Skip to main content

Site-Specific Optimization of Arbuscular Mycorrhizal Fungi Mediated Phytoremediation

  • Chapter
  • First Online:

Abstract

Anthropogenic contamination of soils with toxic metals has become a global environmental problem. Managed mycorrhization promotes phytoremediation and reuse of damaged fields. Site-specific optimization can be defined as selection of a tolerant fungal strain that is compatible to plants, remediation sites and the bioremediation method to be adapted. The high inter- and intraspecific functional diversity and non-specific association of arbuscular mycorrhizal (AM) fungi provide biological materials to develop fungi host combinations for different soils and contaminants. Both ecological and human health aspects should, however, be considered while planning and designing the phytotechnologies for restoration of metal contaminated sites. Soil characteristics, metal concentration, composition of the indigenous AM fungi and plant community are some of the important factors in developing site-specific remediation technology. The research carried out during the last few years on the role of AM fungi in facilitating phytoremediation of heavy metal contaminated soils under field environment is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alten vH, Blal B, Dodd JC, Feldmann F, Vosatka M (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi H, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture from genes to bioproducts. Birkhäuser, Switzerland, pp 281–296

    Google Scholar 

  • Anton A, Máthé-Gáspár G (2005) Factors affecting heavy metal uptake in plant selection for phytoremediation. Z Naturforsch 60c:244–246

    Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation. Meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    PubMed  CAS  Google Scholar 

  • Azcon R, Ocampo JA (1981) Factors affecting the vesicular arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluder-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioScience 51:923–931

    Google Scholar 

  • Bever JD, Kang H-J, Kaonongbua W, Wang M (2008) Genomic organization and mechanisms of inheritance in arbuscular mycorrhizal fungi: contrasting the evidence and implications of current theories. In: Varma A (ed) Mycorrhiza—genetics and molecular biology, eco-function, biotechnology, structure and systematics. Springer, Berlin, pp 135–148

    Google Scholar 

  • Biró I, Takács T (2007) Effects of Glomus mosseae strains of different origin on plant macro-micronutrient uptake in Cd-polluted and unpolluted soils. Acta Agric Hung 55:183–192

    Google Scholar 

  • Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. CAB International, New York, pp 1–14

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    PubMed  CAS  Google Scholar 

  • Compant S, Clément B, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11:261–269

    Google Scholar 

  • Díaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Google Scholar 

  • Dodd J, Thompson BD (1994) The screening and selection of inoculant arbuscular mycorrhizal and ectomycorrhizal fungi. Plant Soil 159:149–158

    Google Scholar 

  • El-Kherbawy M, Angle JS, Heggo A, Chaney RL (1989) Soil pH, rhizobia, and vesicular arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol Fertil Soil 8:61–65

    CAS  Google Scholar 

  • EPA (2001) Brownfields technology primer: selecting and using phytoremediation for site cleanup. NSCEP, Cincinnati, OH, pp 1–24

    Google Scholar 

  • Estún V, Camprubí A, Joner EJ (2002) Selecting arbuscular mycorrhizal fungi for field application. In: Gianinazzi H, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture from genes to bioproducts. Birkhäuser, Switzerland, pp 249–259

    Google Scholar 

  • Feldmann F, Grotkass C (2002) Direct inoculum production-shall we be able to design populations of arbuscular mycorrhizal fungi to achieve predictable symbiotic effectiveness? In: Gianinazzi H, Schüepp H, Barea JM, Haselwandter K (eds) Micorrhiza technology in agriculture from genes to bioproducts. Birkhäuser, Switzerland, pp 261–281

    Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125

    CAS  Google Scholar 

  • Füzy A, Biró B, Tóth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Phsyol 165:1181–1192

    Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    PubMed  CAS  Google Scholar 

  • Gosling P, Jones J, Bending GD (2008) How much diversity do we need in arbuscular mycorrhizal fungi (AMF) inoculum? In: Proceedings COST Action 870. Mycorrhiza application in sustainable agriculture and natural systems, Aristotle University of Thessaloniki, Thessaloniki, Greece, 17–19 Sept 2008, pp 39–42

    Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    CAS  Google Scholar 

  • Harley JL, Harley EL (1987) A check list of mycorrhiza in the British flora. New Phytol 105:1–102

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans. Soil Biol Biochem 22:865–869

    CAS  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    PubMed  CAS  Google Scholar 

  • Hoflich G, Metz R (1997) Interactions of plant-microorganism-associations in heavy metal containing soils from sewage farms. Bodenkultur 48:239–247

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    PubMed  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning and mycorrhizal associations along mutualism-parasitism continuum. New Phytol 135:575–586

    Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Kabata-Pendidas A (2004) Soil-plant transfer of trace elements: an environmental issue. Geoderma 122:143–149

    Google Scholar 

  • Kádár I (1995) Contamination of the soil-plant-animal-man food chain by chemical elements in Hungary (in Hungarian). Ministry of Environmental Protection and Land Development and Research Institute for Soil Science and Agricultural Chemistry, Akaprint Budapest, pp 169–178

    Google Scholar 

  • Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    CAS  Google Scholar 

  • Karimi A, Habib K, Mozhgan S, Mirhassan RS (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res 5:1571–1576

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Khan AG, Ayub N, Mirza SN, Nizami SM, Azam M (2008) Synergistic effect of dual inoculation (vesicular-arbuscular mycorrhizae) on the growth and nutrients uptake of Medicago sativa. Pak J Bot 40:939–945

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Killham K, Firestone MK (1983) Vesicular–arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48

    CAS  Google Scholar 

  • Klironomos JN (2003) Variation in pant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Google Scholar 

  • Koomen I, Mc Grath SP, Giller I (1990) Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biol Biochem 22:871–873

    CAS  Google Scholar 

  • Kucey RMN, Janzen HH (1987) Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant Soil 104:71–78

    CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    PubMed  CAS  Google Scholar 

  • Leyval C, Singh BR, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Pollut 84:203–216

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Switzerland, pp 175–186

    Google Scholar 

  • Liao JP, Lin XG, Gao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    PubMed  CAS  Google Scholar 

  • Machnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    PubMed  CAS  Google Scholar 

  • Malcova R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Google Scholar 

  • Marschner H (1997) The soil-root interface (Rhizosphere) in relation to mineral nutrition. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, London, pp 537–594

    Google Scholar 

  • Mathe-Gaspar G, Spiter E, Szili-Kovács T, Takacs T, Mathe P, Anton A (2005) Environmental impact of soil pollution with toxic elements from the lead and zinc mine at Gyöngyösoroszi (Hungary). Commun Soil Sci Plant Anal 40:324–332

    Google Scholar 

  • McGee PA (1987) Alteration of growth of Solanum opacum and Plantago drummondii and inhibition of regrowth of hyphae of vesicular-arbuscular mycorrhizal fungi from dried root picies by manganase. Plant Soil 101: 227–233

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • Morton JB, Bentivenga SP (1994) Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and nontaxonomic groups. Plant Soil 159:47–59

    Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Google Scholar 

  • Ortega-Larrocea MP, Siebe C, Estrada A, Webster R (2007) Mycorrhizal inoculum potential of arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time, as affected by heavy metals and available. Appl Soil Ecol 37:129–138

    Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    PubMed  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 433:E4–E5

    Google Scholar 

  • Rahmanian M, Khodaverdiloo H, Rezaee Danesh Y, Rasouli Sadaghiani MH (2011) Effects of heavy metal resistant soil microbes inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and alfalfa. Afr J Microbiol Res 5:403–410

    CAS  Google Scholar 

  • Redon PO, Beguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    PubMed  CAS  Google Scholar 

  • Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    PubMed  CAS  Google Scholar 

  • Regvar M, Vogel-Mikus K, Kugonic N, Turk B, Batic F (2006) Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation? Environ Pollut 144:976–984

    PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    PubMed  CAS  Google Scholar 

  • Rydlova J (1998) AM in plant succession on sedimentation ponds and soil banks. PhD Thesis, Department of Botany, Faculty of Sciences, Charles University, pp 112 (in Czech, with English Summary)

    Google Scholar 

  • Ryszka P, Turnau K (2007) Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: implications for restoration practices. Plant Soil 298:219–229

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov BA, Ensley V, Chet BD, Raskin I (1995) Phytoremediation: a novel strategy for removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    PubMed  CAS  Google Scholar 

  • Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in metal polluted soils of Tamil Nadu India. J Environ Biol 13:159–167

    CAS  Google Scholar 

  • Saraswat S, Rai JPN (2011) Mechanism of metal tolerance and detoxification in mycorrhizal fungi. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 225–240

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  CAS  Google Scholar 

  • Simon L, Biró B (2005) Role of amendments, red fescue and Zn-tolerant mycorrhizal fungi in the remediation of a metal contaminated mine spoil from Gyöngyösoroszi. Agrochem Soil Sci 54:163–176

    CAS  Google Scholar 

  • Sudova R, Jurkiewicz A, Turnau K, Vosatka M (2007) Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–81

    CAS  Google Scholar 

  • Szili-Kovács T, Torok K, Tilston EL, Hopkins DW (2007) Promoting microbial immobilization of soil nitrogen during restoration of abandoned agricultural fields by organic additions. Biol Fertil Soils 43:823–828

    Google Scholar 

  • Takács T, Biró B, Vörös I (2000) Influence of Cd, Zn and Ni on the diversity of arbuscular mycorrhizal fungi. Agrochem Soil Sci 49:465–476

    Google Scholar 

  • Takács T, Biró B, Vörös I (2001) Arbuscular mycorrhizal effect on heavy metal uptake of ryegrass (Lolium perenne L.) in pot culture with polluted soils. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N, Wittenmayer L (eds) Development in plant and soil sciences. Kluwer Academic, New York, pp 480–481

    Google Scholar 

  • Takács T, Radimszky L, Németh T (2005) The arbuscular mycorrhizal status of selected poplar clones for phytoremediation of soils with contaminated heavy metals. Zeitschrift Naturforsch C 60:357–361

    Google Scholar 

  • Takács T, Biró I, Németh T, Vörös I (2008) Selection and application of infective and effective AMF strains for phytoremediation of metal contaminated soils. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. Deutsche Phytomedizinishche Gesellschaft, Braunschweig, Germany, pp 267–277

    Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, FL, pp 5–25

    Google Scholar 

  • Tullio M, Pierandrei F, Salerno A, Rea E (2003) Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214

    CAS  Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Micorrhiza technology in agriculture from genes to bioproducts. Birkhäuser, Switzerland, pp 137–150

    Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174

    CAS  Google Scholar 

  • Turnau K, Anielska T, Ryszka P, Gawronski S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes-new solution for waste revegetation. Plant Soil 305:267–280

    CAS  Google Scholar 

  • Ultra VU, Tanaka S, Sakurai K, Iwasaki K (2007) Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–41

    CAS  Google Scholar 

  • Van der Heijden MGA, Scheublin TR, Brader A (2004) Taxonomic and functional diversity in arbuscular mycorrhizal fungi—is there any relationship? New Phytol 164:201–204

    Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    PubMed  CAS  Google Scholar 

  • Vivas A, Vörös I, Biro B, Barea JM, Ruiz-Lozano JM, Azcon R (2003) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp in improving plant tolerance to Cd contamination. Appl Soil Ecol 24:177–186

    Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    PubMed  CAS  Google Scholar 

  • Vörös I, Takács T (2001) The effect of the different AMF inoculations on the growth and the heavy metal uptake of cucumber (Cucumis sativus) host. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N, Wittenmayer L (eds) Development in plant and soil sciences. Kluwer Academic, Dordrecht, pp 478–479

    Google Scholar 

  • Vörös I, Biró B, Takács T, Köves-Péchy K, Bujtás K (1998) Effect of AM fungi on the heavy metal toxicity to Trifolium pratense in soils contaminated with Cd, Zn and Ni salts. Agrochem Soil Sci 47:277–289

    Google Scholar 

  • Vosatka M, Dodd JC, Rydlova J, Batchugjin E, Paroulek M (1998) The isolation and study of AMF from polluted soils. In: Gianinazzi S, Schüepp H (eds) COST Action 821 Report of 1997 activities, p 162

    Google Scholar 

  • Vosatka M, Rydlová J, Sudová R, Vohník M (2006) Mycorrhizal fungi as helping agents in phytoremediation of degraded and contaminated soils. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Springer, Dordrecht, pp 237–257

    Google Scholar 

  • Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547

    Google Scholar 

  • Wang Y, Chao CC (1992) Effects of vesicular-arbuscular mycorrhizae and heavy metals on the growth of soybean and phosphate and heavy metal uptake by soybean in major soil groups of Taiwan. J Agric Assoc China New Ser 157:247–256

    Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238

    CAS  Google Scholar 

  • Weissenhorn I, Leyval C (1996) Spore germination of arbuscular mycorrhizal fungi in soils differing in heavy metal content and other parameters. Eur J Soil Biol 32:165–172

    CAS  Google Scholar 

  • Weissenhorn I, Glashoff A, Leyval C, Berthelin J (1994) Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant Soil 167:189–196

    CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995) Bioavailability of heavy metals and abundance of arbuscular mycorrhiza (AM) in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19:22–28

    CAS  Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhiza status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    PubMed  CAS  Google Scholar 

  • Yu X, Cheng J, Wong MH (2004) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–65

    PubMed  CAS  Google Scholar 

  • Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Hungarian National Scientific Research Foundation (OTKA 042543) and GVOP-3.1.1.-AKF-2004.05-0115/3.0,NKFP3 020/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tünde Takács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Takács, T. (2012). Site-Specific Optimization of Arbuscular Mycorrhizal Fungi Mediated Phytoremediation. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_11

Download citation

Publish with us

Policies and ethics