Skip to main content

Microbially Mediated Transformations of Heavy Metals in Rhizosphere

  • Chapter
  • First Online:
Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

A complex interaction occurring between various plants and rhizosphere microorganisms governs the physicochemical and biotic characteristics of soils. And hence, the composition and functional properties of agronomic soils are often significantly different from those of bulk soil. Presence of heavy metals in soil resulting from the natural processes or introduced through anthropogenic activities affects growth and activity of plants and microbes. Therefore, the selection of microbial strains resistant to heavy metals and plants capable of accumulating excessive concentration of metals often called hyperaccumulating plants becomes important in remediation technologies. Beneficial soil microorganisms, both free living and symbionts, can stimulate plant growth, ease toxicity, and enhance accumulation of metals in plants. Amendment of soil properties by enrichment with organic matter (biosolid, compost) and cultivation of plant species inoculated with metal-resistant microbes are likely to improve efficiency of phytoremediation and reduce environmental risks associated with heavy metal contamination. This chapter presents plant–microbe interactions and the mechanisms involved in the mobilization, transfer, and stabilization of metals in soil by rhizosphere microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379

    PubMed  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Van Berkum P, Angle JS, Delorme TA, Chaney RL, Ghozlan HA, Ghanem K, Moawad H (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 26:101–108

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bravin MN, Martí AL, Clairotte M, Hinsinger P (2009) Rhizosphere alkalisation – a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant Soil 318:257–268

    Article  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burkhardt E-M, Meißner S, Merten D, Büchel G, Küsel K (2009) Heavy metal retention and microbial activities in geochemical barriers formed in glacial sediments subjacent to a former uranium mining leaching heap. Chem Erde 69:21–34

    Article  CAS  Google Scholar 

  • Chaignon V, Quesnoit M, Hinsinger P (2009) Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil. Environ Pollut 157:3363–3369

    Article  PubMed  CAS  Google Scholar 

  • Choi A, Wang S, Lee M (2009) Biosorption of cadmium, copper, and lead ions from aqueous solution by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil. Geosci J 13:331–341

    Article  CAS  Google Scholar 

  • Christensen TH, Huang PM (1999) Solid phase cadmium and the reaction of aqueous cadmium with soil surface. In: McLaughlin MJ, Singh BR (eds) Cadmium in soil and plants. Kluwer, Dordrecht, pp 65–96

    Chapter  Google Scholar 

  • Clemens S, Plamgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–316

    Article  PubMed  CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    Article  PubMed  CAS  Google Scholar 

  • Dessureault-Rompré J, Luster J, Shulin R, Tercier-Waeber M-L, Nowack B (2010) Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environ Pollut 158:1955–1962

    Article  PubMed  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Article  CAS  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes – option and impossibilities. Chem Erde 65(S1):29–49

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2005) Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobacterium intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  PubMed  CAS  Google Scholar 

  • Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850

    Article  PubMed  CAS  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  PubMed  CAS  Google Scholar 

  • Ghorbanli M, Kaveh SH, Sepehr MF (1999) Effect of cadmium and gibberellin on growth and photosynthesis of Glycine max. Photosynthetica 37:627–631

    Article  CAS  Google Scholar 

  • Gupta SK, Aten C (1993) Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentration in contaminated soil. Int J Environ Anal Chem 51:25–46

    Article  CAS  Google Scholar 

  • Gupta SK, Blatter A, Häni H (1988) Concentration of ionic copper in soil solution. Int J Environ Anal Chem 34:45–50

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impact on the environment. J Trace Elem Med Biol 19:125–140

    Article  PubMed  CAS  Google Scholar 

  • He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • Huang PM, Germina JJ (2002) Chemical and biological processes in the rhizosphere: metal pollutants. In: Huang PM, Bollag J-M, Senesi N (eds) Interaction between soil particle and microorganisms. Impact on the terrestrial ecosystem, vol 8, IUPAC series on analytical and physical chemistry of environmental systems. Wiley, Chichester, pp 381–338

    Google Scholar 

  • Inaba S, Takenaka C (2005) Changes in chemical species of copper added to brown forest soil in Japan. Water Air Soil Pollut 162:285–293

    Article  CAS  Google Scholar 

  • Jiang LY, Ye HB, Yang XE, Shi WY, Jiang YG (2002) Effect of copper refining on spatial distribution of heavy metal in surrounding soils and crops. J Zhejiang Univ (Agric Life Sci) 28:689–693

    CAS  Google Scholar 

  • Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Kao P-H, Huang C-C, Hseu Z-Y (2006) Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63–70

    Article  PubMed  CAS  Google Scholar 

  • Keller C, Védy J-C (1994) Heavy metals in the environment: distribution of cooper and cadmium fraction in two forest soils. J Environ Qual 23:987–999

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kumar R, Panday S, Panday A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–890

    CAS  Google Scholar 

  • Kurek E, Majewska M (1998) Release of Cd immobilized by soil constituents and its bioavailability. Toxicol Environ Chem 67:237–249

    Article  CAS  Google Scholar 

  • Kurek E, Majewska M (2004) In vitro remobilization of Cd immobilized by fungal biomass. Geoderma 122:235–246

    Article  CAS  Google Scholar 

  • Labanowski J, Monna F, Bermond A, Cambier P, Fernandez C, Lamy I, Van Oort F (2008) Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environ Pollut 152:693–701

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Chen H, Cai P, Liang W, Huang Q (2009) Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater 163:563–567

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in population of Thlaspi caerulescens and Tlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Majewska M, Kurek E (2007) Microbially mediated cadmium sorption/desorption processes in soil amended with sewage sludge. Chemosphere 67:724–730

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Römheld V (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Dekker, New York, pp 557–579

    Google Scholar 

  • McLean JS, Lee J-U, Beveridge TJ (2002) Interactions of bacteria and environmental metals, fine-grained mineral development and bioremediation strategies. In: Huang PM, Bollag J-M, Senesi N (eds) Interaction between soil particle and microorganisms. Impact on the terrestrial ecosystem, vol 8, IUPAC series on analytical and physical chemistry of environmental systems. Wiley, Chichester, pp 227–261

    Google Scholar 

  • Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Ooterbean A, Track FMG, Verheyen K (2007) Trees species on the redistribution of soil metals. Environ Pollut 149:173–181

    Article  PubMed  CAS  Google Scholar 

  • Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438

    Article  CAS  Google Scholar 

  • Naidu R, Harter RD (1998) Effects of different organic ligands on cadmium sorption and extractability from soils. Soil Sci Soc Am J 62:644–650

    Article  CAS  Google Scholar 

  • Nevel LV, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: How far from practice? Environ Pollut 150:34–40

    Article  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Płaza GA, Nałęcz-Jawecki G, Pinyakong O, Illmer P, Margesin R (2010) Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environ Monit Assess 163:477–488

    Article  PubMed  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Robinson BH, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80:221–234

    Google Scholar 

  • Schultz MF, Benjamin MM, Ferguson JF (1987) Adsorption and desorption of metals on ferrihydrite: reversibility of the reaction and sorption properties of the regenerated solid. Environ Sci Technol 21:863–869

    Article  CAS  Google Scholar 

  • Singh NK, Rai UN, Tewari A, Singh M (2010) Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and growth on Tannery sludge amended soil. Bull Environ Contam Toxicol 84:118–124

    Article  PubMed  CAS  Google Scholar 

  • Smith JN, Ahmer BM (2003) Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 185:1357–1366

    Article  PubMed  CAS  Google Scholar 

  • Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochim Cosmochim Acta 65:1233–1242

    Article  CAS  Google Scholar 

  • Su D, Xing J, Jiao W, Wong W (2009) Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties. J Environ Sci 21:1125–1128

    Article  CAS  Google Scholar 

  • Thomson CJ, Marschner H, Römheld V (1993) Effect of nitrogen fertilizer form on pH of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean. J Plant Nutr 16:493–506

    Article  CAS  Google Scholar 

  • Track C, Fuchs B, Lang S, Gimmler H (1998) Environmental compatibility of municipal solid waste incinerator bottom slag: evidence from long time lysimeter experiments with Vitis vinifera. J Appl Bot 72:14–24

    CAS  Google Scholar 

  • Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactone and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • Van der Lelie D (1998) Biological interactions: the role of soil bacteria in the bioremediation of heavy metal polluted soils. In: Vangronsveld J, Cunningham SD (eds) Metal contaminated soils: in situ inactivation and phytorestoration. Springer, RG Landes, New York, pp 31–50

    Google Scholar 

  • Van der Perk M (2006) Soil and water contamination from molecular to catchment scale. Taylor & Francis, Balkema, Leiden

    Book  Google Scholar 

  • Vásquez-Murrieta MS, Migueles-Garduño I, Franco-Hermández O, Govaerts B, Dendooven L (2006) C and N mineralization and microbial biomass in heavy-metal contaminated soil. Eur J Soil Biol 42:89–98

    Article  Google Scholar 

  • Wang S, Mulligan CN (2009) Enhance mobilization of arsenic and heavy metals from mine tailing by humic acid. Chemosphere 74:274–279

    Article  PubMed  Google Scholar 

  • Wang D-Z, Jiang X, Rao W, He J-Z (2009) Kinetics of soil cadmium desorption under simulated acid rain. Ecol Complex 6:432–437

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradorhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wieshammer G, Unterbrunner R, Bañares García T, Zivkovic MF, Puschenreiter M, Wenzel WW (2007) Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298:255–264

    Article  CAS  Google Scholar 

  • Wightman PG, Fein JB (2001) Ternary interaction in a humic acid-Cd-bacteria system. Chem Geol 180:55–65

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H – a new zinc hyperaccumulating plant species native to China. Chin Sci Bull 47:1003–1006

    Google Scholar 

  • Yang J, Hu S, Chen X, Yu M, Liu J, Li H, Shen C, Shi J, Chen Y (2010) Transformation of lead solid fraction in the rhizosphere of Elsholtzia splendens: the importance of organic matter. Water Air Soil Pollut 205:333–342

    Article  CAS  Google Scholar 

  • Yao J, Tian L, Wang Y, Djah A, Wang F, Chen H, Su C, Zhuang R, Zhou Y, Choi MMF, Bramanti E (2008) Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicol Environ Saf 69:289–295

    Article  PubMed  CAS  Google Scholar 

  • Yuangen Y, Campbell CD, Clark L, Cameron CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 63:1942–1952

    Article  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620

    Article  CAS  Google Scholar 

  • Zhao LYL, Schulin R, Nowack B (2007a) The effects of plants on the mobilization of Cu and Zn in soil columns. Environ Sci Technol 41:2770–2775

    Article  PubMed  CAS  Google Scholar 

  • Zhao LYL, Schulin R, Weng L, Nowack B (2007b) Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns. Geochim Cosmochim Acta 71:3407–3418

    Article  CAS  Google Scholar 

  • Zhu D, Schwab AP, Banks MK (1999) Heavy metal leaching from mine tailings as affected by plants. J Environ Qual 28:1727–1732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grant No. N N305 336334 (2008–2011) from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Kurek, E., Majewska, M. (2012). Microbially Mediated Transformations of Heavy Metals in Rhizosphere. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_8

Download citation

Publish with us

Policies and ethics