Skip to main content

Experience-dependent reorganization of somatosensory and motor cortical areas: towards a neurobiology of rehabilitation

  • Chapter
Brain Mapping

Abstract

The cerebral cortex is a dynamic construct of highly interconnected and spatially distributed neuronal networks whose morphological and functional connectivity is continuously modified by experience-dependent plasticity mechanisms. Use-dependent activity of neuronal networks has been shown to reshape neuronal circuits by promoting changes in synapse strength and the formation and elimination of synapses. Both basic and clinical research over the past decades have clearly established that salient experience and intensive training lead to widespread organizational changes within the subcortical and cortical representations underlying sensory perception, motor integration, and memory formation, thereby paving the route for the acquisition of new sensorimotor and cognitive skills. Conversely, disuse and social isolation have long been shown to exert adverse effects on sensorimotor and cognitive abilities through deleterious morphological and biochemical alterations of neuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C (1998) Abnormal somatosensory homunculus in dystonia of the hand. Ann Neurol 44: 828–831

    Article  PubMed  CAS  Google Scholar 

  2. Barnes SJ, Finnerty GT (2010) Sensory experience and cortical rewiring. Neuroscientist 16: 186–198

    Article  PubMed  Google Scholar 

  3. Braun C, Schweizer R, Elbert T, Birbaumer N, Taub E (2000) Differential activation in somatosensory cortex for different discrimination tasks. J Neurosci 20: 446–450

    PubMed  CAS  Google Scholar 

  4. Braun C, Haug M, Wiech K, Birbaumer N, Elbert T, Roberts LE (2002) Functional organization of primary somatosensory cortex depends on the focus of attention. Neuroimage 17: 1451–1458

    Article  PubMed  Google Scholar 

  5. Butefisch CM, Kleiser R, Seitz RJ (2006) Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation. J Physiol 99: 437–454

    Google Scholar 

  6. Byl NN, Merzenich MM, Jenkins WM (1996) A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 47: 508–520

    Article  PubMed  CAS  Google Scholar 

  7. Byl NN, Merzenich MM, Cheung S, Bedenbaugh P, Nagarajan SS, Jenkins WM (1997) A primate model for studying focal dystonia and repetitive strain injury: effects on the primary somatosensory cortex. Phys Ther 77: 269–284

    PubMed  CAS  Google Scholar 

  8. Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34: 1553–1566

    Article  PubMed  Google Scholar 

  9. Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 32: 2534–2542

    Article  PubMed  CAS  Google Scholar 

  10. Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC (2001) Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport 12: 3883–3886

    Article  PubMed  CAS  Google Scholar 

  11. Calautti C, Naccarato M, Jones PS, Sharma N, Day DD, Carpenter AT, Bullmore ET, Warburton EA, Baron JC (2007) The relationship between motor deficit and hemisphere activation balance after stroke: a 3T fMRI study. Neuroimage 34: 322–331

    Article  PubMed  Google Scholar 

  12. Candia V, Schafer T, Taub E, Rau H, Altenmuller E, Rockstroh B, Elbert T (2002) Sensory motor retuning: a behavioral treatment for focal hand dystonia of pianists and guitarists. Arch Phys Med Rehabil 83: 1342–1348

    Article  PubMed  Google Scholar 

  13. Candia V, Wienbruch C, Elbert T, Rockstroh B, Ray W (2003) Effective behavioral treatment of focal hand dystonia in musicians alters somatosensory cortical organization. Proc Natl Acad Sci USA 100: 7942–7946

    Article  PubMed  CAS  Google Scholar 

  14. Canu MH, Stevens L, Falempin M (2007) Effect of hindlimb suspension on activation and MHC content of triceps brachii and on the representation of forepaw on the sensorimotor cortex. Exp Neurol 203: 521–530

    Article  PubMed  CAS  Google Scholar 

  15. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125: 773–788

    Article  PubMed  Google Scholar 

  16. Carey LM, Abbott DF, Egan GF, O’Keefe GJ, Jackson GD, Bernhardt J, Donnan GA (2006) Evolution of brain activation with good and poor motor recovery after stroke. Neurorehabil Neural Repair 20: 24–41

    Article  PubMed  Google Scholar 

  17. Carmichael ST (2003) Plasticity of cortical projections after stroke. Neuroscientist 9: 64–75

    Article  PubMed  Google Scholar 

  18. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29: 63–71

    Article  PubMed  CAS  Google Scholar 

  19. Coq JO, Xerri C (1998) Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats. Exp Brain Res 121: 191–204

    Article  PubMed  CAS  Google Scholar 

  20. Coq JO, Xerri C (1999) Impoverishment and sensorimotor restriction deteriorate the forepaw cutaneous map in the primary somatosensory cortex of adult rats. Exp Brain Res 129: 518–531

    Article  PubMed  CAS  Google Scholar 

  21. Coq JO, Xerri C (2001) Sensorimotor experience modulates age-dependent alterations of the forepaw representation in the rat primary somatosensory cortex. Neuroscience 104: 705–715

    Article  PubMed  CAS  Google Scholar 

  22. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28: 2518–2527

    Article  PubMed  CAS  Google Scholar 

  23. Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ (2005) Extensive cortical rewiring after brain injury. J Neurosci 25: 10167–10179

    Article  PubMed  CAS  Google Scholar 

  24. Dechaumont S, Marque P, Carel C, Albucher JF, Cassol E, Chollet F, Loubinoux I (2004) Neural correlates of sensory and proprioceptive integration in the controlesional hemisphere of poor recovered patients with subcortical stroke? An fMRI study. Neurology 62: A541, S566.005

    Google Scholar 

  25. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, Rosen BR, Finklestein SP (2001) Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci USA 98: 12766–12771

    Article  PubMed  CAS  Google Scholar 

  26. Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ (2006) Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke 37: 1552–1555

    Article  PubMed  Google Scholar 

  27. Dupont E, Canu MH, Langlet C, Falempin M (2001) Time course of recovery of the somatosensory map following hindpaw sensory deprivation in the rat. Neurosci Lett 309: 121–124

    Article  PubMed  CAS  Google Scholar 

  28. Durham D, Woolsey TA (1978) Acute whisker removal reduces neuronal activity in barrels of mouse SmL cortex. J Comp Neurol 178: 629–644

    Article  PubMed  CAS  Google Scholar 

  29. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270: 305–307

    Article  PubMed  CAS  Google Scholar 

  30. Elbert T, Candia V, Altenmuller E, Rau H, Sterr A, Rockstroh B (1998) Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport 9: 3571–3575

    Article  PubMed  CAS  Google Scholar 

  31. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG (2004) Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127: 747–758

    Article  PubMed  Google Scholar 

  32. Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89: 3205–3214

    Article  PubMed  CAS  Google Scholar 

  33. Fujii Y, Nakada T (2003) Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J Neurosurg 98: 64–73

    Article  PubMed  Google Scholar 

  34. Gauthier LV, Taub E, Mark VW, Perkins C, Uswatte G (2009) Improvement after constraint-induced movement therapy is independent of infarct location in chronic stroke patients. Stroke 40: 2468–2472

    Article  PubMed  Google Scholar 

  35. Gauthier LV, Taub E, Perkins C, Ortmann M, Mark VW, Uswatte G (2008) Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke 39: 1520–1525

    Article  PubMed  Google Scholar 

  36. Glees P, Cole J (1950) Recovery of skilled motor functions after small repeated lesions in motor cortex in macaque. J Neurophysiol 13: 137–148

    Google Scholar 

  37. Greenough WT, Larson JR, Withers GS (1985) Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav Neural Biol 44: 301–314

    Article  PubMed  CAS  Google Scholar 

  38. Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M (2006) Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. Neuroimage 31: 710–720

    Article  PubMed  Google Scholar 

  39. Hlustik P, Solodkin A, Noll DC, Small SL (2004) Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 21: 180–191

    Article  PubMed  Google Scholar 

  40. Hodzic A, Veit R, Karim AA, Erb M, Godde B (2004) Improvement and decline in tactile discrimination behavior after cortical plasticity induced by passive tactile coactivation. J Neurosci 24: 442–446

    Article  PubMed  CAS  Google Scholar 

  41. Humm JL, Kozlowski DA, James DC, Gotts JE, Schallert T (1998) Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res 783: 286–292

    Article  PubMed  CAS  Google Scholar 

  42. Humm JL, Kozlowski DA, Bland ST, James DC, Schallert T (1999) Use-dependent exaggeration of brain injury: is glutamate involved? Exp Neurol 157: 349–358

    Article  PubMed  CAS  Google Scholar 

  43. Hund-Georgiadis M, von Cramon DY (1999) Motor-learningrelated changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp Brain Res 125: 417–425

    Article  PubMed  CAS  Google Scholar 

  44. Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251: 944–947

    Article  PubMed  CAS  Google Scholar 

  45. Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M (2005) Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain 128: 1122–1138

    Article  PubMed  Google Scholar 

  46. Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles E (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63: 82–104

    PubMed  CAS  Google Scholar 

  47. Jenkins WM, Merzenich MM, Recanzone G (1990) Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia 28: 573–584

    Article  PubMed  CAS  Google Scholar 

  48. Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125: 2731–2742

    Article  PubMed  Google Scholar 

  49. Karni, A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377: 155–158

    Article  PubMed  CAS  Google Scholar 

  50. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR (2004) Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res 154: 450–460

    Article  PubMed  Google Scholar 

  51. Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34: 265–273

    Article  PubMed  CAS  Google Scholar 

  52. Kossut M, Siucinska E (1998) Learning-induced expansion of cortical maps — what happens to adjacent cortical representations? Neuroreport 9: 4025–4028

    Article  PubMed  CAS  Google Scholar 

  53. Kozlowski DA, James DC, Schallert T (1996) Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci 16: 4776–4786

    PubMed  CAS  Google Scholar 

  54. Krings T, Topper R, Foltys H, Erberich S, Sparing R, Willmes K, Thron A (2000) Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci Lett 278: 189–193

    Article  PubMed  CAS  Google Scholar 

  55. Kuhnke N, Juenger H, Walther M, Berweck S, Mall V, Staudt M (2008) Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy? Dev Med Child Neurol 50: 898–903

    Article  PubMed  CAS  Google Scholar 

  56. Land PW, Simons DJ (1985) Metabolic activity in SmI cortical barrels of adult rats is dependent on patterned sensory stimulation of the mystacial vibrissae. Brain Res 341: 189–194

    Article  PubMed  CAS  Google Scholar 

  57. Langlet C, Canu MH, Falempin M (1999) Short-term reorganization of the rat somatosensory cortex following hypodynamia-hypokinesia. Neurosci Lett 266: 145–148

    Article  PubMed  CAS  Google Scholar 

  58. LeVere T (1980) Recovery of function after brain damage. A theory of the behavioral deficit. Physiol Psychol 8: 297–308

    Google Scholar 

  59. Liepert J, Tegenthoff M, Malin JP (1995) Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol 97: 382–386

    Article  PubMed  CAS  Google Scholar 

  60. Liepert J, Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E, Weiller C (1998) Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett 250: 5–8

    Article  PubMed  CAS  Google Scholar 

  61. Liepert J, Graef S, Uhde I, Leidner O, Weiller C (2000) Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand 101: 321–326

    Article  PubMed  CAS  Google Scholar 

  62. Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P, Manelfe C, Chollet F (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20: 2166–2180

    Article  PubMed  Google Scholar 

  63. Loubinoux I, Dechaumont-Palacin S, Castel-Lacanal E, De Boissezon X, Marque P, Pariente J, Albucher JF, Berry I, Chollet F (2007) Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb Cortex 17: 2980–2987

    Article  PubMed  Google Scholar 

  64. Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci 28: 9386–9403

    Article  PubMed  CAS  Google Scholar 

  65. Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31: 656–661

    Article  PubMed  CAS  Google Scholar 

  66. Marshall RS, Zarahn E, Alon L, Minzer B, Lazar RM, Krakauer JW (2009) Early imaging correlates of subsequent motor recovery after stroke. Ann Neurol 65: 596–602

    Article  PubMed  Google Scholar 

  67. Mogilner A, Grossman JA, Ribary U, Joliot M, Volkmann J, Rapaport D, Beasley RW, Llinás RR (1993) Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci USA 90: 3593–3597

    Article  PubMed  CAS  Google Scholar 

  68. Myint JM, Yuen GF, Yu TK, Kng CP, Wong AM, Chow KK, Li HC, Chun Por W (2008) A study of constraintinduced movement therapy in subacute stroke patients in Hong Kong. Clin Rehabil 22: 112–124

    Article  PubMed  Google Scholar 

  69. Nhan H, Barquist K, Bell K, Esselman P, Odderson IR, Cramer SC (2004) Brain function early after stroke in relation to subsequent recovery. J Cereb Blood Flow Metab 24: 756–763

    Article  PubMed  Google Scholar 

  70. Nudo RJ, Milliken GW (1996b) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75: 2144–2149

    PubMed  CAS  Google Scholar 

  71. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16: 785–807

    PubMed  CAS  Google Scholar 

  72. Pascual-Leone A (2001) The brain that plays music and is changed by it. Ann N Y Acad Sci 930: 315–329

    Article  PubMed  CAS  Google Scholar 

  73. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74: 1037–1045

    PubMed  CAS  Google Scholar 

  74. Pleger B, Dinse HR, Ragert P, Schwenkreis P, Malin JP, Tegenthoff M (2001) Shifts in cortical representations predict human discrimination improvement. Proc Natl Acad Sci USA 98: 12255–12260

    Article  PubMed  CAS  Google Scholar 

  75. Pleger B, Foerster AF, Ragert P, Dinse HR, Schwenkreis P, Malin JP, Nicolas V, Tegenthoff M (2003) Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40: 643–653

    Article  PubMed  CAS  Google Scholar 

  76. Recanzone GH, Merzenich MM, Jenkins WM (1992) Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. J Neurophysiol 67: 1057–1070

    PubMed  CAS  Google Scholar 

  77. Redecker C, Wang W, Fritschy JM, Witte OW (2002) Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab 22: 1463–1475

    Article  PubMed  CAS  Google Scholar 

  78. Risedal A, Zeng J, Johansson BB (1999) Early training may exacerbate brain damage after focal brain ischemia in the rat. J Cereb Blood Flow Metab 19: 997–1003

    Article  PubMed  CAS  Google Scholar 

  79. Rosselet C, Zennou-Azogui Y, Xerri C (2006) Nursinginduced somatosensory cortex plasticity: temporally decoupled changes in neuronal receptive field properties are accompanied by modifications in activity-dependent protein expression. J Neurosci 26: 10667–10676

    Article  PubMed  CAS  Google Scholar 

  80. Rosselet C, Zennou-Azogui Y, Escoffier G, Kirmaci F, Xerri C (2008) Nursing-induced new input timing remodels cortical maps after skin flap rotation. Eur J Neurosci 27: 1245–1260

    Article  PubMed  Google Scholar 

  81. Sanes JN, Wang J, Donoghue JP (1992) Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb Cortex 2: 141–152

    Article  PubMed  CAS  Google Scholar 

  82. Sanger TD, Tarsy D, Pascual-Leone A (2001) Abnormalities of spatial and temporal sensory discrimination in writer’s cramp. Mov Disord 16: 94–99

    Article  PubMed  CAS  Google Scholar 

  83. Sanger TD, Pascual-Leone A, Tarsy D, Schlaug G (2002) Nonlinear sensory cortex response to simultaneous tactile stimuli in writer’s cramp. Mov Disord 17: 105–111

    Article  PubMed  Google Scholar 

  84. Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, Sathian K, Nichols-Larsen DS, Wolf SL, Good DC, Wittenberg GF (2008) Constraintinduced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil Neural Repair 22: 505–513

    Article  PubMed  Google Scholar 

  85. Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, Rosen BR, Cramer SC (2002) Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 16: 326–338

    Article  PubMed  Google Scholar 

  86. Spengler F, Godde B, Dinse HR (1995) Effects of ageing on topographic organization of somatosensory cortex. Neuroreport 6: 469–473

    Article  PubMed  CAS  Google Scholar 

  87. Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E (1998) Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosci 18: 4417–4423

    PubMed  CAS  Google Scholar 

  88. Stowe AM, Plautz EJ, Eisner-Janowicz I, Frost SB, Barbay S, Zoubina EV, Dancause N, Taylor MD, Nudo RJ (2007) VEGF protein associates to neurons in remote regions following cortical infarct. J Cereb Blood Flow Metab 27: 76–85

    Article  PubMed  CAS  Google Scholar 

  89. Taub E, Miller NE, Novack TA, Cook EW 3rd, Fleming WC, Nepomuceno CS, Connell JS, Crago JE (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74: 347–354

    PubMed  CAS  Google Scholar 

  90. Taub E, Crago JE, Burgio LD, Groomes TE, Cook EW, DeLuca SC, Miller NE (1994) An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav 61: 281–293

    Article  PubMed  CAS  Google Scholar 

  91. Teasell RW, Kalra L (2005) What’s new in stroke rehabilitation: back to basics. Stroke 36: 215–217

    Article  PubMed  Google Scholar 

  92. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420: 788–794

    Article  PubMed  CAS  Google Scholar 

  93. Traversa R, Cicinelli P, Bassi A, Rossini PM, Bernardi G (1997) Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke 28: 110–117

    CAS  Google Scholar 

  94. van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM (1999) Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 30: 2369–2375

    Article  PubMed  Google Scholar 

  95. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2004) The influence of time after stroke on brain activations during a motor task. Ann Neurol 55: 829–834

    Article  PubMed  Google Scholar 

  96. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 129: 809–819

    Article  PubMed  Google Scholar 

  97. Weder B, Seitz RJ (1994) Deficient cerebral activation pattern in stroke recovery. Neuroreport 5: 457–460

    Article  PubMed  CAS  Google Scholar 

  98. Werhahn KJ, Conforto AB, Kadom N, Hallett M, Cohen LG (2003) Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann Neurol 54: 464–472

    Article  PubMed  Google Scholar 

  99. Witte OW (1998) Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr Opin Neurol 11: 655–662

    Article  PubMed  CAS  Google Scholar 

  100. Witte OW, Stoll G (1997) Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity. Adv Neurol 73: 207–227

    PubMed  CAS  Google Scholar 

  101. Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 104: 125–132

    Article  PubMed  CAS  Google Scholar 

  102. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296: 2095–2104

    Article  PubMed  CAS  Google Scholar 

  103. Wong-Riley MT, Welt C (1980) Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77: 2333–2337

    Article  PubMed  CAS  Google Scholar 

  104. Xerri C (2008) Imprinting of idiosyncratic experience in cortical sensory maps: neural substrates of representational remodeling and correlative perceptual changes. Behav Brain Res 192: 26–41

    Article  PubMed  Google Scholar 

  105. Xerri C, Zennou-Azogui Y (2003) Influence of the postlesion environment and chronic piracetam treatment on the organization of the somatotopic map in the rat primary somatosensory cortex after focal cortical injury. Neuroscience 118: 161–177

    Article  PubMed  CAS  Google Scholar 

  106. Xerri C, Stern JM, Merzenich MM (1994) Alterations of the cortical representation of the rat ventrum induced by nursing behavior. J Neurosci 14: 1710–1721

    PubMed  CAS  Google Scholar 

  107. Xerri C, Coq JO, Merzenich MM, Jenkins WM (1996) Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats. J Physiol (Paris) 90: 277–287

    Article  CAS  Google Scholar 

  108. Xerri C, Merzenich MM, Peterson BE, Jenkins W (1998) Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 79: 2119–2148

    PubMed  CAS  Google Scholar 

  109. Xerri C, Merzenich MM, Jenkins W, Santucci S (1999) Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. Cereb Cortex 9: 264–276

    Article  PubMed  CAS  Google Scholar 

  110. Xerri C, Bourgeon S, Coq JO (2005) Perceptual context-dependent remodeling of the forepaw map in the SI cortex of rats trained on tactile discrimination. Behav Brain Res 162: 207–221

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Xerri, C. (2011). Experience-dependent reorganization of somatosensory and motor cortical areas: towards a neurobiology of rehabilitation. In: Duffau, H. (eds) Brain Mapping. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0723-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0723-2_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0722-5

  • Online ISBN: 978-3-7091-0723-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics