Skip to main content

Scaling Analysis of Polymer Dynamics

  • Chapter
  • First Online:
Book cover Polymer Physics
  • 4812 Accesses

Abstract

In dilute solutions, diffusion of a single chain can be described by a non-draining mode of the coil. In the concentrated bulk phase, diffusion of a short chain can be described by a free-draining mode of the bead-spring Rouse chain, while diffusion of a long chain can be described by the tube model for a Rouse chain reptating along the primitive path. Scaling analysis is a powerful tool to learn their characteristic dynamics in various time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Colby R, Fetters LJ, Graessley WW (1987) Melt viscosity - molecular weight relationship for linear polymers. Macromolecules 20:2226–2237

    Article  CAS  Google Scholar 

  • De Gennes PG (1971) Reptation of a polymer chain in a presence of fixed obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  • Des Cloizeaux J, Jannink G (1990) Polymers in solution: their modelling and structure. Oxford University Press, Oxford

    Google Scholar 

  • Doi M (1983) Explanation for the 3.4 power-law for viscosity of polymeric liquids on the basis of the tube model. J Polym Sci Polym Phys 21:667–684

    CAS  Google Scholar 

  • Edwards SF (1967) The statistical mechanics of polymerized material. Proc Phys Soc 92:9–13

    Article  CAS  Google Scholar 

  • Einstein A (1905) Investigations on the theory of the Brownian movement. Ann Phys (Leipzig) 17:549–560

    CAS  Google Scholar 

  • Einstein A (1911) Eine neue Bestimmung der Molekuldimensionen. Ann Phys (Leipzig) 34:591–592

    CAS  Google Scholar 

  • Fox TG, Flory PJ (1948) Viscosity-molecular weight and viscosity- temperature relationships for polystyrene and polyisobutylene. J Am Chem Soc 70:2384–2395

    Article  CAS  Google Scholar 

  • Frischknecht AL, Milner ST (2000) Diffusion with contour length fluctuations in linear polymer melts. Macromolecules 33:5273–5277

    Article  CAS  Google Scholar 

  • Graessley WW (1982) Entangled linear, branched and network polymer systems-molecular theories. Adv Polym Sci 47:67–117

    Article  CAS  Google Scholar 

  • Houwink R (1940) Relation between the polymerization degree determined by osmotic and viscometric methods. J Prakt Chem 157:15–18

    Article  CAS  Google Scholar 

  • Kirkwood JG, Riseman J (1948) The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J Chem Phys 16:565–573

    Article  CAS  Google Scholar 

  • Kuhn W (1934) Fadenformiger Molekule in Losungen. Kolloid-Z 68:2–15

    Article  CAS  Google Scholar 

  • Liu CY, Keunings R, Bailly C (2006) Do deviations from reptation scaling of entangled polymer melts result from single or many chain effects? Phys Rev Lett 97:246001

    Article  Google Scholar 

  • Mark H (1938) Über die entstehung und eigenschaften hochpolymerer festkörper. In: Sänger R (ed) Der feste Körper. Hirzel, Leipzig, pp 65–104

    Google Scholar 

  • McLeish TCB (2002) Tube theory of entangled polymer dynamics. Adv Phys 51:1379–1527

    Article  CAS  Google Scholar 

  • Milner ST, McLeish TCB (1997) Parameter-free theory for stress relaxation in star polymer melts. Macromolecules 30:2159–2166

    Article  CAS  Google Scholar 

  • Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113

    Article  CAS  Google Scholar 

  • Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solution of coiling polymers. J Chem Phys 21:1273–1280

    Article  Google Scholar 

  • Sperling LH (2006) Introduction to physical polymer science, 4th edn. Wiley, New York, p 526

    Google Scholar 

  • Staudinger H, Nodzu R (1930) Über hochpolymere Verbindungen, 36. Mitteil: Viscositäts-Untersuchungen an Paraffin-Lösungen. Berichte der Deutschen Chemischen Gesellschaft 63:721–724

    Article  Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9(Pt. II):8–106

    Google Scholar 

  • Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity. J Chem Phys 24:269–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hu, W. (2013). Scaling Analysis of Polymer Dynamics. In: Polymer Physics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0670-9_5

Download citation

Publish with us

Policies and ethics