Skip to main content

Chemistry and Biology of Rocaglamides (= Flavaglines) and Related Derivatives from Aglaia Species (Meliaceae)

  • Chapter
  • First Online:
Book cover Progress in the Chemistry of Organic Natural Products Vol. 94

Abstract

Rocaglamide (1) is the parent cyclopenta[b]benzofuran derivative which was first identified as an antileukemic agent from the dried roots and stems of Aglaia elliptifolia Merr. (family Meliaceae) in 1982. Based on these findings, phytochemical interest in this genus increased sharply and up to date, more than 100 rocaglamide-type (= flavagline) compounds and structurally related derivatives have been identified from over 30 Aglaia species. Rocaglamide-type compounds show pronounced pharmacological activities including primarily (but not exclusively) antiproliferative and anti-inflammatory activity. The molecular mechanisms underlying these activities have been elucidated in recent years and established rocaglamide and several of its derivatives as interesting candidates for drug development especially in the field of anti-cancer research. Due to their unique structural features and promising pharmacological activities, several strategies leading to total synthesis of enantiomeric rocaglamide derivatives were developed and optimized. This chapter reviews the chemistry and biology of the rocaglamide-type derivatives and related compounds, with emphasis on their structural diversity, biosynthesis, pharmacological significance and total synthesis.

John A. Porco, Min Li-Weber, and Peter Proksch contributed equally to the writing of this chapter. Dedicated to Dr. Bambang Wahyu Nugroho, a pioneer of rocaglamide research (9, 14, 16, 17, 27, 5456, 58, 59, 75, 84, 85) who passed away far too early.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman DJ, Cragg GM, Snader KM (2000) The Influence of Natural Products upon Drug Discovery. Nat Prod Rep 17: 215

    CAS  Google Scholar 

  2. Chin Y-W, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug Discovery from Natural Sources. AAPS J 8: e239

    CAS  Google Scholar 

  3. Butler MS (2008) Natural Products to Drugs: Natural Product-Derived Compounds in Clinical Trials. Nat Prod Rep 25: 475

    CAS  Google Scholar 

  4. Altmann K-H, Höfle G, Müller R, Mulzer J, Prantz K (2009) The Epothilones: an Outstanding Family of Anti-Tumor Agents – From Soil to the Clinic. Prog Chem Org Nat Prod 90, 1

    Google Scholar 

  5. Balunas MJ, Jones WP, Chin Y-W, Mi Q, Farnsworth NR, Soejarto DD, Cordell GA, Swanson SM, Pezzuto JM, Chai H-B, Kinghorn AD (2006) Relationships between Inhibitory Activity against a Cancer Cell Line Panel, Profiles of Plants Collected, and Compound Classes Isolated in an Anticancer Drug Discovery Project. Chem Biodiversity 3: 897

    CAS  Google Scholar 

  6. Isman MB, Gunning PJ, Spollen KM (1997) Tropical Timber Species as Sources of Botanical Insecticides. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds.) Phytochemicals for Pest Control, Symposium Series 658, p. 27. ACS Books, Washington, DC

    Google Scholar 

  7. Pannell CM (2007) Aglaia. In: Soepadmo E, Saw LG, Chung RCK, Kiew R (eds.) Tree Flora of Sabah and Sarawak, p. 24. Ampang Press Sdn Bhd, Kuala Lumpur

    Google Scholar 

  8. Muellner AN, Samuel R, Chase MW, Pannell CM, Greger H (2005) Aglaia (Meliaceae): An Evaluation of Taxonomic Concepts Based on DNA Data and Secondary Metabolites. Am J Bot 92: 534

    CAS  Google Scholar 

  9. Proksch P, Edrada RA, Ebel R, Bohnenstengel FI, Nugroho BW (2001) Chemistry and Biological Activity of Rocaglamide Derivatives and Related Compounds in Aglaia species (Meliaceae). Curr Org Chem 5: 923

    CAS  Google Scholar 

  10. Janaki S, Vijayasekaran V, Viswanathan S, Balakrishna K (1999) Anti-Inflammatory Activity of Aglaia roxburghiana var. beddomei Extract and Triterpenes Roxburghiadiol A and B. J Ethnopharmacol 67: 45, and references cited therein

    CAS  Google Scholar 

  11. King ML, Chiang C-C, Ling H-C, Fujita E, Ochiai M, McPhail AT (1982) X-Ray Crystal Structure of Rocaglamide, a Novel Antileukemic 1H-Cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun: 1150

    Google Scholar 

  12. Kim S, Salim AA, Swanson SM, Kinghorn AD (2006) Potential of Cyclopenta[b]benzofurans from Aglaia Species in Cancer Chemotherapy. Anticancer Agents Med Chem 6: 319

    CAS  Google Scholar 

  13. Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides, Lignans, Triterpenes, and Insecticidal Cyclopenta[b]benzofurans from Aglaia Species. J Nat Prod 61: 1482

    CAS  Google Scholar 

  14. Nugroho BW, Edrada, RA, Wray V, Witte L, Bringmann G, Gehling M, Proksch P (1999) An Insecticidal Rocaglamide Derivative and Related Compounds from Aglaia odorata (Meliaceae). Phytochemistry 51: 367

    CAS  Google Scholar 

  15. Bacher M, Hofer O, Brader G, Vajrodaya S, Greger H (1999) Thapsakins: Possible Biogenetic Intermediates towards Insecticidal Cyclopenta[b]benzofurans from Aglaia edulis. Phytochemistry 52: 253

    CAS  Google Scholar 

  16. Dreyer M, Nugroho BW, Bohnenstengel FI, Ebel R, Wray V, Witte L, Bringmann G, Mühlbacher J, Herold M, Hung PD, Kiet LC, Proksch P (2001) New Insecticidal Rocaglamide Derivatives and Related Compounds from Aglaia oligophylla. J Nat Prod 64: 415

    CAS  Google Scholar 

  17. Schneider C, Bohnenstengel FI, Nugroho BW, Wray V, Witte L, Hung PD, Kiet LC, Proksch P (2000) Insecticidal Rocaglamide Derivatives from Aglaia spectabilis (Meliaceae). Phytochemistry 54: 731

    CAS  Google Scholar 

  18. Greger H, Pacher T, Brem B, Bacher M, Hofer O (2001) Insecticidal Flavaglines and Other Compounds from Fijian Aglaia Species. Phytochemistry 57: 57

    CAS  Google Scholar 

  19. Hayashi N, Lee K-H, Hall IH, McPhail AT, Huang H-C (1982) Structure and Stereochemistry of (−)-Odorinol, an Antileukemic Diamide from Aglaia odorata. Phytochemistry 21: 2371

    CAS  Google Scholar 

  20. Cui B, Chai H, Santisuk T, Reutrakul V, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (1997) Novel Cytotoxic 1H-Cyclopenta[b]benzofuran Lignans from Aglaia elliptica. Tetrahedron 53: 17625

    CAS  Google Scholar 

  21. Zhu JY, Giaisi M, Köhler R, Müller WW, Mühleisen A, Proksch P, Krammer PH, Li-Weber M (2009) Rocaglamide Sensitizes Leukemic T Cells to Activation-Induced Cell Death by Differential Regulation of CD95L and c-FLIP Expression. Cell Death Differen 16: 1289

    CAS  Google Scholar 

  22. Saifah E, Suttisri R, Shamsub S, Pengsuparp T, Lipipum V (1999) Bisamides from Aglaia edulis. Phytochemistry 52: 1085

    CAS  Google Scholar 

  23. Engelmeier D, Hadacek F, Pacher T, Vajrodaya S, Greger H (2000) Cyclopenta[b]benzofurans from Aglaia Species with Pronounced Antifungal Activity against Rice Blast Fungus (Pyricularia grisea). J Agric Food Chem 48: 1400

    CAS  Google Scholar 

  24. Baumann B, Bohnenstengel F, Siegmund D, Wajant H, Weber C, Herr I, Debatin K-M, Proksch P, Wirth T (2002) Rocaglamide Derivatives are Potent Inhibitors of NF-κB Activation in T-Cells. J Biol Chem 277: 44791

    CAS  Google Scholar 

  25. Proksch P, Giaisi M, Treiber MK, Palfi K, Merling A, Spring H, Krammer PH, Li-Weber M (2005) Rocaglamide Derivatives are Immunosuppressive Phytochemicals that Target NF-AT Activity in T cells. J Immunol 174: 7075

    CAS  Google Scholar 

  26. Greger H, Pacher T, Vajrodaya S, Bacher M, Hofer O (2000) Infraspecific Variation of Sulfur-Containing Bisamides from Aglaia leptantha. J Nat Prod 63: 616

    CAS  Google Scholar 

  27. Wang B-G, Ebel R, Nugroho BW, Prijono D, Frank W, Steube KG, Hao X-J, Proksch P (2001) Aglacins A–D, First Representatives of a New Class of Aryltetralin Cyclic Ether Lignans from Aglaia cordata. J Nat Prod 64: 1521

    CAS  Google Scholar 

  28. Wang B-G, Ebel R, Wang C-Y, Wray V, Proksch P (2002) New Methoxylated Aryltetrahydronaphthalene Lignans and a Norlignan from Aglaia cordata. Tetrahedron Lett 43: 5783

    CAS  Google Scholar 

  29. Wang B-G, Ebel R, Wang C-Y, Edrada RA, Wray V, Proksch P (2004) Aglacins I–K, Three Highly Methoxylated Lignans from Aglaia cordata. J Nat Prod 67: 682

    CAS  Google Scholar 

  30. Saifah E, Puripattanavong J, Likhitwitayawuid K, Cordell GA, Chai H, Pezzuto JM (1993) Bisamides from Aglaia Species: Structure Analysis and Potential to Reverse Drug Resistance with Cultured Cells. J Nat Prod 56: 473

    CAS  Google Scholar 

  31. Saifah E, Suparakchinda N (1998) Bisamide from Aglaia rubiginosa. Planta Med 64: 682

    CAS  Google Scholar 

  32. Inada A, Shono K, Murata H, Inatomi Y, Darnaedi D, Nakanishi T (2000) Three Putrescine Bisamides from the Leaves of Aglaia grandis. Phytochemistry 53: 1091

    CAS  Google Scholar 

  33. Seger C, Pacher T, Greger H, Saifah E, Hofer O (2002) Aglairubine: Structure Revision of a Chemotaxonomically Interesting Bisamide in Aglaia (Meliaceae). Monatsh Chem 133: 97

    CAS  Google Scholar 

  34. Duong TN, Edrada RA, Ebel R, Wray V, Frank W, Duong AT, Lin WH, Proksch P (2007) Putrescine Bisamides from Aglaia gigantea. J Nat Prod 70: 1640

    CAS  Google Scholar 

  35. Greger H, Hofer M, Teichmann K, Schinnerl J, Pannell CM, Vajrodaya S, Hofer O (2008) Amide-Esters from Aglaia tenuicaulis – First Representatives of a Class of Compounds Structurally Related to Bisamides and Flavaglines. Phytochemistry 69: 928

    CAS  Google Scholar 

  36. Puripattanavong J, Weber S, Brecht V, Frahm AW (2000) Phytochemical Investigation of Aglaia andramanica. Planta Med 66: 740

    CAS  Google Scholar 

  37. Mohamad K, Martin M-T, Leroy E, Tempête C, Sévenet T, Awang K, Païs M (1997) Argenteanones C–E and Argenteanols B–E, Cytotoxic Cycloartanes from Aglaia argentea. J Nat Prod 60: 81

    CAS  Google Scholar 

  38. Roux D, Martin M-T, Adeline M-T, Sevenet T, Hadi AHA, Païs (1998) Foveolins A and B, Dammarane Triterpenes from Aglaia foveolata. Phytochemistry 49: 1745

    CAS  Google Scholar 

  39. Mohamad K, Sévenet T, Dumontet V, Païs M, Tri MV, Hadi H, Awang K, Martin M-T (1999) Dammarane Triterpenes and Pregnane Steroids from Aglaia lawii and A. tomentosa. Phytochemistry 51: 1031

    CAS  Google Scholar 

  40. Mohamad K, Martin M-T, Najdar H, Gaspard C, Sévenet T, Awang K, Hadi H, Païs M (1999) Cytotoxic 3,4-Secoapotirucallanes from Aglaia argentea Bark. J Nat Prod 62: 868

    CAS  Google Scholar 

  41. Weber S, Puripattanavong J, Brecht V, Frahm AW (2000) Phytochemical Investigation of Aglaia rubiginosa. J Nat Prod 63: 636

    CAS  Google Scholar 

  42. Rivero-Cruz JF, Chai H-B, Kardono LBS, Setyowati FM, Afriastini JJ, Riswan S, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Cytotoxic Constituents of the Twigs and Leaves of Aglaia rubiginosa. J Nat Prod 67: 343

    CAS  Google Scholar 

  43. Cai X-H, Luo X-D, Zhou J, Hao X-J (2005) Dolabellane Diterpenoids from the Higher Plant Aglaia odorata. Helv Chim Acta 88: 2938

    CAS  Google Scholar 

  44. Su B-N, Chai H, Mi Q, Riswan S, Kardono LBS, Afriastini JJ, Santarsiero BD, Mesecar AD, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD (2006) Activity-Guided Isolation of Cytotoxic Constituents from the Bark of Aglaia crassinervia Collected in Indonesia. Bioorg Med Chem 14: 960

    CAS  Google Scholar 

  45. Xie B-J, Yang S-P, Chen H-D, Yue J-M (2007) Agladupols A–E, Triterpenoids from Aglaia duperreana. J Nat Prod 70: 1532

    CAS  Google Scholar 

  46. Joycharat N, Greger H, Hofer O, Saifah E (2008) Flavaglines and Triterpenoids from the Leaves of Aglaia forbesii. Phytochemistry 69: 206

    CAS  Google Scholar 

  47. Joycharat N, Greger H, Hofer O, Saifah E (2008) Flavaglines and Triterpenes as Chemical Markers of Aglaia oligophylla. Biochem Syst Ecol 36: 584

    CAS  Google Scholar 

  48. Pointinger S, Promdang S, Vajrodaya S, Pannell CM, Hofer O, Mereiter K, Greger H (2008) Silvaglins and Related 2,3-Secodammarane Derivatives – Unusual Types of Triterpenes from Aglaia silvestris. Phytochemistry 69: 2696

    CAS  Google Scholar 

  49. Seger C, Pointinger S, Greger H, Hofer O (2008) Isoeichlerianic Acid from Aglaia silvestris and Revision of the Stereochemistry of Foveolin B. Tetrahedron Lett 49: 4313

    CAS  Google Scholar 

  50. Hofer O, Pointinger S, Brecker L, Peter K, Greger H (2009) Silvaglenamin – A Novel Dimeric Triterpene Alkaloid from Aglaia silvestris. Tetrahedron Lett 50: 467

    CAS  Google Scholar 

  51. Cai X-H, Wang Y-Y, Zhao P-J, Li Y, Luo X-D (2010) Dolabellane Diterpenoids from Aglaia odorata. Phytochemistry 71: 1020

    CAS  Google Scholar 

  52. Trost BM, Greenspan PD, Yang BV, Saulnier MG (1990) An Unusual Oxidative Cyclization. A Synthesis and Absolute Stereochemical Assignment of (−)-Rocaglamide. J Am Chem Soc 112: 9022

    CAS  Google Scholar 

  53. Ishibashi F, Satasook C, Isman MB, Towers GHN (1993) Insecticidal 1H-Cyclopentatetrahydro[b]benzofurans from Aglaia odorata. Phytochemistry 32: 307

    CAS  Google Scholar 

  54. Nugroho BW, Güssregen B, Wray V, Witte L, Bringmann G, Proksch P (1997) Insecticidal Rocaglamide Derivatives from Aglaia elliptica and A. harmsiana. Phytochemistry 45: 1579

    CAS  Google Scholar 

  55. Nugroho BW, Edrada RA, Güssregen B, Wray V, Witte L, Proksch P (1997) Insecticidal Rocaglamide Derivatives from Aglaia duperreana. Phytochemistry 44: 1455

    CAS  Google Scholar 

  56. Chaidir, Hiort J, Nugroho BW, Bohnenstengel FI, Wray V, Witte L, Hung PD, Kiet LC, Sumaryono W, Proksch P (1999) New Insecticidal Rocaglamide Derivatives from Flowers of Aglaia duperreana (Meliaceae). Phytochemistry 52: 837

    CAS  Google Scholar 

  57. Molleyres L-P, Rindlisbacher A, Winkler T, Kumar V (1999) Insecticidal Natural Products: New Rocaglamide Derivatives from Aglaia roxburghiana. Pestic Sci 55: 494

    CAS  Google Scholar 

  58. Hiort J, Chaidir, Bohnenstengel FI, Nugroho BW, Schneider C, Wray V, Witte L, Hung PD, Kiet LC, Proksch P (1999) New Insecticidal Rocaglamide Derivatives from the Roots of Aglaia duperreana. J Nat Prod 62: 1632

    CAS  Google Scholar 

  59. Güssregen B, Fuhr M, Nugroho BW, Wray V, Witte L, Proksch P (1997) New Insecticidal Rocaglamide Derivatives from Flowers of Aglaia odorata. J Biosci (Z Naturforsch) 52c: 339

    Google Scholar 

  60. Dumontet V, Thoison O, Omobuwajo OR, Martin M-T, Perromat G, Chiaroni A, Riche C, Païs M, Sévenet T, Hadi AHA (1996) New Nitrogenous and Aromatic Derivatives from Aglaia argentea and A. forbesii. Tetrahedron 52: 6931

    CAS  Google Scholar 

  61. Fuzzati N, Dyatmiko W, Abdul Rahman, Achmad F, Hostettman K (1996) Triterpenoids, Lignans and a Benzofuran Derivative from the Bark of Aglaia elaeagnoidea. Phytochemistry 42: 1395

    CAS  Google Scholar 

  62. Ko F-N, Wu T-S, Liou M-J, Huang T-F, Teng C-M (1992) PAF Antagonism In Vitro and In Vivo by Aglafoline from Aglaia elliptifolia Merr. Eur J Pharmacol 218: 129

    CAS  Google Scholar 

  63. Wang S-K, Cheng Y-J, Duh C-Y (2001) Cytotoxic Constituents from Leaves of Aglaia elliptifolia. J Nat Prod 64: 92

    CAS  Google Scholar 

  64. Chaidir, Lin WH, Ebel R, Edrada RA, Wray V, Nimtz M, Sumaryono W, Proksch P (2001) Rocaglamides, Glycosides, and Putrescine Bisamides from Aglaia dasyclada. J Nat Prod 64: 1216

    CAS  Google Scholar 

  65. Mulholland DA, Naidoo N (1998) A Revision of the Structure of Ferrugin from Aglaia ferruginaea. Phytochemistry 47: 1163

    CAS  Google Scholar 

  66. Dean FM, Monkhe TV, Mulholland DA, Taylor DAH (1993) An Isoflavanoid from Aglaia ferruginaea, an Australian Member of the Meliaceae. Phytochemistry 34: 1537

    CAS  Google Scholar 

  67. Xu Y-J, Wu X-H, Tan BKH, Lai Y-H, Vittal JJ, Imiyabir Z, Madani L, Khozirah KS, Goh SH (2000) Flavonol–Cinnamate Cycloadducts and Diamide Derivatives from Aglaia laxiflora. J Nat Prod 63: 473

    CAS  Google Scholar 

  68. Hwang BY, Su B-N, Chai H, Mi Q, Kardono LB, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Silvestrol and Episilvestrol, Potential Anticancer Rocaglate Derivatives from Aglaia silvestris. J Org Chem 69: 3350

    CAS  Google Scholar 

  69. Hwang BY, Su B-N, Chai H, Mi Q, Kardono LB, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Silvestrol and Episilvestrol, Potential Anticancer Rocaglate Derivatives from Aglaia silvestris. J Org Chem 69: 6156

    CAS  Google Scholar 

  70. Chumkaew P, Kato S, Chantrapromma K (2006) Potent Cytotoxic Rocaglamide Derivatives from the Fruits of Amoora cucullata. Chem Pharm Bull 54: 1344

    CAS  Google Scholar 

  71. Kim S, Chin Y-W, Su B-N, Riswan S, Kardono LBS, Afriastini JJ, Chai H, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD (2006) Cytotoxic Flavaglines and Bisamides from Aglaia edulis. J Nat Prod 69: 1769

    CAS  Google Scholar 

  72. Kokpol U, Venaskulchai B, Simpson J, Weavers RT (1994) Isolation and X-ray Structure Determination of a Novel Pyrimidinone from Aglaia odorata. J Chem Soc Chem Commun (6):773

    Google Scholar 

  73. Ohse T, Ohba S, Yamamoto T, Koyano T, Umezawa K (1996) Cyclopentabenzofuran Lignan Protein Synthesis Inhibitors from Aglaia odorata. J Nat Prod 59: 650

    CAS  Google Scholar 

  74. Wang S-K, Duh C-Y (2001) Cytotoxic Cyclopenta[b]benzofuran Derivatives from the Stem Bark of Aglaia formosana. Planta Med 67: 555

    CAS  Google Scholar 

  75. Bringmann G, Mühlbacher J, Messer K, Dreyer M, Ebel R, Nugroho BW, Wray V, Proksch P (2003) Cyclorocaglamide, the First Bridged Cyclopentatetrahydro-benzofuran, and a Related “Open Chain” Rocaglamide Derivative from Aglaia oligophylla. J Nat Prod 66: 80

    CAS  Google Scholar 

  76. Shiengthong D, Ungphakorn A, Lewis DE, Massy-Westropp RA (1979) New Nitrogenous Compounds – Odorine and Odorinol. Tetrahedron Lett 24: 2247

    Google Scholar 

  77. Purushothaman KK, Sarada A, Connolly JD, Akinniyi JA (1979) The Structure of Roxburghilin, a Bis-amide of 2-Aminopyrrolidine from the Leaves of Aglaia roxburghiana (Meliaceae). J Chem Soc Perkin Trans I :3171

    Google Scholar 

  78. Saifah E, Jongbunprasert V, Kelley CJ (1988) Piriferine, a New Pyrrolidine Alkaloid from Aglaia pirifera leaves. J Nat Prod 51: 80

    CAS  Google Scholar 

  79. Inada A, Sorano T, Murata H, Inatomi Y, Darnaedi D, Nakanishi T (2001) Diamide Derivatives and Cycloartanes from the Leaves of Aglaia elliptica. Chem Pharm Bull 49: 1226

    CAS  Google Scholar 

  80. Salim AA, Pawlus AD, Chai H-B, Farnsworth NR, Kinghorn AD, Carcache-Blanco EJ (2007) Ponapensin, a Cyclopenta[bc]benzopyran with Potent NF-κB Inhibitory Activity from Aglaia ponapensis. Bioorg Med Chem Lett 17: 109

    CAS  Google Scholar 

  81. Salim AA, Chai H-B, Rachman I, Riswan S, Kardono LBS, Farnsworth NR, Carcache-Blanco EJ, Kinghorn AD (2007) Constituents of the Leaves and Stem Bark of Aglaia foveolata. Tetrahedron 63: 7926

    CAS  Google Scholar 

  82. Kim S, Su B-N, Riswan S, Kardono LBS, Afriastini JJ, Gallucci JC, Chai H, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD (2005) Edulisones A and B, Two Epimeric Benzo-[b]oxepine Derivatives from the Bark of Aglaia edulis. Tetrahedron Lett 46: 9021

    CAS  Google Scholar 

  83. Chiu SF (1985) Recent Research Findings on Meliaceae and Other Promising Botanical Insecticides in China. J Plant Diseases and Protection 92: 310

    Google Scholar 

  84. Bohnenstengel FI, Steube KG, Meyer C, Nugroho BW, Hung PD, Kiet LC, Proksch P (1999) Structure Activity Relationships of Antiproliferative Rocaglamide Derivatives from Aglaia species (Meliaceae). J Biosci (Z Naturforsch) 54c: 55

    Google Scholar 

  85. Bohnenstengel FI, Steube KG, Meyer C, Quentmeier H, Nugroho BW, Proksch P (1999) 1 H-Cyclopenta[b]benzofuran Lignans from Aglaia species Inhibit Cell Proliferation and Alter Cell Cycle Distribution in Human Monocytic Leukemia Cell Lines. J Biosci (Z Naturforsch) 54c: 1075

    Google Scholar 

  86. Ewete F, Nicol RW, Hengsawad V, Sukumalanand P, Satasook C, Wiriyachitra P, Isman MB, Kahn Y, Duval F, Philogène BJR, Arnason JT (1996) Insecticidal Activity of Aglaia odorata Extract and the Active Principle, Rocaglamide, to the European Corn Borer Ostrinia nubilalis Hübn. (Lep., Pyralidae). J Appl Ent 120: 483

    Google Scholar 

  87. Koul O, Kaur H, Goomber S, Wahab S (2004) Bioefficacy and Mode of Action of Rocaglamide from Aglaia elaeagnoidea (syn. A. roxburghiana) against Gram Pod Borer, Helicoverpa armigera (Hübner). J Appl Ent 128: 177

    CAS  Google Scholar 

  88. O’Shea JJ, Ma A, Lipsky P (2002) Cytokines and Autoimmunity. Nat Rev Immunol 2: 37

    Google Scholar 

  89. Li-Weber M, Krammer PH (2003) Regulation of IL4 Gene Expression by T Cells and Therapeutic Perspectives. Nat Rev Immunol 3: 534

    CAS  Google Scholar 

  90. Yamamoto Y, Gaynor RB (2001) Therapeutic Potential of Inhibition of the NF-kappaB Pathway in the Treatment of Inflammation and Cancer. J Clin Invest 107:135

    CAS  Google Scholar 

  91. Macian F (2005) NFAT Proteins: Key Regulators of T-Cell Development and Function. Nat Rev Immunol 5: 472

    CAS  Google Scholar 

  92. Li Q, Verma IM (2002) NF-kappaB Regulation in the Immune System. Nat Rev Immunol 2: 725

    CAS  Google Scholar 

  93. Lee SK, Cui B, Mehta RR, Kinghorn AD, Pezzuto JM (1998) Cytostatic Mechanism and Antitumor Potential of Novel 1H-Cyclopenta[b]benzofuran Lignans Isolated From Aglaia elliptica. Chem Biol Interact 115: 215

    CAS  Google Scholar 

  94. Cencic R, Carrier M, Galicia-Vázquez G, Bordeleau ME, Sukarieh R, Bourdeau A, Brem B, Teodoro JG, Greger H, Tremblay ML, Porco JA Jr, Pelletier J (2009) Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol. PLoS One 4: e5223

    Google Scholar 

  95. Hausott B, Greger H, Marian B (2004) Flavaglines: a Group of Efficient Growth Inhibitors Block Cell Cycle Progression and Induce Apoptosis in Colorectal Cancer Cells. Int J Cancer 109: 933

    CAS  Google Scholar 

  96. Mi Q, Kim S, Hwang BY, Su BN, Chai H, Arbieva ZH, Kinghorn AD, Swanson SM (2006) Silvestrol Regulates G2/M Checkpoint Genes Independent of p53 Activity. Anticancer Res 26: 3349

    CAS  Google Scholar 

  97. Silvera D, Formenti SC, Schneider RJ (2010) Translational Control in Cancer. Nat Rev Cancer 10: 254

    CAS  Google Scholar 

  98. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, Brem B, Greger H, Lowe SW, Porco JA Jr, Pelletier J (2008) Therapeutic Suppression of Translation Initiation Modulates Chemosensitivity in a Mouse Lymphoma Model. J Clin Invest 8: 2651

    Google Scholar 

  99. Bleumink M, Köhler R, Giaisi M, Proksch P, Krammer PH, Li-Weber M (2011) Rocaglamide Breaks TRAIL Resistance in HTLV-1-associated Adult T-cell Leukemia/Lymphoma by Translational Suppression of c-FLIP Expression. Cell Death Differ 18: 362

    Google Scholar 

  100. Zhu JY, Lavrik IN, Mahlknecht U, Giaisi M, Proksch P, Krammer PH, Li-Weber M (2007) The Traditional Chinese Herbal Compound Rocaglamide Preferentially Induces Apoptosis in Leukemia Cells by Modulation of Mitogen-Activated Protein Kinase Activities. Int J Cancer 121: 1839

    CAS  Google Scholar 

  101. Krammer PH, Arnold R, Lavrik IN (2007) Life and Death in Peripheral T Cells. Nat Rev Immunol 7: 532

    CAS  Google Scholar 

  102. Galluzzi L, Larochette N, Zamzami N and Kroemer G (2006) Mitochondria as Therapeutic Targets for Cancer Chemotherapy Oncogene 25: 4812

    CAS  Google Scholar 

  103. Kim S, Hwang BY, Su BN, Chai H, Mi Q, Kinghorn AD, Wild R, Swanson SM (2007) Silvestrol, a Potential Anticancer Rocaglate Derivative from Aglaia foveolata, Induces Apoptosis in LNCaP Cells Through the Mitochondrial/Apoptosome Pathway Without Activation of Executioner Caspase-3 or −7. Anticancer Res 27: 2175

    CAS  Google Scholar 

  104. Zhuang S, Demirs JT, Kochevar IE (2000) p38 Mitogen-Activated Protein Kinase Mediates bid Cleavage, Mitochondrial Dysfunction, and Caspase-3 Activation During Apoptosis Induced by Singlet Oxygen but not by Hydrogen Peroxide. J Biol Chem 275: 25939

    CAS  Google Scholar 

  105. Yoshino T, Kishi H, Nagata T, Tsukada K, Saito S, Muraguchi A (2001) Differential Involvement of p38 MAP Kinase Pathway and Bax Translocation in the Mitochondria-Mediated Cell Death in TCR- and Dexamethasone-Stimulated Thymocytes. Eur J Immunol 31: 2702

    CAS  Google Scholar 

  106. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 Kinase-Mediated Phosphorylation of Bax Leads to Its Activation and Mitochondrial Translocation and to Apoptosis of Human Hepatoma HepG2 Cells. J Biol Chem 281: 21256

    CAS  Google Scholar 

  107. Cai B, Chang SH, Becker EB, Bonni A, Xia Z (2006) p38 MAP Kinase Mediates Apoptosis Through Phosphorylation of BimEL at Ser-65. J Biol Chem 281: 25215

    CAS  Google Scholar 

  108. De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, Higashimoto Y, Damonte G, Armirotti A, Amodei S, Palamara AT, Russo T, Garaci E, Cozzolino F (2006) Bcl-2 Phosphorylation by p38 MAPK: Identification of Target Sites and Biologic Consequences. J Biol Chem 281: 21353

    Google Scholar 

  109. Grethe S, Coltella N, Di Renzo MF, Porn-Ares MI (2006) p38 MAPK Downregulates Phosphorylation of Bad in Doxorubicin-Induced Endothelial Apoptosis. Biochem Biophys Res Commun 347: 781

    CAS  Google Scholar 

  110. Balmanno K, Cook SJ (2009) Tumour Cell Survival Signalling by the ERK1/2 Pathway. Cell Death Differ 16: 368

    CAS  Google Scholar 

  111. Yeh JH, Hsu SC, Han SH, Lai MZ (1998) Mitogen-Activated Protein Kinase Kinase Antagonized fas-Associated Death Domain Protein-Mediated Apoptosis by Induced FLICE-Inhibitory Protein Expression. J Exp Med 188: 1795

    CAS  Google Scholar 

  112. Wang W, Prince CZ, Mou Y, Pollman MJ (2002) Notch3 Signaling in Vascular Smooth Muscle Cells Induces c-FLIP Expression via ERK/MAPK Activation. Resistance to Fas ligand-Induced Apoptosis. J Biol Chem 277: 21723

    CAS  Google Scholar 

  113. Panka DJ, Mano T, Suhara T, Walsh K, Mier JW (2001) Phosphatidylinositol 3-Kinase/Akt Activity Regulates c-FLIP Expression in Tumor Cells. J Biol Chem 276: 6893

    CAS  Google Scholar 

  114. Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamäki T, Johnson MS, Sistonen L, Eriksson JE (2005) Rapid Turnover of c-FLIPshort is Determined by its Unique C-Terminal Tail. J Biol Chem 280: 27345

    CAS  Google Scholar 

  115. Li-Weber M, Krammer PH (2003) Function and Regulation of the CD95 (APO-1/Fas) Ligand in the Immune System. Semin Immunol 15: 145

    CAS  Google Scholar 

  116. Kreuz S, Siegmund D, Scheurich P and Wajant H (2001) NF-kappaB Inducers Upregulate cFLIP, a Cycloheximide-Sensitive Inhibitor of Death Receptor Signaling. Mol Cell Biol 21: 3964

    CAS  Google Scholar 

  117. Ueffing N, Schuster M, Keil E, Schulze-Osthoff K and Schmitz I (2008) Up-regulation of c-FLIP short by NFAT Contributes to Apoptosis Resistance of Short-Term Activated T Cells. Blood 112: 690

    CAS  Google Scholar 

  118. Katamna C (1970) Synthesis of 2-Arylbenzofuran-3-ones. Bull Soc Chim Fr 6: 2309

    Google Scholar 

  119. Davey AE, Taylor RJK (1987) A Novel 1,3-Dithiane-based Cyclopenta-annulation Procedure: Synthesis of the Rocaglamide Skeleton. J Chem Soc, Chem Commun 1: 25

    Google Scholar 

  120. Kraus GA, Sy JO (1989) A Synthetic Approach to Rocaglamide via Reductive Cyclization of δ-Keto Nitriles. J Org Chem 54: 77

    CAS  Google Scholar 

  121. Davey AE, Schaeffer MJ, Taylor RJK (1991) Synthesis of the Novel Antileukemic Tetrahydrocyclopenta[b]benzofuran, Rocaglamide. J Chem Soc, Chem Commun 16: 1137

    Google Scholar 

  122. Davey AE, Schaeffer MJ, Taylor RJK (1992) Synthesis of the Novel Anti-leukemic Tetrahydrocyclopenta[b]benzofuran, Rocaglamide and Related Synthetic Studies. J Chem Soc, Perkin Trans 1 20: 2657

    Google Scholar 

  123. Watanabe T, Takeuchi T, Kohzuma S, Umezawa K, Otsuka M (1998) Total Synthesis of (±)-Aglaiastatin, a Novel Bioactive Alkaloid. Chem Commun 10: 1097

    Google Scholar 

  124. Dobler MR, Bruce I, Cederbaum F, Cooke NG, Diorazio LJ, Hall RG, Irving E (2001) Total Synthesis of (±)-Rocaglamide and Some Aryl Analogues. Tetrahedron Lett 42: 8281

    CAS  Google Scholar 

  125. Gerard B, Jones G, Porco JA (2004) A Biomimetic Approach to the Rocaglamides Employing Photogeneration of Oxidopyryliums Derived from 3-Hdroxyflavones. J Am Chem Soc 126: 13620

    CAS  Google Scholar 

  126. Gerard B, Sangji S, O’Leary DJ, Porco JA (2006) Enantioselective Photocycloaddition Mediated by Chiral Br∅nsted Acids: Asymmetric Synthesis of the Rocaglamides. J Am Chem Soc 128: 7754

    CAS  Google Scholar 

  127. McDougal NT, Schaus SE (2003) Asymmetric Morita-Baylis-Hillman Reactions Catalyzed by Chiral Br∅nsted Acids. J Am Chem Soc 125: 12094

    CAS  Google Scholar 

  128. Schoop A, Helmut G, Axel G (2000) A New Analogue of Rocaglamide by an Oxidative Dihydrofuran Synthesis. Tetrahedron Lett 41: 1913

    CAS  Google Scholar 

  129. Thede K, Diedrichs N, Ragot JP (2004) Stereoselective Synthesis of (±)-Rocaglaol Analogues. Org Lett 6: 4595

    CAS  Google Scholar 

  130. Diedrichs N, Ragot JP, Thede K (2005) A Highly Efficient Synthesis of Rocaglaols by a Novel α-Arylation of Ketones. Eur J Org Chem 9: 1731

    Google Scholar 

  131. Magnus P, Stent MAH (2005) Stereospecific Synthesis of (±)-1,2-Anhydro Methyl Rocaglate. Org Lett 7: 3853

    CAS  Google Scholar 

  132. Li H, Fu B, Wang MA, Li N, Liu WJ, Xie ZQ, Ma YQ, Qin Z (2008) Total Synthesis and Biological Activity of (±)-Rocaglamide and its 2,3-Di-epi Analogue. Eur J Org Chem 10: 1753

    Google Scholar 

  133. Malona JA, Cariou K, Frontier JA (2009) Nazarov Cyclization Initiated by Peracid Oxidation: the Total Synthesis of (±)-Rocaglamide. J Am Chem Soc 131: 7560

    CAS  Google Scholar 

  134. Gerard B, Cencic R, Pelletier J, Porco JA (2007) Enantioselective Synthesis of the Complex Rocaglate (−)-Silvestrol. Angew Chem Int Ed 46: 7831

    CAS  Google Scholar 

  135. El Sous M, Rizzacasa MA (2005) Biomimetic Synthesis of the Novel 1,4-Dioxanyloxy Fragment of Silvestrol and Episilvestrol. Tetrahedron Lett 46: 293

    CAS  Google Scholar 

  136. El Sous M, Khoo M, Holloway G, Owen DJ, Scammells PJ, Rizzacasa MA (2007) Total Synthesis of (−)-Episilvestrol and (−)-Silvestrol. Angew Chem Int Ed 46: 7835

    CAS  Google Scholar 

  137. Adams TE, El Sous M, Hawkins BC, Hirner S, Holloway G, Khoo ML, Owen DJ, Savage GP, Scammells PJ, Rizzacasa MA (2009) Total Synthesis of the Potent Anticancer Aglaia Metabolites (−)-Silvestrol and (−)-Episilvestrol and the Active Analogue (−)-4′-Desmethoxyepisilvestrol. J Am Chem Soc 131: 1607

    CAS  Google Scholar 

  138. Thuaud F, Bernard Y, Turkeri G, Dirr R, Aubert G, Cresteil T, Baguet A, Tomasetto C, Svitkin Y, Sonenberg N, Nebigil CG, Désaubry L (2009) Synthetic Analogue of Rocaglaol Displays a Potent and Selective Cytotoxicity in Cancer Cells: Involvement of Apoptosis Inducing Factor and Caspase-12. J Med Chem 52: 5176

    CAS  Google Scholar 

  139. Roche SP, Cencic R, Pelletier J, Porco JA (2010) Biomimetic Photocycloaddition of 3-Hydroxyflavones: Synthesis and Evaluation of Rocaglate Derivatives as Inhibitors of Eukaryotic Translation. Angew Chem Int Ed 49: 6533

    CAS  Google Scholar 

  140. Thuaud F, Ribeiro N, Gaiddon C, Cresteil T, Désaubry L (2011) Novel Flavaglines Displaying Improved Cytotoxicity. J Med Chem 54: 411

    CAS  Google Scholar 

Download references

Acknowledgements

Preparation of this chapter was supported by a grant of BMBF (to P.P.). A scholarship granted and financed by the Egyptian government (predoctoral fellowship for S.S.E.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Proksch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ebada, S.S., Lajkiewicz, N., Porco, J.A., Li-Weber, M., Proksch, P. (2011). Chemistry and Biology of Rocaglamides (= Flavaglines) and Related Derivatives from Aglaia Species (Meliaceae). In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products Vol. 94. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 94. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0748-5_1

Download citation

Publish with us

Policies and ethics