Advertisement

Parameter Extraction and Validation of an Electronic and Optical Model for Organic Light-emitting Devices

  • Beat Ruhstaller
  • Tilman A. Beierlein
  • Roman Gmür
  • Siegfried Karg
  • Heike Riel
  • Guido Sartoris
  • Hansueli Schwarzenbach
  • Walter Riess

Abstract

Organic light-emitting devices (OLEDs) consist of a stack of multiple thin film layers whose thicknesses influence both the optical and electronic performance. Upon injection and transport, the charge carriers may recombine to form excitons that diffuse and decay radiatively, thus leading to distinct recombination and emission zone profiles. We present systematic combinatorial experiments for parameter extraction and validation of our comprehensive device model. The electronic model is based on drift-diffusion combined with exciton diffusion and decay. The optical part of the model considers the emission to originate from embedded radiative dipoles. We demonstrate the extraction of mobility parameters and energy barriers and validate the optical model using angular emission as well as photoluminescence data.

Keywords

Optical Model Parameter Extraction Optical Part Mobility Parameter Exciton Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. A. Beierlein, B. Ruhstaller, DJ. Gundlach, H. Riel, S. Karg, C. Rost, W. Riess, ”Investigation of internal processes in organic light-emitting devices using thin sensing layers”, Synth. Met., vol. 138, pp. 213–21, (2003)CrossRefGoogle Scholar
  2. [2]
    H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, „Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study”, J. Appl. Phys., vol. 94, pp. 5290–96, (2003)CrossRefGoogle Scholar
  3. [3]
    J.M. Leger, S.A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillman, H.H. Hörhold, “Thickness-dependent changes in the optical properties of PPV— and PF-based polymer light emitting diodes”, Phys. Rev. B, vol. 68, 054209 (2003)CrossRefGoogle Scholar
  4. [4]
    B. Ruhstaller, T.A. Beierlein, H. Riel, S. Karg, J.C. Scott, W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices”, IEEE Journal on Selected Topics in Quantum Electronics, Optoelectronic Device Simulation, vol. 9 no. 3, pp. 723–732, (2003)CrossRefGoogle Scholar
  5. [5]
    B. Ruhstaller, S.A. Carter, S. Barth, H. Riel, W. Riess, J.C. Scott “Transient and steadystate behavior of space charges in multilayer organic light-emitting diodes”, J. Appl. Phys., vol. 89, pp. 4575–86, (2001)CrossRefGoogle Scholar
  6. [6]
    ETFOS Emissive Thin Film Optics Simulator, Center for Computational Physics, Switzerland, www.ccp.zhwin.ch, (2004)

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Beat Ruhstaller
    • 1
  • Tilman A. Beierlein
    • 2
  • Roman Gmür
    • 1
  • Siegfried Karg
    • 2
  • Heike Riel
    • 2
  • Guido Sartoris
    • 1
  • Hansueli Schwarzenbach
    • 1
  • Walter Riess
    • 2
  1. 1.Center for Computational PhysicsZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.IBM Research GmbHRüschlikonSwitzerland

Personalised recommendations