Neuroprotection by Melatonin after Germinal Matrix Hemorrhage in Neonatal Rats

  • Tim Lekic
  • Anatol Manaenko
  • William Rolland
  • Kelly Virbel
  • Richard Hartman
  • Jiping Tang
  • John H. Zhang
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 111)


Background: Germinal matrix hemorrhage (GMH) is a devastating neurological disorder of very low birth weight premature infants that leads to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Melatonin is a potent antioxidant known to reverse free-radical mediated injury in the brain. This study investigated the effect of melatonin treatment after GMH injury.

Methods: Clostridial collagenase was infused into the right germinal matrix region of neonatal rats with stereotaxic technique. Cognitive function, sensorimotor ability, cerebral, cardiac and splenic growths were measured in juvenile animals.

Results: Systemic melatonin treatment ameliorated cognitive and sensorimotor dysfunction at the juvenile developmental stage. This hormone also normalized brain atrophy, splenomegaly, and cardiac hypertrophy consequences at 1 month after injury.

Conclusion: This study supports the role of free radicals in acute neonatal hemorrhagic brain injury. Melatonin is an effective antioxidant that can protect the infant’s brain from the post-hemorrhagic consequences of mental retardation and cerebral palsy. Further mechanistic studies are warranted to determine the mechanisms behind these neuroprotective effects.


Melatonin · Neurological deficits · Stroke · Experimental 


  1. 1.
    Ballabh P (2010) Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res 67:1–8. doi:10.1203/PDR.0b013e3181c1b176 PubMedCrossRefGoogle Scholar
  2. 2.
    Kadri H, Mawla AA, Kazah J (2006) The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst 22:1086–1090. doi:10.1007/s00381-006-0050-6 PubMedCrossRefGoogle Scholar
  3. 3.
    Heron M, Sutton PD, Xu J, Ventura SJ, Strobino DM, Guyer B (2010) Annual summary of vital statistics: 2007. Pediatrics 125:4–15. doi:peds.2009-2416 [pii] 10.1542/peds.2009-2416 PubMedCrossRefGoogle Scholar
  4. 4.
    Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13. doi:10.1016/j.nbd.2003.12.016 S0969996103002833 [pii] PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, Horwood LJ, Volpe JJ (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 87:F37–41PubMedCrossRefGoogle Scholar
  6. 6.
    Balasubramaniam J, Del Bigio MR (2006) Animal models of germinal matrix hemorrhage. J Child Neurol 21:365–371PubMedGoogle Scholar
  7. 7.
    Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM (2001) Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1, 3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology 40:433–439. doi:S0028390800001702 [pii] PubMedCrossRefGoogle Scholar
  8. 8.
    Peeling J, Yan HJ, Chen SG, Campbell M, Del Bigio MR (1998) Protective effects of free radical inhibitors in intracerebral hemorrhage in rat. Brain Res 795:63–70. doi:S0006-8993(98)00253-4 [pii] PubMedCrossRefGoogle Scholar
  9. 9.
    Peeling J, Yan HJ, Corbett D, Xue M, Del Bigio MR (2001) Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp Neurol 167:341–347. doi:10.1006/exnr.2000.7564 S0014-4886(00)97564-2 [pii] PubMedCrossRefGoogle Scholar
  10. 10.
    Nakamura T, Kuroda Y, Yamashita S, Zhang X, Miyamoto O, Tamiya T, Nagao S, Xi G, Keep RF, Itano T (2008) Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 39:463–469. doi:STROKEAHA.107.486654 [pii] 10.1161/STROKEAHA.107.486654 PubMedCrossRefGoogle Scholar
  11. 11.
    Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, Tang J, Zhang JH (2010) Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma 27:627–637. doi:10.1089/neu.2009.1163 PubMedCrossRefGoogle Scholar
  12. 12.
    Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652. doi:10.1097/01.WCB.0000073905.87928.6D PubMedCrossRefGoogle Scholar
  13. 13.
    Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G (2003) Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34:2964–2969. doi:10.1161/01.STR.0000103140.52838.45 01.STR.0000103140.52838.45 [pii] PubMedCrossRefGoogle Scholar
  14. 14.
    Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63. doi:S1474-4422(05)70283-0 [pii] 10.1016/S1474-4422(05)70283-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT (1998) Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke 29:2580–2586PubMedGoogle Scholar
  16. 16.
    Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G (2005) Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res 1039:30–36. doi:S0006-8993(05)00104-6 [pii] 10.1016/j.brainres.2005.01.036 PubMedCrossRefGoogle Scholar
  17. 17.
    Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT (1996) Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg 84:91–96PubMedCrossRefGoogle Scholar
  18. 18.
    Xi G, Keep RF, Hoff JT (1998) Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg 89:991–996PubMedCrossRefGoogle Scholar
  19. 19.
    Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293PubMedCrossRefGoogle Scholar
  20. 20.
    Nakamura T, Keep RF, Hua Y, Nagao S, Hoff JT, Xi G (2006) Iron-induced oxidative brain injury after experimental intracerebral hemorrhage. Acta Neurochir Suppl 96:194–198PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J (2007) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61:352–362. doi:10.1002/ana.21097 PubMedCrossRefGoogle Scholar
  22. 22.
    Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42. doi:JPI407 [pii] 10.1111/j.1600-079X.2006.00407.x PubMedCrossRefGoogle Scholar
  23. 23.
    Cervantes M, Morali G, Letechipia-Vallejo G (2008) Melatonin and ischemia-reperfusion injury of the brain. J Pineal Res 45:1–7. doi:JPI551 [pii] 10.1111/j.1600-079X.2007.00551.x PubMedCrossRefGoogle Scholar
  24. 24.
    Peyrot F, Ducrocq C (2008) Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J Pineal Res 45:235–246. doi:JPI580 [pii] 10.1111/j.1600-079X.2008.00580.x PubMedCrossRefGoogle Scholar
  25. 25.
    Tesoriere L, D’Arpa D, Conti S, Giaccone V, Pintaudi AM, Livrea MA (1999) Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity. J Pineal Res 27:95–105PubMedCrossRefGoogle Scholar
  26. 26.
    Tesoriere L, Allegra M, D’Arpa D, Butera D, Livrea MA (2001) Reaction of melatonin with hemoglobin-derived oxoferryl radicals and inhibition of the hydroperoxide-induced hemoglobin denaturation in red blood cells. J Pineal Res 31:114–119. doi:jpi310204 [pii] PubMedCrossRefGoogle Scholar
  27. 27.
    Hayter CL, Bishop GM, Robinson SR (2004) Pharmacological but not physiological concentrations of melatonin reduce iron-induced neuronal death in rat cerebral cortex. Neurosci Lett 362:182–184. doi:10.1016/j.neulet.2004.02.024 S0304394004002083 [pii] PubMedCrossRefGoogle Scholar
  28. 28.
    Lin AM, Ho LT (2000) Melatonin suppresses iron-induced neurodegeneration in rat brain. Free Radic Biol Med 28:904–911. doi:S0891-5849(00)00169-6 [pii] PubMedCrossRefGoogle Scholar
  29. 29.
    Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28:497–505. doi:S0149-7634(04)00073-9 [pii] 10.1016/j.neubiorev.2004.06.006 PubMedCrossRefGoogle Scholar
  30. 30.
    Fathali N, Ostrowski RP, Lekic T, Jadhav V, Tong W, Tang J, Zhang JH (2010) Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury. Crit Care Med 38:572–578. doi:10.1097/CCM.0b013e3181cb1158 PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH (2009) Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res 1270:131–139. doi:S0006-8993(09)00520-4 [pii] 10.1016/j.brainres.2009.03.010 PubMedCrossRefGoogle Scholar
  32. 32.
    Hartman R, Lekic T, Rojas H, Tang J, Zhang JH (2009) Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res 1280:148–157. doi:S0006-8993(09)00957-3 [pii] 10.1016/j.brainres.2009.05.038 PubMedCrossRefGoogle Scholar
  33. 33.
    Andine P, Thordstein M, Kjellmer I, Nordborg C, Thiringer K, Wennberg E, Hagberg H (1990) Evaluation of brain damage in a rat model of neonatal hypoxic-ischemia. J Neurosci Methods 35:253–260PubMedCrossRefGoogle Scholar
  34. 34.
    Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24:101–146PubMedCrossRefGoogle Scholar
  35. 35.
    Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ (2002) Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 12:165–173. doi:10.1002/hipo.1105 PubMedCrossRefGoogle Scholar
  36. 36.
    Wan Q, Man HY, Liu F, Braunton J, Niznik HB, Pang SF, Brown GM, Wang YT (1999) Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci 2:401–403. doi:10.1038/8062 PubMedCrossRefGoogle Scholar
  37. 37.
    Hogan MV, El-Sherif Y, Wieraszko A (2001) The modulation of neuronal activity by melatonin: in vitro studies on mouse hippocampal slices. J Pineal Res 30:87–96PubMedCrossRefGoogle Scholar
  38. 38.
    Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS (2005) Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 22:2231–2237. doi:EJN4408 [pii] 10.1111/j.1460-9568.2005.04408.x PubMedCrossRefGoogle Scholar
  39. 39.
    Gorfine T, Zisapel N (2007) Melatonin and the human hippocampus, a time dependent interplay. J Pineal Res 43:80–86. doi:JPI446 [pii] 10.1111/j.1600-079X.2007.00446.x PubMedCrossRefGoogle Scholar
  40. 40.
    Bob P, Fedor-Freybergh P (2008) Melatonin, consciousness, and traumatic stress. J Pineal Res 44:341–347. doi:JPI540 [pii] 10.1111/j.1600-079X.2007.00540.x PubMedCrossRefGoogle Scholar
  41. 41.
    Talaei SA, Sheibani V, Salami M (2009) Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus. doi:10.1002/hipo.20650 Google Scholar
  42. 42.
    Fukunaga K, Horikawa K, Shibata S, Takeuchi Y, Miyamoto E (2002) Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. J Neurosci Res 70:799–807. doi:10.1002/jnr.10400 PubMedCrossRefGoogle Scholar
  43. 43.
    Baydas G, Ozer M, Yasar A, Tuzcu M, Koz ST (2005) Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Res 1046:187–194. doi:S0006-8993(05)00549-4 [pii] 10.1016/j.brainres.2005.04.011 PubMedCrossRefGoogle Scholar
  44. 44.
    Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, Manev H (2006) Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett 393:23–26. doi:S0304-3940(05)01098-0 [pii] 10.1016/j.neulet.2005.09.040 PubMedCrossRefGoogle Scholar
  45. 45.
    Macleod MR, O’Collins T, Horky LL, Howells DW, Donnan GA (2005) Systematic review and meta-analysis of the efficacy of melatonin in experimental stroke. J Pineal Res 38:35–41. doi:JPI172 [pii] 10.1111/j.1600-079X.2004.00172.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • Tim Lekic
    • 1
  • Anatol Manaenko
    • 1
  • William Rolland
    • 1
  • Kelly Virbel
    • 1
  • Richard Hartman
    • 2
  • Jiping Tang
    • 1
  • John H. Zhang
    • 3
    • 4
    • 5
  1. 1.Department of PhysiologyLoma Linda University, School of MedicineLoma LindaUSA
  2. 2.Department of PsychologyLoma Linda University, School of MedicineLoma LindaUSA
  3. 3.Department of AnesthesiologyLoma Linda University, School of MedicineLoma LindaUSA
  4. 4.Department of NeurosurgeryLoma Linda University, School of MedicineLoma LindaUSA
  5. 5.Department of PhysiologyLoma Linda University, School of MedicineLoma LindaUSA

Personalised recommendations