Skip to main content

Animal models of Parkinson’s disease in rodents induced by toxins: an update

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

The development of animal models of Parkinson’s disease is of great importance in order to test substitutive or neuroprotective strategies for Parkinson’s disease. Such models should reproduce the main characteristics of the disease, such as a selective lesion of dopaminergic neurons that evolves over time and the presence of neuronal inclusions known as Lewy bodies. Optimally, such models should also reproduce the lesion of non-dopaminergic neurons observed in a great majority of patients with Parkinson’s disease. From a behavioral point of view, a parkinsonian syndrome should be observed, ideally with akinesia, rigidity and rest tremor. These symptoms should be alleviated by dopamine replacement therapy, which may in turn lead to side effects such as dyskinesia. In this review, we analyze the main characteristics of experimental models of Parkinson’s disease induced by neurotoxic compounds such as 6-hydroxydopamine, MPTP and rotenone. We show that, whereas MPTP and 6-hydroxydopamine induce a selective loss of catecholaminergic neurons that in most cases evolves over a short period of time, rotenone infusion by osmotic pumps can induce a chronically progressive degeneration of dopaminergic neurons and also of non-dopaminergic neurons in both the basal ganglia and the brainstem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RD, van Bogaert L, van der Eecken H (1961) Dégénérescences nigro-striées et cérébello-nigro-striées. Psychiatria Neurol 142: 219–259

    Article  CAS  Google Scholar 

  • Arai N, Misugi K, Goshima Y, Misu Y (1990) Evaluation of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57 black mouse model for parkinsonism. Brain Res 515: 57–63

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, Mac Kenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3: 1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Imbert C, Deloire X, Bioulac B, Gross CE (1997) A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: evolution of motor symptoms in the monkey. Brain Res 766: 107–112

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80: 4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Chia LG, Ni DR, Cheng LJ, Kuo JS, Cheng FC, Dryhurst G (1996) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 5,7-dihydroxytryptamine on the locomotor activity and striatal amines in C57BL/6 mice. Neurosci Lett 218: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Colotla VA, Flores E, Oscos A, Meneses A, Tapia R (1990) Effects of MPTP on locomotor activity in mice. Neurotoxicol Teratol 12: 405–407

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan EV (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114: 2095–2122

    Article  PubMed  Google Scholar 

  • Daniel SE, de Bruin VMS, Lees AJ (1995) The clinical and pathological spectrum of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy): a reappraisal. Brain 118: 759–770

    Article  PubMed  Google Scholar 

  • Degryse AD, Colpaert FC (1986) Symptoms and behavioral features induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in an old java monkey [Macaca cynamolgus fascicularis (raffles)]. Brain Res Bull 16: 561–571

    Article  PubMed  CAS  Google Scholar 

  • Doudet D, Gross C, Lebrun-Grandié P, Bioulac B (1985) MPTP primate model of Parkinson’s disease: a mechanographic and electromyographic study. Brain Res 335: 194–199

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci 98: 14669–14674

    Article  PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees AJ (1990) Striatonigral degeneration. A clinicopathological study. Brain 113: 1823–1842

    Article  PubMed  Google Scholar 

  • Ferrante RJ, Schulz JB, Kowall NW, Beal MF (1997) Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 753: 157–162

    Article  PubMed  CAS  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55: 259–272

    Article  PubMed  CAS  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I (1988) An electron microscopic study of MPTP-induced inclusion bodies in an old monkey. Brain Res 448: 150–157

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Eriksson P, Archer T (1997) MPTP-induced deficits in motor activity: neuroprotective effects of the spintrapping agent, alpha-phenyl-tert-butyl-nitrone (PBN). J Neural Transm 104: 579–592

    Article  PubMed  CAS  Google Scholar 

  • Gao ZG, Cui WY, Zhang HT, Liu CG (1998) Effects of nicotine on 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced depression of striatal dopamine content and spontaneous locomotor activity in C57 black mice. Pharmacol Res 38: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Hantraye PH, Khalili-Varastet M, Peschanski M, Mazière M (1990) MPTP: mécanismes biologiques et limites d’un modèle expérimental de la maladie de Parkinson. Circul Metabol Cerveau 7: 15–19

    Google Scholar 

  • Hapdey C, Parain K, Rousselet E, Marchand V, Dumery B, Hirsch EC (2002) Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine parkinsonian toxin (submitted)

    Google Scholar 

  • Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224: 1451–1453

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44[3 Suppl 1]: S115–S120

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Orieux G, Muriel MP, Francois C, Féger J (2003) Non dopaminergic neurons in Parkinson’s disease. Adv Neurol 91: 29–37

    PubMed  CAS  Google Scholar 

  • Höglinger GU, Feger J, Prigent A, Parain K, Champy P, Ruberg M, Oertel W, Hirsch EC (2003) Chronic systemic inhibition of mitochondrial complex 1 induces a hypokinetic syndrome in rats with degeneration of multiple neuronal systems. J Neurochem 84: 491–502

    Article  PubMed  Google Scholar 

  • Hornykiewicz O (1963) Die topische Lokalization und das Verhalten von Noradrenalin und Dopamine (3-hydroxytyramin) in der Substantia nigra des normalen und parkinsonkranken Menschen. Wien Klin Wochenschr 75: 309–321

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1975) Brain monoamines and parkinsonism. Natl Inst Drug Abuse Res Monogr Ser 13–21

    Google Scholar 

  • Hulley P, Hartikka J, Abdel’Al S, Engels P, Buerki HR, Wiederhold KH, Muller T, Kelly P, Lowe D, Lubbert H (1995) Inhibitors of type IV phosphodiesterases reduce the toxicity of MPTP in substantia nigra neurons in vivo. Eur J Neurosci 7: 2431–2340

    Article  PubMed  CAS  Google Scholar 

  • Hoskins JA, Davis LJ (1989) The acute effect on levels of catecholamines and metabolites in brain, of a single dose of MPTP in 8 strains of mice. Neuropharmacology 28:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Hu SC, Chang FW, Sung YJ, Hsu WM, Lee EH (1991) Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the substantia nigra and the locus coeruleus in BALB/c mice. J Pharmacol Exp Ther 259: 1379–1387

    PubMed  CAS  Google Scholar 

  • Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Janson AM, Moller A (1993) Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitranssection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience 57: 931–941

    Article  PubMed  CAS  Google Scholar 

  • Javoy-Agid F, Agid Y (1980) Is the mesocortical dopaminergic system involved in Parkinson disease? Neurology 30: 1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13[Suppl 1]: 24–34

    PubMed  Google Scholar 

  • Jenner P, Rupniak NMJ, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD (1990) 1-methyl-4-phényl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50: 85–90

    Article  Google Scholar 

  • Jonsson G, Sundstrom E, Mefford I, Olson L, Johnson S, Freedman R, Hoffer B (1985) Electrophysiological and neurochemical correlates of the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in the mouse. Naunyn Schmiedebergs Arch Pharmacol 331: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse. Exp Neurol 156: 50–61

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339: 1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339: 1130–1143

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Article  PubMed  CAS  Google Scholar 

  • Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106: 257–270

    Article  PubMed  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nature Med 5: 1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Malone MA, Kershner JR, Swanson JM (1994) Hemispheric processing and methylpheni-date effects in attention-deficit hyperactivity disorder. J Child Neurol 9: 181–189

    Article  PubMed  CAS  Google Scholar 

  • Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115: 333–342

    Article  PubMed  Google Scholar 

  • McKeith IG (2000) Clinical Lewy body syndromes. Ann NY Acad Sci 920: 1–8

    Article  PubMed  CAS  Google Scholar 

  • McNeill TH, Brown SA, Rafols JA, Shoulson I (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152

    Article  PubMed  CAS  Google Scholar 

  • Mitra N, Mohanakumar KP, Ganguly DK (1992) Dissociation of serotoninergic and dopaminergic components in acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res Bull 28: 355–364

    Article  PubMed  CAS  Google Scholar 

  • Niéoullon A, Chéramy A, Glowinski J (1977) Interdependence of the nigrostriatal dopaminergic systems on the two side of the brain in the cat. Science 198: 416–418

    Article  PubMed  Google Scholar 

  • Olanow W, Schapira AH, Rascol O (2000) Continuous dopamine-receptor stimulation in early Parkinson’s disease. Trends Neurosci 23[Suppl 10]: S117–S126

    Article  PubMed  CAS  Google Scholar 

  • Parain K, Marchand V, Dumery B, Hirsch EC (2001) Nicotine, but not cotinine, partially protects dopaminergic neurons against MPTP-induced degeneration in mice. Brain Res 890: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Périer C, Agid Y, Hirsch EC, Féger J (2000) Ipsi-and contralateral subthalamic activity after unilateral dopaminergic lesion. NeuroReport 11: 3275–3278

    Article  PubMed  Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106: 589–601

    Article  PubMed  CAS  Google Scholar 

  • Pift C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44: 591–605

    Article  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38: 277–301

    Article  PubMed  CAS  Google Scholar 

  • Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Perez-Diaz F, Launay JM, Cohen-Salmon C, Hirsch EC (2002) Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons or dose of parkinsonian toxin MPTP in mice (submitted)

    Google Scholar 

  • Salin P, Hajji MD, Kerkerian-Legoff L (1996) Bilateral 6-hydroxydopamine-induced lesion of the nigrostriatal dopamine pathway reproduces the effects of unilateral lesion on substance P but not on the enkephalin expression in rat basal ganglia. Eur J Neurosci 8: 1746–1757

    Article  PubMed  CAS  Google Scholar 

  • Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59: 401–415

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet i: 1269

    Article  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS (1990) Chronic exposure to low doses of MPTP. II. Neurochemical and pathological consequences in cognitively-impaired, motor asymptomatic monkeys. Brain Res 534: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Pope-Coleman A (1995) Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in the monkey. Neurodegeneration 4(3): 245–255

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64: 936–939

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, McLean PJ, Kawamata H, Irizarry MC, Hyman BT (2001) α-Synuclein has an altered conformation and shows a tight intermolecular interaction with ubiquitin in Lewy bodies. Acta Neuropathol (Berl) 102: 329–334

    CAS  Google Scholar 

  • Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000) MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 30: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ, de Bruin JP, van Haelst AM, van der Gugten J, Kalsbeek A (1989) Influence of the mesocortical dopaminergic system on activity, food hoarding, social-agonistic behavior, and spatial delayed alternation in male rats. Behav Neurosci 103: 24–35

    Article  PubMed  CAS  Google Scholar 

  • Steele JC, Richardson JC, Olszewski J (1964) Progressive Supranuclear Palsy. A heterogeneous degeneration involving the brainstem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10: 333–359

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom E, Stromberg I, Tsutsumi T, Olson L, Jonsson G (1987) Studies on the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in C57BL/6 mice. Comparison with three other strains of mice. Brain Res 405: 26–38

    Article  PubMed  CAS  Google Scholar 

  • Tanila H, Bjorklund M, Riekkinen PJ (1998) Cognitive changes in mice following moderate MPTP exposure. Brain Res Bull 45: 577–582

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, Saint-Cyr JA, Lang AE (1986) Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain 109: 845–883

    Article  PubMed  Google Scholar 

  • Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1968) 6-hydroxydopamine-induced degeneration of central monoamine neurons. Eur J Pharmacol 5: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Jackson-Lewis V, Vukosavic S, Djaldetti R, Liberatore G, Offen D, Korsmeyer SJ, Przedborski S (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci 98: 2837–2842

    Article  PubMed  CAS  Google Scholar 

  • Willis GL, Donnan GA (1987) Histochemical, biochemical and behavioural consequences of MPTP treatment in C-57 black mice. Brain Res 402: 269–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Hirsch, E.C. et al. (2003). Animal models of Parkinson’s disease in rodents induced by toxins: an update. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics