecht GJ, Wyvratt MJ, Parsons WH (1999) C32-O-Phenalkyl Ether Derivatives of the Immunosuppressant Ascomycin: A Tether Length Study. Bioorg Med Chem Lett 9: 2085

    CAS  Google Scholar 

  125. Sinclair PJ, Wong F, Wyvratt M, Staruch MJ, Dumont F (1995) Preparation and in vitro Activity of Aryl Ether Derivatives of the FK506 Related Immunosuppressive Macrolides Ascomycin and L-683,742. Bioorg Med Chem Lett 5: 1035

    CAS  Google Scholar 

  126. Armstrong HM, Wong F, Holmes MA, Sinclair PJ, Goulet MT, Dumont FJ, Staruch MJ, Koprak S, Peterson LB, Rosa R, Wilusz MB, Wiederrecht GJ, Cryan JG, Wyvratt MJ, Parsons WH (1999) Potent Immunosuppressive C32-O-Arylether Derivatives of Ascomycin with Reduced Toxicity. Bioorg Med Chem Lett 9: 2089

    CAS  Google Scholar 

  127. Sinclair PJ, Wong F, Staruch MJ, Wiederrecht G, Parsons WH, Dumont F, Wyvratt M (1996) Preparation and in vitro Activities of Naphthyl and Indolyl Ether Derivatives of the FK506 Related Immunosuppressive Macrolide Ascomycin. Bioorg Med Chem Lett 6: 2193

    CAS  Google Scholar 

  128. Wagner R, Rhoades TA, Or YS, Lane BC, Hsieh G, Mollison KW, Luly JR (1998) 32-Ascomycinyloxyacetic Acid Derived Immunosuppressants. Independence of Immunophilin Binding and Immunosuppressive Potency. J Med Chem 41: 1764

    CAS  Google Scholar 

  129. Mollison KW, Fey TA, Gauvin DM, Sheets MP, Smith ML, Pong M, Krause R, Miller L, Or YS, Kawai M, Wagner R, Wiedeman PE, Clark RF, Gunawardana IWK, Rhoades TA, Henry CL, Tu NP, BaMaung NY, Kopecka H, Liu L, Xie Q, Lane BC, Trevillyan JM, Marsh K, Carter GW, Chen Y-W, Hsieh GC, Luly JR (1998) Discovery of Ascomycin Analogs with Potent Topical but Weak Systematic Activity for Treatment of Inflammatory Skin Diseases. Curr Pharm Design 4: 367

    CAS  Google Scholar 

  130. Hersperger R, Buchheit KH, Cammisuli S, Enz A, Lohse O, Ponelle M, Schuler W, Schweitzer A, Walker C, Zehender H, Zenke G, Zimmerlin AG, Zollinger M, Mazzoni L, Fozard JR (2004) A Locally Active Antiinflammatory Macrolide (MLD987) for Inhalation Therapy of Asthma. J Med Chem 47: 4950

    CAS  Google Scholar 

  131. Zimmer R, Grassberger MA, Baumann K, Schulz G, Haidl E (1994) Synthetic Modifications of Ascomycin – I. A Chemoselective Removal of the Cyclohexyl Residue of Ascomycin. Tetrahedron 50: 13655

    CAS  Google Scholar 

  132. Zimmer R, Baumann K, Sperner H, Schulz G, Haidl E, Grassberger MA (2005) Synthetic Modifications of Ascomycin. V. Access to Novel Ascomycin Derivatives by Replacement of the Cyclohexylvinylidene Subunit. Croatica Chem Acta 78: 17

    CAS  Google Scholar 

  133. Grassberger MA, Schulz G, Fehr T (1990) Ger Offen DE 3938754; Chem Abstr 115: 157124

    Google Scholar 

  134. Grassberger MA, Fehr T, Horvath A, Schulz G (1992) Isolation of an Isomer of FK-506 from Fermentation of Streptomyces tsukubaensis and its Chemical Synthesis from FK-506. Tetrahedron 48: 413

    CAS  Google Scholar 

  135. Zimmer R, Baumann K, Sperner H, Schulz G, Haidl E, Grassberger MA (1999) Ring Contraction of an Ascomycin Derivative to a 19-Membered Macrolactam. Helv Chim Acta 82: 1038

    CAS  Google Scholar 

  136. Zimmer R, Grassberger MA, Baumann K, Horvath A, Schulz G, Haidl E (1995) Synthetic Modifications of Ascomycin – II. A Simple and Efficient Way to Modified iso-Ascomycin Derivatives. Tetrahedron Lett 36: 7635

    CAS  Google Scholar 

  137. Zimmer R, Grassberger MA, Baumann K, Zenke G, Schuler W (1999) Synthetic Modifications of Ascomycin: Part III – A Concise Transformation of iso-Ascomycin to 19,20-seco- Derivatives. Ind J Chem 38B: 831

    CAS  Google Scholar 

  138. Chung Y, Cho H (2004) Preparation of Highly Water Soluble Tacrolimus Derivatives: Poly(Ethylene Glycol) Esters as Potential Prodrugs. Arch Pharm Res 27: 878

    CAS  Google Scholar 

  139. Choi DB, Cho H (2009) Effect of Tacrolimus Derivatives on Immunosuppression. Arch Pharm Res 32: 549

    CAS  Google Scholar 

  140. Yura H, Yoshimura N, Oka T, Takakura Y, Hashida M (1998) Development of a Macromolecular Prodrug of FK506: I. Synthesis of FK506-Dextran Conjugate. Transplant Proc 30: 3598

    CAS  Google Scholar 

  141. Yura H, Yoshimura N, Hamashima T, Akamatsu K, Nishikawa M, Takakura Y, Hashida M (1999) Synthesis and Pharmacokinetics of a Novel Macromolecular Prodrug of Tacrolimus (FK506), FK506-dextran Conjugate. J Cont Release 57: 87

    CAS  Google Scholar 

  142. Koch K, Newborg MF, Hanson DC, Cooper K, Shepard RM, Biehl ML, Biggers MS, Ramchandani M, Schulte G, Snyder JR, Ferraina RA, Donovan C, Guadliana MA, Kostek GJ, Cole SH, Connolly MJ, Sawyer PS, I T-P, Blocker LW, Meiser BM, Melvin LS (1995) The C-32 Triacetyl-L-rhamnose Derivative of Ascomycin: A Potent, Orally Active Macrolactone Immunosuppressant. J Med Chem 38: 1255

    CAS  Google Scholar 

  143. Takahashi T, Shiyama T, Mori T, Hosoya K, Tanaka A (2006) Isolating the Whole Complex of Target Proteins of FK506 Using Affinity Resins from Novel Solid Phases. Anal Bioanal Chem 385: 122

    CAS  Google Scholar 

  144. Takahashi T, Shiyama T, Hosoya K, Tanaka A (2006) Development of Chemically Stable Solid Phases for the Target Isolation with Reduced Nonspecific Binding Proteins. Bioorg Med Chem Lett 16: 447

    CAS  Google Scholar 

  145. Fujisawa; Klinge Pharma (1992) FK506, Fujimycin, Tacrolimus, Prograf. Drugs Fut 17: 732

    Google Scholar 

  146. Ireland RE, Liu L, Roper TD (1997) Total Synthesis of FK506. Part 1: Construction of the C(16)-C(34) Fragment. Tetrahedron 53: 13221

    CAS  Google Scholar 

  147. Ireland RE, Liu L, Roper TD, Gleason JL (1997) Total Synthesis of FK506. Part 2: Completion of the Synthesis. Tetrahedron 53: 13257

    CAS  Google Scholar 

  148. Ireland RE, Gleason JL, Gegnas LD, Highsmith TK (1996) A Total Synthesis of FK506. J Org Chem 61: 6856

    CAS  Google Scholar 

  149. Smith III AB, Condon SM, McCauley JA (1998) Total Synthesis of Immunosuppressants: Unified Strategies Exploiting Dithiane Couplings and σ-Bond Olefin Constructions. Acc Chem Res 31: 35

    CAS  Google Scholar 

  150. Smith III AB, Chen K, Robinson DJ, Laakso LF, Hale KJ (1994) Formal Total Synthesis of FK506. Concise Construction of the C(10)-C(34) Segment via an Effective Coupling Tactic. Tetrahedron Lett 25: 4271

    Google Scholar 

  151. Batchelor MJ, Gillespie RJ, Golec JMC, Hedgecock CJR, Jones SD, Murdoch R (1994) Total Synthesis of Close Analogues of the Immunosuppressant FK506. Tetrahedron 50: 809

    CAS  Google Scholar 

  152. Nakatsuka M, Ragan JA, Sammakia T, Smith DB, Uehling DE, Schreiber SL (1990) Total Synthesis of FK506 and an FKBP Probe Reagent, (C8,C9-13C2)-FK506. J Am Chem Soc 112: 5583

    CAS  Google Scholar 

  153. Jones TK, Mills SG, Reamer RA, Askin D, Desmond R, Volante RP, Shinkai I (1989) Total Synthesis of Immunosuppressant (−)-FK506. J Am Chem Soc 111: 1157

    CAS  Google Scholar 

  154. Jones TK, Reamer RA, Desmond R, Mills SG (1990) Chemistry of Tricarbonyl Hemiketals and Application of Evans Technology to the Total Synthesis of the Immunosuppressant (−)-FK506. J Am Chem Soc 112: 2998

    CAS  Google Scholar 

  155. Jones AB, Villalobos A, Linde RG, Danishefsky SJ (1990) A Formal Synthesis of FK506: Exploration of Some Alternatives to Macrolactamisation. J Org Chem 55: 2786

    CAS  Google Scholar 

  156. Reynolds KA, Demain AL (1997) Rapamycin, FK506 and Ascomycin-related Compounds. In: Strohl WR (ed) Drugs and the Pharmaceutical Sciences, vol 82 (Biotechnology of Antibiotics, 2nd ed), Marcel Dekker, Inc., New York, p 497

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Anthony Winiski for his assistance with the literature search and Dr. Philipp Floersheim for his support in the molecular modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Stuetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Bulusu, M.A.R.C., Baumann, K., Stuetz, A. (2011). Chemistry of the Immunomodulatory Macrolide Ascomycin and Related Analogues. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products Vol. 94. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 94. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0748-5_2

Download citation

Publish with us

Policies and ethics