Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

Besides silicon, group IVa of the periodic system contains also the isovalent elements carbon, germanium, tin, and lead. Carbon, the lightest of them, is an omnipresent impurity introduced often unintentionally. On the other hand, as discussed in Section 4.1, it is used for a variety of applications from stress compensation to proximity gettering. The properties of germanium in silicon are summarized in Section 4.2. Unfortunately, the space would not have sufficed for a presentation of silicon-germanium materials in general. Tin, the last isovalent impurity considered here, has already limited technical applications. However, it was studied to investigate basic diffusion processes in silicon. The main results will be presented in Section 4.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. P. Kalejs and L. A. Ladd, “Influence of High-Temperature Annealing on Performance of Edge-Defined Film-Fed Growth Silicon Ribbon Solar Cells,” Appl. Phys. Lett, vol. 45, no. 5, 540–542 (1984).

    Article  Google Scholar 

  2. R. C. Newman and R. S. Smith, “Vibrational Absorption of Carbon and Carbon-Oxygen Complexes in Silicon,” J. Phys. Chem. Solids, vol. 30, 1493–1505 (1969).

    Article  Google Scholar 

  3. J. B. Posthill, R. A. Rudder, S. V. Hattangady, G. G. Fountain, and R. J. Markunas, “On the Feasibility of Growing Dilute C-Sii-* Epitaxial Alloys,” Appl. Phys. Lett., vol. 56, no. 8, 734–736 (1990).

    Article  Google Scholar 

  4. S. S. Iyer, K. Eberl, M. S. Goorsky, F K. Legoues, F. Cardone, and B. A. Ek, “The Synthesis and Stability of Si1-yCy Alloys and Strained Layer Superlattices,” in: Silicon Molecular Beam Epitaxy, edited by J. C. Bean, S. S. Iyer, and K. L. Wang, Mat. Res. Soc. Symp. Proc, vol. 220, 581–588 (1991).

    Google Scholar 

  5. A. R. Powell, K. Eberl, B. A. Ek, and S. S. Iyer, “Si1-x-yGexCy Growth and Properties of the Ternary System,” J. Crystal Growth, vol. 127, 425–429 (1993).

    Article  Google Scholar 

  6. H. J. Osten, E. Bugiel, and P. Zaumseil, “Growth of an Inverse Tetragonal Distorted SiGe Layer on Si(001) by Adding Small Amounts of Carbon,” Appl. Phys. Lett., vol. 64, no. 25, 3440–3442 (1994).

    Article  Google Scholar 

  7. J. W. Strane, H. J. Stein, S. R. Lee, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon Incorporation into Si at High Concentrations by Ion Implantation and Solid Phase Epitaxy,” J. Appl. Phys., vol. 79, no. 2, 637–646 (1996).

    Google Scholar 

  8. R. F. Pinizzotto and F. Marks, “Carbon and the Kinetics of Oxygen Precipitation in Silicon,” in: Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett, Mat. Res. Soc. Symp. Proc, vol. 14, 147–152 (1983).

    Google Scholar 

  9. C. Claeys and J. Vanhellemont, “Advances in the Understanding of Oxygen and Carbon in Silicon,” in: Gettering and Defect Engineering in the Semiconductor Technology GADEST’89, edited by M. Kittler, Solid State Phenomena, vol. 6/7, 21–32 (1989).

    Google Scholar 

  10. Q. Sun, K. H. Yao, J. Lagowski, and H. C. Gatos, “Effect of Carbon on Oxygen Precipitation in Silicon,” J. Appl. Phys., vol. 67, no. 9, 4313–4319 (1990).

    Article  Google Scholar 

  11. S. Pizzini, S. Binetti, M. Acciarri, and S. Acerboni, “Interactions of Oxygen, Carbon, and Extended Defects in Silicon,” phys. stat. sol. (a), vol. 138, 451–464 (1993).

    Article  Google Scholar 

  12. W. Skorupa and R. A. Yankov, “Carbon-Mediated Effects in Silicon and in Silicon-Related Materials,” Materials Chemistry and Physics, vol. 44, 101–143 (1996).

    Article  Google Scholar 

  13. A. Kanamori and M. Kanamori, “Comparison of Two Kinds of Oxygen Donors in Silicon by Resistivity Measurements,” J. Appl. Phys., vol. 50, no. 12, 8095–8101 (1979).

    Article  MathSciNet  Google Scholar 

  14. K. Yasutake, M. Umeno, H. Kawabe, H. Nakayama, T. Nishino, and Y. Hamakawa, “Oxygen-Related Donors Generated at 800 °C in CZ-Si,” Jpn. J. Appl. Phys., vol. 19, no. 9, L544–L546 (1980).

    Article  Google Scholar 

  15. M. Tajima, T. Masui, T. Abe, and T. Iizuka, “Photoluminescence Analysis of Silicon Crystals,” in: Semiconductor Silicon 1981, edited by H. R. Huff, R. J. Kriegler, and Y Takeishi, Electrochem. Soc. Proc, vol. 81-5, 72–89 (1981).

    Google Scholar 

  16. J. Leroueille, “Influence of Carbon on Oxygen Behavior in Silicon,” phys. stat. sol. (a), vol. 67, 177–181 (1981).

    Article  Google Scholar 

  17. A. R. Bean and R. C. Newman, “The Effect of Carbon on Thermal Donor Formation in Heat Treated Pulled Silicon Crystals,” J. Phys. Chem. Solids, vol. 33, 255–268 (1972).

    Article  Google Scholar 

  18. D. Helmreich and E. Sirtl, “Oxygen in Silicon: A Modern View,” in: Semiconductor Silicon 1977, edited by H. R. Huff and E. Sirtl, Electrochem. Soc. Proc, vol. 77-2, 626–636 (1977).

    Google Scholar 

  19. R. C. Newman, M. Claybourn, S. H. Kinder, S. Messoloras, A. S. Oates, and R. J. Stewart, “Precipitation of Oxygen at Low Temperatures,” in: Semiconductor Silicon, edited by H. R. Huff, T. Abe, and B. Kolbesen, Electrochem. Soc. Proc, vol. 86-4, 766–777 (1986).

    Google Scholar 

  20. M. Tamura, T. Ando, and K. Ohyu, “MeV-Ion-Induced Damage in Si and Its Annealing,” in: Ion Beam Modification of Materials, edited by S. P. Withrow and D. B. Poker, Nuclear Instruments and Methods in Physics Research B, vol. 59/60, 572–583 (1991).

    Google Scholar 

  21. S. Nishikawa, A. Tanaka, and T. Yamaji, “Reduction of Transient Boron Diffusion in Preamor-phized Si by Carbon Implantation,” Appl. Phys. Lett., vol. 60, no. 18, 2270–2272 (1992).

    Article  Google Scholar 

  22. J. R. Liefting, J. S. Custer, and F W. Saris, “C Implantation for Suppression of Dislocation Formation,” in: Phase Formation and Modification by Beam-Solid Interactions, edited by G. S. Was, L. E. Rehn, and D. M. Follstaedt, Mat. Res. Soc. Symp. Proc, vol. 235, 179–184 (1992).

    Google Scholar 

  23. S. Nishikawa and T. Yamaji, “Elimination of Secondary Defects in Preamorphized Si by C+ Implantation,” AppL Phys. Lett, vol. 62, no. 3, 303–305 (1993).

    Article  Google Scholar 

  24. S. Lombardo, F. Priolo, S. U. Campisano, and S. Lagomarsino, “Reduction of Secondary Defect Density by C Implant and B Implant in GexSi1-x Layers Formed by High Dose Ge Implantation in (100) Si,” AppL Phys. Lett, vol. 62, no. 19, 2335–2337 (1993).

    Article  Google Scholar 

  25. P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, “Carbon Incorporation in Silicon for Suppressing Interstitial-Enhanced Boron-Diffusion,” AppL Phys. Lett, vol. 66, no. 11, 1370–1372 (1995).

    Article  Google Scholar 

  26. L. D. Lanzerotti, J. C. Sturm, E. Stach, R. Hull, T. Buyuklimanli, and C. Magee, “Suppression of Boron Outdiffusion in SiGe HBTs by Carbon Incorporation,” in: Technical Digest of the 1996 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 249–252 (1996).

    Chapter  Google Scholar 

  27. H. J. Osten, G. Lippert, D. Knoll, R. Barth, B. Heinemann, H. Rücker, and P. Schley, “The Effect of Carbon Incorporation on SiGe Heterobipolar Transistor Performance and Process Margin,” in: Technical Digest of the 1997 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 803–806 (1997).

    Chapter  Google Scholar 

  28. M. S. Carroll, L. D. Lanzerotti, and J. C. Sturm, “Quantitative Measurement of Reduction of Boron Diffusion by Substitutional Carbon Incorporation,” in: Diffusion Mechanisms in Crystalline Materials, edited by Y. Mishin, G. Vogl, N. Cowern, R. Catlow, and D. Farkas, Mat. Res. Soc Symp. Proc, vol. 527, 417–422 (1998).

    Google Scholar 

  29. E. Napolitani, A. Coati, D. De Salvador, A. Camera, S. Mirabella, S. Scalese, and F. Priolo, “Complete Suppression of the Transient Enhanced Diffusion of B Implanted in Preamorphized Si by Interstitial Trapping in a Spatially Separated C-Rich Layer,” Appl. Phys. Lett, vol. 79, no. 25, 4145–4147 (2001).

    Article  Google Scholar 

  30. A. Fukami, K.-i. Shoji, T. Nagano, and C. Y. Yang, “Characterization of SiGe/Si Heterostruc-tures Formed by Ge+ and C+ Implantation,” Appl. Phys. Lett, vol. 57, no. 22, 2345–2347 (1990).

    Article  Google Scholar 

  31. K. Eberl, S. S. Iyer, S. Zollner, J. C. Tsang, and F K. LeGoues, “Growth and Strain Compensation Effects in the Ternary Si1-x-yGexCy Alloy System,” Appl. Phys. Lett, vol. 60, no. 24, 3033–3035 (1992).

    Article  Google Scholar 

  32. S. Im, J. Washburn, and R. Gronsky, “Optimization of Ge/C Ratio for Compensation of Misfit Strain in Solid Phase Epitaxial Growth of SiGe Layers,” Appl. Phys. Lett, vol. 63, no. 19, 2682–2684 (1993).

    Article  Google Scholar 

  33. J. L. Regolini, S. Bodnar, J. C. Oberlin, F. Ferrieu, G. Gauneau, B. Lambert, and P. Boucaud, “Strain Compensated Heterostructures in the Si1-x-yGexGy Ternary System,” J. Vac. Sci. Technol. A, vol. 12, no. 4, 1015–1019 (1994).

    Article  Google Scholar 

  34. P. Warren, J. Mi, F. Overney, and M. Dutoit, “Thermal Stability of Si/Si1-x-yGexCy/Si Heterostructures Grown by Rapid Thermal Chemical Vapor Deposition,” J. Crystal Growth, vol. 157, 414–419 (1995).

    Article  Google Scholar 

  35. H. J. Osten, “SiGeC Device Applications,” in: Semiconductor Silicon 2002, edited by H. R. Huff, L. Fabry, and S. Kishino, Electrochem. Soc. Proc, vol. 2002-2, 342–353 (2002).

    Google Scholar 

  36. R. C. Newman, “The Identification of Precipitate Particles in Single Crystals of Silicon by Reflection Electron Diffraction,” Proc. Phys. Soc. (London), vol. 76, 993–996 (1960).

    Article  Google Scholar 

  37. A. R. Bean and R. C. Newman, “The Solubility of Carbon in Pulled Silicon Crystals,” J. Phys. Chem. Solids, vol. 32, 1211–1219 (1971).

    Article  Google Scholar 

  38. W. J. Taylor, T. Y. Tan, and U. Gösele, “Carbon Precipitation in Silicon: Why Is It So Difficult?” Appl. Phys. Lett, vol. 62, no. 25, 3336–3338 (1993).

    Article  Google Scholar 

  39. H. Föil, U. Gösele, and B. O. Kolbesen, “Swirl-Defects in Silicon,” in: Semiconductor Silicon 1977, edited by H. R. Huff and E. Sirtl, Electrochem. Soc. Proc, vol. 77-2, 565–574 (1977).

    Google Scholar 

  40. H. Wong, N. W. Cheung, P. K. Chu, J. Liu, and J. W. Mayer, “Proximity Gettering with Mega-Electron-Volt Carbon and Oxygen Implantations,” AppL Phys. Lett, vol. 52, no. 12, 1023–1025 (1988).

    Article  Google Scholar 

  41. H. Wong, N. W. Cheung, and P. K. Chu, “Gettering of Gold and Copper with Implanted Carbon in Silicon,” Appl. Phys. Lett, vol. 52, no. 11, 889–891 (1988).

    Article  Google Scholar 

  42. T. Ando, S. Isomae, and M. Tamura, “Reduction of p-n Junction Leakage Currents by High-Energy Carbon Ion Implantation,” in: Defects in Silicon II, edited by W. M. Bullis, U. Gösele, and F. Shimura, Electrochem. Soc. Proc, vol. 91-9, 659–666 (1991).

    Google Scholar 

  43. K. Tsukamoto, S. Komori, T. Kuroi, and Y. Akasaka, “High-Energy Ion Implantation for ULSI,” in: Ion Beam Modification of Materials, edited by S. P. Withrow and D. B. Poker, Nuclear Instruments and Methods in Physics Research B, vol. 59/60, 584–591 (1991).

    Google Scholar 

  44. J. A. Borders, S. T. Picraux, and W. Beezhold, “Formation of SiC in Silicon by Ion Implantation,” Appl. Phys. Lett, vol. 18, no. 11, 509–511 (1971).

    Article  Google Scholar 

  45. W. Rothemund and C. R. Fritzsche, “Optical Absorption and Electrical Conductivity of SiC Films Produced by Ion Implantation,” J. Electrochem. Soc, vol. 121, no. 4, 586–588 (1974).

    Article  Google Scholar 

  46. F. L. Edelman, O. N. Kuznetsov, L. V. Lezheiko, and E. V. Lubopytova, “Formation of SiC and Si3N4 in Silicon by Ion Implantation,” Radiation Effects, vol. 29, 13–15 (1976).

    Article  Google Scholar 

  47. T. Kimura, S. Kagiyama, and S. Yugo, “Characteristics of the Synthesis of a ß-SiC by the Implantation of Carbon Ions into Silicon,” Thin Solid Films, vol. 94, 191–198 (1982).

    Article  Google Scholar 

  48. I. P. Akimchenko, K. V. Kisseleva, V. V. Krasnopevtsev, A. G. Touryanski, and V. S. Vavilov, “Structure and Optical Properties of Silicon Implanted by High Doses of 70 and 310 keV Carbon Ions,” Radiation Effects, vol. 48, 7–12 (1980).

    Article  Google Scholar 

  49. I. Golecki, L. Kroko, and H. L. Glass, “Properties of Buried SiC Layers Produced by Carbon Ion Implantation in (100) Bulk Silicon and Silicon-on-Sapphire,” J. Electronic Materials, vol. 16, no. 5, 315–321 (1987).

    Article  Google Scholar 

  50. N. V. Nguyen and K. Vedam, “Spectroscopic Ellipsometry Studies of Crystalline Silicon Implanted with Carbon Ions,” J. Appl. Phys., vol. 67, no. 8, 3555–3559 (1990).

    Article  Google Scholar 

  51. V. Lehmann, K. Mitani, D. Feijóo, and U. Gösele, “Implanted Carbon: An Effective Etch-Stop in Silicon,” J. Electrochem. Soc, vol. 138, no. 5, L3–L4 (1991).

    Article  Google Scholar 

  52. D. Fröse, D. Kollewe, and W. von Münch, “Investigations of Carbon Implanted Silicon,” in: Application of Accelerators in Research and Industry’ 92, edited by J. L. Duggan and I. L. Morgan, Nuclear Instruments and Methods in Physics Research B, vol. 79, 668–671 (1993).

    Google Scholar 

  53. N. Akiyama, Y. Yatsurugi, Y Endo, Z. Imayoshi, and T. Nozaki, “Lowering of Breakdown Voltage of Semiconductor Silicon Due to the Precipitation of Impurity Carbon,” Appl. Phys. Lett., vol. 22, no. 12, 630–631 (1973).

    Article  Google Scholar 

  54. M. J. Hill and P. M. Van Iseghem, “Influence of Carbon Concentration on Gold Diffusion in Silicon,” in: Semiconductor Silicon 1977, edited by H. R. Huff and E. Sirtl, Electrochem. Soc. Proc, vol. 77-2, 715–725 (1977).

    Google Scholar 

  55. T. Abe, K. Kikuchi, S. Shirai, and S. Muraoka, “Impurities in Silicon Single Crystals,” in: Semiconductor Silicon 1981, edited by H. R. Huff, R. J. Kriegler, and Y Takeishi, Electrochem. Soc. Proc, vol. 81-5, 54–71 (1981).

    Google Scholar 

  56. B. O. Kolbesen and A. Mühlbauer, “Carbon in Silicon: Properties and Impact on Devices,” Solid-State Electronics, vol. 25, no. 8, 759–775 (1982).

    Article  Google Scholar 

  57. H. Wong, N. W. Cheung, and S. S. Wong, “Electronic Defects in Silicon Induced by MeV Carbon and Oxygen Implantations,” in: Ion Implantation Technology, edited by T. Takagi, Nuclear Instruments and Methods in Physics Research B, vol. 37/38, 970–974 (1989).

    Google Scholar 

  58. I. Ban, M. Öztürk, K. Christensen, and D. Maher, “Effects of Carbon Implantation on Generation Lifetime in Silicon,” Appl. Phys. Lett., vol. 68, 499–501 (1996).

    Article  Google Scholar 

  59. S. Lombardo, A. Cacciato, K. K. Larsen, V. Raineri, F. La Via, V Privitera, and S. U. Campisano, “High Temperature Annealing Effects on the Electrical Characteristics of C Implanted Si,” J. Appl. Phys., vol. 79, no. 7, 3464–3469 (1996).

    Article  Google Scholar 

  60. M. Craig, A. Sultan, and S. Banerjee, “Carbon Co-Implantation for Ultra-Shallow p+-n Junction Formation,” in: Ion Implantation Technology—96, edited by E. Ishidida, S. Banerjee, S. Mehta, T. C. Smith, M. Current, L. Larson, A. Tasch, and T. Romig, Piscataway: IEEE, 665–667 (1997).

    Google Scholar 

  61. H. J. Osten, G. Lippert, P. Gaworzewski, and R. Sorge, “Impact of Low Carbon Concentrations on the Electrical Properties of Highly Boron Doped SiGe Layers,” Appl. Phys. Lett., vol. 71, no. 11, 1522–1524 (1997).

    Article  Google Scholar 

  62. B. O. Kolbesen, “Carbon in Silicon,” in: Aggregation Phenomena of Point Defects in Silicon, edited by E. Sirtl and J. Goorissen, Electrochem. Soc. Proc, vol. 83-4, 155–175 (1983).

    Google Scholar 

  63. U. Gösele, “The Role of Carbon and Point Defects in Silicon,” in: Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook, Mat. Res. Soc. Symp. Proc, vol. 59, 419–431 (1986).

    Google Scholar 

  64. G. Davies and R. C. Newman, “Carbon in Monocrystalline Silicon,” in: Materials, Properties and Preparation, edited by T. S. Moss and S. Mahajan, Handbook on Semiconductors, vol. 3b, Amsterdam: North-Holland, 1557–1635 (1994).

    Google Scholar 

  65. R. C. Newman and J. Wakefield, “The Diffusivity of Carbon in Silicon,” J. Phys. Chem. Solids, vol. 19, no. 3/4, 230–234 (1961).

    Article  Google Scholar 

  66. R. C. Newman and J. Wakefield, “Diffusion and Precipitation of Carbon in Silicon,” in: Metallurgy of Semiconductor Materials, edited by J. B. Schroeder, Metallurgical Society Conferences, vol. 15, New York: Interscience, 201–208 (1962).

    Google Scholar 

  67. R. C. Newman and J. B. Willis, “Vibrational Absorption of Carbon in Silicon,” J. Phys. Chem. Solids, vol. 26, 373–379 (1965).

    Google Scholar 

  68. P. G. Dawber and J. R. Elliot, “The Vibrations of an Atom of Different Mass in a Cubic Crystal,” Proc. Roy. Soc. Lond. A, vol. 273, 222–236 (1963).

    Article  Google Scholar 

  69. P. G. Dawber and R. J. Elliott, “Theory of Optical Absorption by Vibrations of Defects in Silicon,” Proc. Phys. Soc. (London), vol. 81, 453–60 (1963).

    Article  Google Scholar 

  70. J. A. Baker, T. N. Tucker, N. E. Moyer, and R. C. Buschert, “Effect of Carbon on the Lattice Parameter in Silicon,” J. Appl. Phys., vol. 39, no. 9, 4365–4368 (1968).

    Article  Google Scholar 

  71. D. Windisch and P. Becker, “Lattice Distortions Induced by Carbon in Silicon,” Phil. Mag. A, vol. 58, no. 2, 435–443 (1988).

    Article  Google Scholar 

  72. G. G. DeLeo, W B. Fowler, and G. D. Watkins, “Theory of Off-Center Impurities in Silicon: Substitutional Nitrogen and Oxygen,” Phys. Rev. B, vol. 29, no. 6, 3193–3207 (1984).

    Article  Google Scholar 

  73. R. Jones, “Local Density Functional Calculations of the Structure and Vibratory Modes of the Substitutional Carbon Impurity in Silicon,” J. Phys. C, vol. 20, L713–L716 (1987).

    Article  Google Scholar 

  74. J. Zhu, “Ab Initio Pseudopotential Calculations of Dopant Diffusion in Si,” Comput. Mater. Sci., vol. 12, 309–318 (1998).

    Article  Google Scholar 

  75. H. P. Hjalmarson, P. Vogl, D. J. Wolford, and J. D. Dow, “Theory of Substitutional Deep Traps in Covalent Semiconductors,” Phys. Rev. Lett., vol. 44, no. 12, 810–813 (1980).

    Article  Google Scholar 

  76. A. A. Demkov and O. F. Sankey, “Theoretical Investigation of Random Si-C Alloys,” Phys. Rev. B, vol. 48, no. 4, 2207–2214 (1993).

    Google Scholar 

  77. W. Windl, O. F Sankey, and J. Menéndez, “Theory of Strain and Electronic Structure of Si1-xCy and Si1-x-yGexCy Alloys,” Phys. Rev. B, vol. 57, no. 4, 2431–2442 (1998).

    Article  Google Scholar 

  78. J. Xie, K. Zhang, and X. Xie, “Electronic Structure of Si1-xC-and Si1-x-yCxGey Alloys,” J. Appl. Phys., vol. 77, no. 8, 3868–3871 (1995).

    Article  Google Scholar 

  79. R. C. Newman and A. R. Bean, “Irradiated Damage in Carbon-Doped Silicon Irradiated at Low Temperatures by 2 MeV Electrons,” Radiation Effects, vol. 8, 189–193 (1971).

    Article  Google Scholar 

  80. F. A. Abou-el-Fotouh and R. C. Newman, “Electron Irradiation Damage in Silicon Containing Carbon and Diffused 18O,” Solid State Communications, vol. 15, 1409–1411 (1974).

    Article  Google Scholar 

  81. G. D. Watkins and K. L. Brower, “EPR Observation of the Isolated Interstitial Carbon Atom in Silicon,” Phys. Rev. Lett., vol. 36, no. 22, 1329–1332 (1976).

    Article  Google Scholar 

  82. J. Weber, R. J. Davis, H.-U. Habermeier, W D. Sawyer, and M. Singh, “Photoluminescence Detection of Impurities Induced in Silicon by Dry Etching Processes,” Appl. Phys. A, vol. 41, 175–178 (1986).

    Article  Google Scholar 

  83. H. J. Stein and F. L. Vook, “Infrared Studies of Oxygen and Carbon Associated Defects in Electron-Irradiated Silicon,” Radiation Effects, vol. 1, 41–46 (1969).

    Article  Google Scholar 

  84. Y. H. Lee, L. J. Cheng, J. D. Gerson, P. M. Mooney, and J. W. Corbett, “Carbon Interstitial in Electron-Irradiated Silicon,” Solid State Communications, vol. 21, 109–111 (1977).

    Article  Google Scholar 

  85. L. C. Kimerling, P. Blood, and W. M. Gibson, “Defect States in Proton-Bombarded Silicon at T<300 K,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Sen, no. 46, 273–280 (1979).

    Google Scholar 

  86. A. G. Litvinko, L. F. Makarenko, L. I. Murin, and V. D. Tkachev, “Electrically Active Interstitial Defects in Irradiated n-Type Silicon,” Sov. Phys. Semicond., vol. 14, no. 4, 455–457 (1980).

    Google Scholar 

  87. Y. H. Lee, K. L. Wang, A. Jaworoski, P. M. Mooney, L. J. Cheng, and J. W. Corbett, “A Transient Capacitance Study of Radiation-Induced Defects in Aluminum-Doped Silicon,” phys. stat. sol. (a), vol. 57, 697–704 (1980).

    Article  Google Scholar 

  88. H. Lefèvre, “Annealing Behavior of Trap-Centers in Silicon Containing A-Swirl Defects,” Applied Physics A, vol. 29, 105–111 (1982).

    Article  Google Scholar 

  89. R. D. Harris and G. D. Watkins, “Interstitial Related Defects in n-Type Silicon,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 799–805 (1985).

    Google Scholar 

  90. L. W. Song and G. D. Watkins, “EPR Identification of the Single-Acceptor State of Interstitial Carbon in Silicon,” Phys. Rev. B, vol. 42, no. 9, 5759–5764 (1990).

    Article  Google Scholar 

  91. J. F. Zheng, M. Stavola, and G. D. Watkins, “Structure of the Neutral Charge State of Interstitial Carbon in Silicon,” in: The Physics of Semiconductors, edited by D. J. Lockwood, Singapore: World Scientific, 2363–2366 (1994).

    Google Scholar 

  92. R. Woolley, E. C. Lightowlers, A. K. Tipping, M. Claybourn, and R. C. Newman, “Electronic and Vibrational Absorption of Interstitial Carbon in Silicon,” in: Defects in Semiconductors 14, edited by H. J. von Bardeleben, Materials Science Forum, vol. 10-12, 929–934 (1986).

    Google Scholar 

  93. K. Thonke, A. Teschner, and R. Sauer, “New Photoluminescence Defect Spectra in Silicon Irradiated at 100 K: Observation of Interstitial Carbon,” Solid State Communications, vol. 61, no. 4, 241–244 (1987).

    Article  Google Scholar 

  94. L. C. Kimerling, M. T. Asom, J. L. Benton, P. J. Drevinsky, and C. E. Caefer, “Interstitial Defect Reaction in Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 141–150 (1989).

    Google Scholar 

  95. R. B. Capaz, A. Dal Pino, Jr., and J. D. Joannopoulos, “Identification of the Migration Path of Interstitial Carbon in Silicon,” Phys. Rev. B, vol. 50, no. 11, 7439–7442 (1994).

    Article  Google Scholar 

  96. P. Leary, R. Jones, S. Öberg, and V. J. B. Torres, “Dynamic Properties of Interstitial Carbon and Carbon-Carbon Pair Defects in Silicon,” Phys. Rev. B, vol. 55, no. 4, 2188–2194 (1997).

    Article  Google Scholar 

  97. C.-L. Liu, W. Windl, L. Borucki, S. Lu, and X.-Y. Liu, “Ab Initio Modeling and Experimental Study of C-B Interactions in Si,” Appl. Phys. Lett., vol. 80, no. 1, 52–54 (2002).

    Article  Google Scholar 

  98. A. Mattoni, F. Bernardini, and L. Colombo, “Self-Interstitial Trapping by Carbon Complexes in Crystalline Silicon,” Phys. Rev. B, vol. 66, 195214 (2002).

    Article  Google Scholar 

  99. M. E. Law, M. D. Griglione, and M. Northridge, “Influence of Carbon on the Diffusion of Interstitials and Boron in Silicon,” in: Si Front-End Processing — Physics and Technology of Dopant-Defect Interactions II, edited by A. Agarwal, L. Pelaz, H.-H. Vuong, P. Packan, and M. Kase, Mat. Res. Soc. Symp. Proc, vol. 610, B7.4.1–B7.4.5 (2000).

    Google Scholar 

  100. G. D. Watkins and J. W.Corbett, “Electron Paramagnetic Resonance of Defects in Irradiated Silicon,” in: Radiation Effects in Inorganic Solids, Discussions of the Faraday Society, no. 31, 86–95 (1961).

    Google Scholar 

  101. A. V. Dvurechenskii, A. A. Karanovich, and B. P. Kashnikov, “Vacancy-Impurity Defect with Spatially Separated Components in Electron-Irradiated Silicon,” Sov. Phys. Semicond., vol. 21, no. 1, 29–33 (1987).

    Google Scholar 

  102. K. A. Abdullin and B. N. Mukashev, “Vacancy Defect in Silicon Single Crystals Bombarded at 77 K,” Semiconductors, vol. 29, no. 2, 169–174 (1995).

    Google Scholar 

  103. A. Dal Pino, Jr., A. M. Rappe, and J. D. Joannopoulos, “Ab Initio Investigation of Carbon-Related Defects in Silicon,” Phys. Rev. B, vol. 47, no. 19, 12554–12557 (1993).

    Article  Google Scholar 

  104. R. W. Olesinski and G. J. Abbaschian, “The C-Si (Carbon-Silicon) System,” Bull. Alloy Phase Diagrams, vol. 5, no. 5, 486–489 (1984).

    Article  Google Scholar 

  105. H. A. Papazian and S. P. Wolsky, “Volatile Impurities in Silicon and Germanium,” J. Appl. Phys., vol. 27, no. 12, 1561 (1956).

    Article  Google Scholar 

  106. T. Nozaki, Y. Yatsurugi, and N. Akiyama, “Concentration and Behavior of Carbon in Semicon-ductor Silicon,” J. Electrochem. Soc, vol. 117, no. 12, 1566–1568 (1970).

    Article  Google Scholar 

  107. Y. Endo, Y. Yatsurugi, N. Akiyama, and T. Nozaki, “Infrared Spectrophotometry for Carbon in Silicon As Calibrated by Charged Particle Activation,” Anal. Chem., vol. 44, no. 14, 2258–2262 (1972).

    Article  Google Scholar 

  108. F. Rollert, N. A. Stolwijk, and H. Mehrer, “Diffusion of Carbon-14 in Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 753–758 (1989).

    Google Scholar 

  109. L. A. Ladd and J. P. Kalejs, “Self-Interstitial Injection Effects on Carbon Diffusion in Silicon at High Temperatures,” in: Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook, Mat. Res. Soc. Symp. Proc, vol. 59, 445–450 (1986).

    Google Scholar 

  110. V. D. Akhmetov and V. V. Bolotov, “The Effect of Carbon and Boron on the Accumulation of Vacancy-Oxygen Complexes in Silicon,” Radiation Effects, vol. 52, 149–152 (1980).

    Article  Google Scholar 

  111. J. P. Kalejs, L. A. Ladd, and U. Gösele, “Self-Interstitial Enhanced Carbon Diffusion in Silicon,” Appl. Phys. Lett., vol. 45, no. 3, 268–269 (1984).

    Article  Google Scholar 

  112. G. D. Watkins, Private communication (2001).

    Google Scholar 

  113. A. K. Tipping and R. C. Newman, “The Diffusion Coefficient of Interstitial Carbon in Silicon,” Semicond. Sci. Technol., vol. 2, 315–317 (1987).

    Article  Google Scholar 

  114. G. E. Davies, E. C. Lightowlers, M. F. Thomaz, and J. G. Wilkes, “A Metastable Precursor to the Production of the Two-Carbon-Atom’ G’ Centre in Irradiated Crystalline Silicon,” Semicond. Sci. Technol, vol. 3, 608–611 (1988).

    Article  Google Scholar 

  115. S. P. Chappell, G. Davies, E. C. Lightowlers, and R. C. Newman, “A Metastable Precursor to the Di-Carbon Centre in Crystalline Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 481–485 (1989).

    Google Scholar 

  116. J. Lalita, N. Keskitalo, A. Hallén, C. Jagadish, and B. G. Svensson, “Defect Evolution in MeV Ion-Implanted Silicon,” in: New Trends in Ion Beam Processing of Materials, edited by F. Priolo, J. K. N. Lindner, A. Nylandsted Larsen, and J. M. Poate, Nuclear Instruments and Methods in Physics Research B, vol. 120, 27–32 (1996).

    Google Scholar 

  117. J. L. Benton, M. T. Asom, R. Sauer, and L. C. Kimerling, “Identification of Interstitial Carbon Related Defects in Silicon,” in: Defects in Electronic Materials, edited by M. Stavola, S. J. Pearton, and G. Davies, Mat. Res. Soc. Symp. Proc, vol. 104, 85–91 (1988).

    Google Scholar 

  118. R. Pinacho, M. Jaraiz, H. J. Gossmann, G. H. Gilmer, J. L. Benton, and P. Werner, “The Effect of Carbon/Self-Interstitial Clusters on Carbon Diffusion in Silicon Modeled by Kinetic Monte Carlo Simulations,” in: Si Front-End Processing — Physics and Technology of Dopant-Defect Interactions II, edited by A. Agarwal, L. Pelaz, H.-H. Vuong, P. Packan, and M. Kase, Mat. Res. Soc. Symp. Proc, vol. 610, B7.2.1–B7.2.6 (2000).

    Google Scholar 

  119. N. E. B. Cowern, B. Colombeau, F. Roozeboom, M. Hopstaken, H. Snijders, P. Meunier-Beillard, and W. Lerch, “Experimental Study on the Mechanism of Carbon Diffusion in Silicon,” in: Silicon Front-End Junction Formation Technologies, edited by D. F. Downey, M. E. Law, A. P. Claverie, and M. J. Rendon, Mat. Res. Soc. Symp. Proc, vol. 717, C5.10.1–C5.10.6 (2002).

    Google Scholar 

  120. N. Cowern, B. Colombeau, F. Roozeboom, M. Hopstaken, H. Snijders, P. Meunier-Beillard, and W. Lerch, “Diffusion Suppression in Silicon by Substitutional C Doping,” in: ESSDERC 2002, edited by G. Baccarani, E. Gnani, and M. Rudan, Bologna: University of Bologna, 203–206 (2002).

    Google Scholar 

  121. M. T. Asom, J. L. Benton, R. Sauer, and L. C. Kimerling, “Interstitial Defect Reactions in Silicon,” Appl Phys. Lett., vol. 51, no. 4, 256–258 (1987).

    Article  Google Scholar 

  122. A. R. Frederickson, A. S. Karakashian, P. J. Drevinsky, and C. E. Caefer, “Radiation-Induced Carbon-Related Defects in p-Type Silicon,” J. AppL Phys., vol. 65, no. 8, 3272–3274 (1989).

    Article  Google Scholar 

  123. J. L. Benton, J. Michel, L. C. Kimerling, B. E. Weir, and R. A. Gottscho, “Carbon Reactions in Reactive Ion Etched Silicon,” J. Electronic Materials, vol. 20, no. 9, 643–647 (1991).

    Article  Google Scholar 

  124. A. R. Frederickson and A. S. Karakashian, “Recombination-Induced Random-Walk Diffusion of Interstitial Carbon in Silicon,” J. Electronic Materials, vol. 21, no. 7, 745–752 (1992).

    Article  Google Scholar 

  125. H. Rücker, B. Heinemann, W. Röpke, R. Kurps, D. Krüger, G. Lippert, and H. J. Osten, “Suppressed Diffusion of Boron and Carbon in Carbon-Rich Silicon,” AppL Phys. Lett., vol. 73, no. 12, 1682–1684 (1998).

    Article  Google Scholar 

  126. P. Werner, U. Gösele, H.-J. Gossmann, and D. C. Jacobson, “Carbon Diffusion in Silicon,” Appl. Phys. Lett., vol. 73, no. 17, 2465–2467 (1998).

    Article  Google Scholar 

  127. R. F. Scholz, P. Werner, U. Gösele, and T. Y. Tan, “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon,” AppL Phys. Lett., vol. 74, no. 3, 392–394 (1999).

    Article  Google Scholar 

  128. H. Rücker, B. Heinemann, D. Bolze, D. Knoll, D. Krüger, R. Kurps, H. J. Osten, P. Schley, B. Tillack, and P. Zaumseil, “Dopant Diffusion in C-Doped Si and SiGe: Physical Model and Experimental Verification,” in: Technical Digest of the 1999 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 345–348 (1999).

    Chapter  Google Scholar 

  129. R. Pinacho, P. Castrillo, M. Jaraiz, I. Martin-Bragado, J. Barbolla, H.-J. Gossmann, G.-H. Gilmer, and J.-L. Benton, “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms,” J. Appl. Phys., vol. 92, no. 3, 1582–1587 (2002).

    Article  Google Scholar 

  130. H. Rücker, B. Heinemann, W. Röpke, R. Krups, D. Krüger, G. Lippert, and H. J. Osten, “Erratum: “Suppressed Diffusion of Boron and Carbon in Carbon-Rich Silicon” [Appl. Phys. Lett. 73, 1682 (1998)],” Appl. Phys. Lett., vol. 75, no. 1, 147 (1999).

    Article  Google Scholar 

  131. B. Colombeau and N. E. B. Cowern, Private communication (2003).

    Google Scholar 

  132. G. Davies, E. C. Lightowlers, R. C. Newman, and A. S. Oates, “A Model for Radiation Damage Effects in Carbon-Doped Crystalline Silicon,” Semicond. Sci. TechnoL, vol. 2, 524–532 (1987).

    Article  Google Scholar 

  133. V. P. Chappell and R. C. Newman, “The Selective Trapping of Self-Interstitials by Interstitial Carbon Impurities in Electron Irradiated Silicon,” Semicond. Sci. TechnoL, vol. 2, 691 (1987).

    Article  Google Scholar 

  134. G. Davies, “Carbon-Related Processes in Crystalline Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 151–158 (1989).

    Google Scholar 

  135. J. Guldberg, “Electron Traps in Silicon Doped by Neutron Transmutation,” J. Phys. D, vol. 11, 2043–2057 (1978).

    Article  Google Scholar 

  136. H. Rücker, H. Methfessel, B. Dietrich, K. Pressel, and H. J. Osten, “Phonons As a Probe of Short-Range Order in Si1-xCx Alloys,” Phys. Rev. B, vol. 53, no. 3, 1302–1309 (1996).

    Article  Google Scholar 

  137. M. A. Meléndez-Lira, J. D. Lorentzen, J. Menéndez, W. Windl, N. G. Cave, R. Liu, J. W. Christiansen, N. D. Theodore, and J. J. Candelaria, “Microscopic Carbon Distribution in Si1-yCy Alloys: A Raman Scattering Study,” Phys. Rev. B, vol. 56, no. 7, 3648–3650 (1997).

    Article  Google Scholar 

  138. W Windl, J. D. Kress, A. F. Voter, J. Menéndez, and O. F. Sankey, “Influence of the Local Microstructure on the Macroscopic Properties of Si1-x-y GexCy Alloys,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 443–448 (1997).

    Google Scholar 

  139. J. R. Byberg, B. Bech Nielsen, M. Fanciulli, S. K. Estreicher, and P. A. Fedders, “Dimer of Substitutional Carbon in Silicon Studied by EPR and Ab Initio Methods,” Phys. Rev. B, vol. 61, no. 19, 12939–12945 (2000).

    Article  Google Scholar 

  140. H. Horiye and E. G. Wikner, “Three New Electron Spin Resonance Centers in Electron-Irradiated Silicon,” J. AppL Phys., vol. 40, no. 9, 3879–3880 (1969).

    Article  Google Scholar 

  141. E. V. Lavrov, B. Bech Nielsen, J. R. Byberg, B. Hourahine, R. Jones, S. Öberg, and P. R. Brid-don, “Local Vibrational Modes of Two Neighboring Substitutional Carbon Atoms in Silicon,” Phys. Rev. B, vol. 62, no. 1, 158–165 (2000).

    Article  Google Scholar 

  142. V. P. Markevich, O. Andersen, I. F. Medvedeva, J. H. Evans-Freeman, I. D. Hawkins, L. I. Murin, L. Dobaczewski, and A. R. Peaker, “Defect Reactions Associated with the Dissociation of the Phosphorus-Vacancy Pair in Silicon,” Physica B, vol. 308-310, 513–516 (2001).

    Article  Google Scholar 

  143. K. L. Brower, “EPR of a Jahn-Teller Distorted (111) Carbon Interstitialcy in Irradiated Silicon,” Phys. Rev. B, vol. 9, no. 6, 2607–2617 (1974).

    Article  MathSciNet  Google Scholar 

  144. K. L. Brower, “Erratum: EPR of a Jahn-Teller Distorted (111) Carbon Interstitialcy in Irradiated Silicon [Phys. Rev. B 9, 2607 (1974)],” Phys. Rev. B, vol. 17, no. 10, 4130 (1978).

    Article  Google Scholar 

  145. K. M. Lee, K. P. O’Donnel, J. Weber, B. C. Cavenett, and G. D. Watkins, “Optical Detection of Magnetic Resonance for a Deep-Level Defect in Silicon,” Phys. Rev. Lett., vol. 48, no. 1, 37–40 (1982).

    Article  Google Scholar 

  146. K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “Origin of the 0.97 eV Luminescence in Irradiated Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 258–263 (1983).

    Google Scholar 

  147. G. Davies, E. C. Lightowlers, and M. do Carmo, “Carbon-Related Vibronic Bands in Electron-Irradiated Silicon,” J. Phys. C, vol. 16, 5503–5515 (1983).

    Article  Google Scholar 

  148. G. E. Jellison, Jr., “Transient Capacitance Studies of an Electron Trap at E C-ET = 0.105 eV in Phosphorus-Doped Silicon,” J. Appl. Phys., vol. 53, no. 8, 5715–5719 (1982).

    Article  Google Scholar 

  149. J. L. Benton and M. Levinson, “Metastable Defect Configurations in Semiconductors,” in: Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett, Mat. Res. Soc. Symp. P roc, vol. 14, 95–100 (1983).

    Google Scholar 

  150. A. Chantre and D. Bois, “Metastable-Defect Behavior in Silicon: Charge-State-Controlled Reorientation of Iron-Aluminum Pairs,” Phys. Rev. B, vol. 31, no. 12, 7979–7988 (1985).

    Article  Google Scholar 

  151. L. W. Song, B. W. Benson, and G. D. Watkins, “New Vacancy-Related Defects in n-Type Silicon,” Phys. Rev. B, vol. 33, no. 2, 1452–1455 (1986).

    Article  Google Scholar 

  152. L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable Interstitial-Carbon-Substitutional-Carbon Pair in Silicon,” Phys. Rev. B, vol. 42, no. 9, 5765–5783 (1990).

    Article  Google Scholar 

  153. L. S. Vlasenko, Y. V. Martynov, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Electron Paramagnetic Resonance versus Spin-Dependent Recombination: Excited Triplet States of Structural Defects in Irradiated Silicon,” Phys. Rev. B, vol. 52, no. 2, 1144–1151 (1995).

    Article  Google Scholar 

  154. R. Laiho, L. S. Vlasenko, P. M. Vlasenko, V. A. Kozlov, and V. V. Kozlovski, “Electron Paramagnetic Resonance of Radiation Defects in Hydrogen-Implanted Silicon Detected by Spin-Dependent Microwave Photoconductivity,” Appl. Phys. Lett., vol. 74, no. 26, 3948–3950 (1999).

    Article  Google Scholar 

  155. G. Ferenczi, C. A. Londos, T. Pavelka, M. Somogyi, and A. Mertens, “Correlation of the Concentration of the Carbon-Associated Radiation Damage Levels with the Total Carbon Concentration in Silicon,” J. Appl. Phys., vol. 63, no. 1, 183–189 (1988).

    Article  Google Scholar 

  156. M.-A. Trauwaert, J. Vanhellemont, H. E. Maes, A.-M. Van Bavel, G. Langouche, A. Stesmans, and P. Clauws, “Influence of Oxygen and Carbon on the Generation and Annihilation of Radiation Defects in Silicon,” Materials Science and Engineering B, vol. 36, 196–199 (1996).

    Article  Google Scholar 

  157. E. V. Lavrov, L. Hoffmann, and B. Bech Nielsen, “Local Vibrational Modes of the Metastable Dicarbon Center (Cs-Ci) in Silicon,” Phys. Rev. B, vol. 60, no. 11, 8081–8086 (1999).

    Article  Google Scholar 

  158. C. A. Londos, M. S. Potsidi, and E. Stakakis, “Carbon-Related Complexes in Neutron-Irradiated Silicon,” in: Proceedings of the 22 nd International Conference on Defects in Semiconductors, edited by K. Bonde Nielsen, A. Nylandsted Larsen, and G. Weyer, Physica B, vol. 340-342, 551–555 (2003).

    Google Scholar 

  159. A. Cacciato, J. G. E. Klappe, N. E. B. Cowern, W. Vandervost, L. P. Biró, J. S. Custer, and F. W. Saris, “Dislocation Formation and B Transient Diffusion in C Coimplanted Si,” J. Appl. Phys., vol. 79, no. 5, 2314–2325 (1996).

    Article  Google Scholar 

  160. V. D. Tkachev and A. V. Mudryi, “Radiative Recombination Centres in Silicon Irradiated by Fast Neutrons and Ions,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Ser., no. 31, 231–243 (1977).

    Google Scholar 

  161. E. H. Wong and B. G. Streetman, “Isothermal Annealing of the 0.97-eV Luminescence in Electron-Irradiated Si,” J. Appl. Phys., vol. 42, no. 13, 5882–5883 (1971).

    Article  Google Scholar 

  162. G. Davies and T. K. Kwok, “Annealing the Di-Carbon Radiation Damage Centre in Silicon,” Semicond. Sci. Technol, vol. 4, 327–330 (1989).

    Article  Google Scholar 

  163. G. Davies, K. T. Kun, and T. Reade, “Annealing Kinetics of the Dicarbon Radiation-Damage Center in Crystalline Silicon,” Phys. Rev. B, vol. 44, no. 22, 12146–12157 (1991).

    Article  Google Scholar 

  164. N. I. Boyarkina, S. A. Smagulova, and A. A. Artem’ev, “Dissociation Energies of a CiCS Complex and the A Center in Silicon,” Semiconductors, vol. 35, no. 8, 845–847 (2002).

    Article  Google Scholar 

  165. R. B. Capaz, A. Dal Pino, Jr., and J. D. Joannopoulos, “Theory of Carbon-Carbon Pairs in Silicon,” Phys. Rev. B, vol. 58, no. 15, 9845–9850 (1998).

    Article  Google Scholar 

  166. S. Chakravarthi and S. T. Dunham, “Point Defect Properties from Metal Diffusion Experiments — What Does the Data Really Tell Us?” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 47–52 (1997).

    Google Scholar 

  167. J. L. Ngau, P. B. Griffin, and J. D. Plummer, “Modeling the Suppression of Boron Transient Enhanced Diffusion in Silicon by Substitutional Carbon Incorporation,” J. Appl. Phys., vol. 90, no. 4, 1768–1778 (2001).

    Article  Google Scholar 

  168. D. De Salvador, A. Mattoni, E. Napolitani, A. V. Drigo, S. Mirabella, and F. Priolo, “Modeling of Self-Interstitial Diffusion in Implanted Molecular Beam Epitaxy Silicon,” in: Silicon Front-End Junction Formation Technologies, edited by D. F. Downey, M. E. Law, A. P. Claverie, and M. J. Rendon, Mat. Res. Soc. Symp. Proc, vol. 717, C5.6.1–C5.6.6 (2002).

    Google Scholar 

  169. S. Mirabella, A. Coati, D. De Salvador, E. Napolitani, A. Mattoni, G. Bisognin, M. Berti, A. Camera, A. V. Drigo, S. Scalese, S. Pulvirenti, A. Terrasi, and F. Priolo, “Interaction between Self-Interstitials and Substitutional C in Silicon: Interstitial Trapping and C Clustering Mechanism,” Phys. Rev. B, vol. 65, 045209 (2002).

    Article  Google Scholar 

  170. G. Davies, A. S. Oates, R. C. Newman, R. A. Woolley, E. C. Lightowlers, M. H. Binns, and J. G. Wilkes, “Carbon-Related Radiation Damage Centres in Czochralski Silicon,” J. Phys. C, vol. 19, 841–855 (1986).

    Article  Google Scholar 

  171. A. S. Oates, R. C. Newman, J. M. Tucker, G. Davies, and E. C. Lightowlers, “The Role of Vacancies in Enhancing Oxygen Diffusion in Silicon,” in: Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook, Mat. Res. Soc. Symp. Proc, vol. 59, 59–65 (1986).

    Google Scholar 

  172. B. C. MacEvoy, G. Hall, and K. Gill, “Defect Evolution in Irradiated Silicon Detector Material,” Nuclear Instruments and Methods in Physics Research A, vol. 374, 12–26 (1996).

    Article  Google Scholar 

  173. W. Wijaranakula and J. H. Matlock, “A Formation Mechanism of the Thermal Donors Related to Carbon in Silicon after an Extended Isochronal Anneal,” J. Electrochem. Soc, vol. 137, no. 6, 1964–1969 (1990).

    Article  Google Scholar 

  174. C. Kaneta, T. Sasaki, and H. Katayama-Yoshida, “Atomic Configuration, Stabilizing Mechanism, and Impurity Vibrations of Carbon-Oxygen Complexes in Crystalline Silicon,” Phys. Rev. B, vol. 46, no. 20, 13179–13185 (1992).

    Article  Google Scholar 

  175. Y. Shirakawa, H. Yamada-Kaneta, and H. Mori, “Annealing Behavior of Carbon-Oxygen Complexes in Silicon Crystals Observed by Low-Temperature Infrared Absorption,” J. Appl. Phys., vol. 77, no. 1, 41–46 (1995).

    Article  Google Scholar 

  176. H. Yamada-Kaneta, Y. Shirakawa, and C. Kaneta, “Atomic Composition, Structure and Vibrational Excitation of Substitutional Carbon-Oxygen Complexes in Silicon,” in: Early Stages of Oxygen Precipitation in Silicon, edited by R. Jones, NATO ASI Series 3, vol. 17, Dordrecht: Kluwer, 389–396 (1996).

    Chapter  Google Scholar 

  177. Y. M. Babitskii, P. M. Grinshtein, and M. G. Mil’vidskii, “Interaction of Oxygen and Carbon Atoms in Silicon,” Inorganic Materials, vol. 21, no. 5, 641–644 (1985).

    Google Scholar 

  178. G. Davies, E. C. Lightowlers, M. Savola, K. Bergmann, and B. Svensson, “The 3942-cm- Optical Band in Irradiated Silicon,” Phys. Rev. B, vol. 35, no. 6, 2755–2766 (1987).

    Article  Google Scholar 

  179. J. L. Lindström, T. Hallberg, J. Hermansson, L. I. Murin, V. P. Markevich, M. Kleverman, and B. G. Svensson, “Oxygen and Carbon Clustering in Cz-Si during Electron Irradiation at Elevated Temperatures,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST’99, edited by H. G. Grimmeiss, L. Ask, M. Kleverman, M. Kittler, and H. Richter, Solid State Phenomena, vol. 69-70, 297–302 (1999).

    Google Scholar 

  180. C. P. Foy, “Uniaxial Stress Analysis of the 0.79 eV Vibronic Band in Irradiated Silicon,” J. Phys. C, vol. 15, 2059–2067 (1982).

    Article  Google Scholar 

  181. K. Thonke, A. Hangleiter, J. Wagner, and R. Sauer, “0.79 eV (C Line) Defect in Irradiated Oxygen-Rich Silicon: Excited State Structure, Internal Strain and Luminescence Decay Time,” J. Phys. C, vol. 18, L795–L801 (1985).

    Article  Google Scholar 

  182. G. Davies, E. C. Lightowlers, R. Woolley, R. C. Newman, and A. S. Oates, “Carbon in Radiation Damage Centres in Czochralski Silicon,” J. Phys. C, vol. 17, L499–L503 (1984).

    Article  Google Scholar 

  183. K. Thonke, G. D. Watkins, and R. Sauer, “Carbon and Oxygen Isotope Effects in the 0.79 eV Defect Photoluminescence Spectrum in Irradiated Silicon,” Solid State Communications, vol. 51, no. 3, 127–130 (1984).

    Article  Google Scholar 

  184. J. J. Hopfield, D. G. Thomas, and R. T. Lynch, “Isoelectronic Donors and Acceptors,” Phys. Rev. Lett., vol. 17, no. 6, 312–315 (1966).

    Google Scholar 

  185. C. E. Jones and W. D. Compton, “Recombination Luminescence in Irradiated Silicon — Effects of Uniaxial Stress and Temperature Variations,” Radiation Effects, vol. 9, 83–88 (1971).

    Article  Google Scholar 

  186. E. S. Johnson and W. D. Compton, “Recombination Luminescence in Irradiated Silicon — Effects of Thermal Annealing and Lithium Impurity,” Radiation Effects, vol. 9, 89–92 (1971).

    Article  Google Scholar 

  187. J. M. Trombetta and G. D. Watkins, “Identification of an Interstitial Carbon-Interstitial Oxygen Complex in Silicon,” Appl. Phys. Lett., vol. 51, no. 14, 1103–1105 (1987).

    Article  Google Scholar 

  188. G. D. Watkins, “A Review of EPR Studies in Irradiated Silicon,” in: Radiation Damage in Semiconductors, Paris: Dunod, 97–113 (1964).

    Google Scholar 

  189. N. Almeleh and B. Goldstein, “Electron Paramagnetic Resonance and Electrical Properties of the Dominant Paramagnetic Defect in Electron-Irradiated p-Type Silicon,” Phys. Rev., vol. 149, no. 2, 687–692 (1966).

    Article  Google Scholar 

  190. Y. H. Lee, J. C. Corelli, and J. W. Corbett, “Oxygen-Vibrational Bands in Irradiated Silicon,” Physics Letters, vol. 60A, no. 1, 55–57 (1977).

    Google Scholar 

  191. Y. H. Lee, J. W. Corbett, and K. L. Brower, “EPR of a Carbon-Oxygen-Divacancy Complex in Irradiated Silicon,” phys. stat. sol. (a), vol. 41, 637–647 (1977).

    Article  Google Scholar 

  192. B. N. Mukashev, K. A. Abdullin, and Y. V. Gorelkinskii, “Metastable and Bistable Defects in Silicon,” Physics-Uspekhi, vol. 43, no. 2, 139–150 (2000).

    Article  Google Scholar 

  193. R. Jones and S. Öberg, “Oxygen Frustration and the Interstitial Carbon-Oxygen Complex in Si,” Phys. Rev. Lett., vol. 68, no. 1, 86–89 (1992).

    Article  Google Scholar 

  194. J. Coutinho, R. Jones, P. R. Briddon, S. Öberg, L. I. Murin, V. P. Markevich, and J. L. Lindström, “Interstitial Carbon-Oxygen Center and Hydrogen Related Shallow Thermal Donors in Si,” Phys. Rev. B, vol. 65, no. 1, 014109 (2002).

    Article  Google Scholar 

  195. M. Roux, J. Bernard, R. Reulet, and R. L. Crabb, “Photon Effect on Electron-Irradiated Boron-Doped Silicon Solar Cell,” J. Appl. Phys., vol. 56, no. 2, 531–537 (1984).

    Article  Google Scholar 

  196. V I. Gubskaya, P. V Kuchinskii, and V. M. Lomako, “Formation and Thermal Stability of Radiation Defects in p-Type Silicon Irradiated with Alpha Particles,” Sov. Phys. Semicond., vol. 20, no. 6, 664–667 (1986).

    Google Scholar 

  197. A. Khan, M. Yamaguchi, Y Ohshita, N. Dharmarasu, K. Araki, T. Abe, Hisayoshi Itoh, T. Ohshima, M. Imaizumi, and S. Matsuda, “Role of the Impurities in Production Rates of Radiation-Induced Defects in Silicon Materials and Solar Cells,” J. Appl. Phys., vol. 90, no. 3, 1170–1178 (2001).

    Article  Google Scholar 

  198. P. M. Mooney, L. J. Cheng, M. Siili, J. D. Gerson, and J. W.Corbett, “Defect Energy Levels in Boron-Doped Silicon Irradiated with 1-MeV Electrons,” Phys. Rev. B, vol. 15, no. 8, 3836–3843 (1977).

    Article  Google Scholar 

  199. B. N. Mukashev, A. V. Spitsyn, N. Fukuoka, and H. Saito, “Defects in Carbon-Implanted Silicon,” Jpn. J. Appl. Phys., vol. 21, no. 2, 399–400 (1982).

    Article  Google Scholar 

  200. C. A. Londos, “Carbon-Related Radiation Damage Centres and Processes in p-Type Si,” Semicond. Sci. Technol, vol. 5, 645–648 (1990).

    Article  Google Scholar 

  201. M. Yamaguchi, A. Khan, S. J. Taylor, K. Ando, T. Yamaguchi, S. Matsuda, and T. Aburaya, “Deep Level Analysis of Radiation-Induced Defects in Si Crystals and Solar Cells,” J. Appl. Phys., vol. 86, no. 1, 217–223 (1999).

    Article  Google Scholar 

  202. B. G. Svensson, K. H. Rydén, and B. M. S. Lewerentz, “Overlapping Electron Traps in n- Type Silicon Studied by Capacitance Transient Spectroscopy,” J. Appl Phys., vol. 66, no. 4, 1699–1704 (1989).

    Article  Google Scholar 

  203. F. Shimura, T. Higuchi, and R. S. Hockett, “Outdiffusion of Oxygen and Carbon in Czochralski Silicon,” Appl. Phys. Lett., vol. 53, no. 1, 69–71 (1988).

    Article  Google Scholar 

  204. W. Wijaranakula, “Oxygen Diffusion in Carbon-Doped Silicon,” J. Appl. Phys., vol. 68, no. 12, 6538–6540 (1990).

    Article  Google Scholar 

  205. B. G. Svensson and J. L. Lindström, “Annealing Studies of the 862 cm-1 Infrared Band in Silicon,” phys. stat. sol. (a), vol. 95, 537–542 (1986).

    Article  Google Scholar 

  206. K. A. Abdullin, B. N. Mukashev, M. F. Tamendarov, and T. B. Tashenov, “New Defect States in Irradiated p-Type Silicon,” Phys. Lett. A, vol. 144, no. 3, 198–200 (1990).

    Article  Google Scholar 

  207. K. Shinoda and E. Ohta, “Interstitial Carbon-Oxygen Complex in Near Threshold Electron-Irradiated Silicon,” Appl. Phys. Lett., vol. 61, no. 22, 2691–2693 (1992).

    Article  Google Scholar 

  208. L. I. Khirunenko, L. I. Murin, J. L. Lindström, M. G. Sosnin, and Y. V. Pomozov, “Self-Interstitial-Oxygen Related Defects in Low-Temperature Irradiated Si,” Physica B, vol. 308-310, 458–461 (2001).

    Article  Google Scholar 

  209. M. R. Brozel, R. C. Newman, and D. H. J. Totterdell, “Interstitial Defects Involving Carbon in Irradiated Silicon,” J. Phys. C, vol. 8, 243–248 (1975).

    Article  Google Scholar 

  210. N. Magnea, A. Lazrak, and J. L. Pautrat, “Luminescence of Carbon and Oxygen Related Complexes in Annealed Silicon,” Appl Phys. Lett., vol. 45, no. 1, 60–62 (1984).

    Article  Google Scholar 

  211. G. Davies, E. C. Lightowlers, R. Woolley, R. C. Newman, and A. S. Oates, “Carbon, Oxygen and Silicon Isotope Effects in the Optical Spectra of Electron-Irradiated Czochralski Silicon,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimer-ling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 725–731 (1985).

    Google Scholar 

  212. A. Dörnen, R. Sauer, and J. Weber, “Annealing and Stress Study of Oxygen-Related Thermally Induced Defect Luminescence in Silicon,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 653–660 (1985).

    Google Scholar 

  213. J. Wagner, A. Dörnen, and R. Sauer, “Donorlike Excited States of the Thermally Induced 0.767-eV (P Line) Defect in Oxygen-Rich Silicon,” Phys. Rev. B, vol. 31, no. 8, 5561–5564 (1985).

    Article  Google Scholar 

  214. W Kürner, R. Sauer, A. Dörnen, and K. Thonke, “Structure of the 0.767-eV Oxygen-Carbon Luminescence Defect in 450 °C Thermally Annealed Czochralski-Grown Silicon,” Phys. Rev. B, vol. 39, no. 18, 13327–13337 (1989).

    Article  Google Scholar 

  215. N. Fukuoka, K. Atobe, and M. Honda, “Effects of Carbon Atoms on the Defects in Czochralski-Grown Silicon Formed by Annealing,” Jpn. J. Appl. Phys., vol. 29, no. 9, 1625–1629 (1990).

    Article  Google Scholar 

  216. C. P. Ewels, R. Jones, and S. Öberg, “Oxygen-Carbon, Oxygen-Nitrogen and Oxygen-Dimer Defects in Silicon,” in: Early Stages of Oxygen Precipitation in Silicon, edited by R. Jones, NATO ASI Series 3, vol. 17, Dordrecht: Kluwer, 141–162 (1996).

    Chapter  Google Scholar 

  217. N. S. Minaev and A. V. Mudryi, “Thermally-Induced Defects in Silicon Containing Oxygen and Carbon,” phys. stat. sol. (a), vol. 68, 561–565 (1981).

    Article  Google Scholar 

  218. M. Tajima, P. Stallhofer, and D. Huber, “Deep Level Luminescence Related to Thermal Donors in Silicon,” Jpn. J. Appl. Phys., vol. 22, no. 9, L586–L588 (1983).

    Article  Google Scholar 

  219. J. L. Lindström, H. Weman, and G. S. Oehrlein, “Thermal Donors and Carbon-Oxygen Defects in Silicon,” phys. stat. sol. (a), vol. 99, 581–591 (1987).

    Article  Google Scholar 

  220. Y. M. Dobrovinskii, S. Makhamov, A. Mirzaev, V. I. Mitin, and N. A. Tursunov, “Influence of Heat-Radiation Treatment on the Process of Formation of Defect Centers in Silicon by Electron Irradiation,” Sov. Phys. Semicond., vol. 25, no. 3, 316–319 (1991).

    Google Scholar 

  221. W. Kürner, K. Thonke, R. Sauer, M. T. Asom, and W. Zulehner, “Oxygen-Carbon Interactions in Silicon: Photoluminescence Defect Spectrum at 1.06 eV Emission Energy,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 159–163 (1989).

    Google Scholar 

  222. A. Chantre and L. C. Kimerling, “Configurational Multistable Defect in Silicon,” Appl. Phys. Lett., vol. 48, no. 15, 1000–1002 (1986).

    Google Scholar 

  223. L. W. Song, B. W. Benson, and G. D. Watkins, “Identification of a Bistable Defect in Silicon: The Carbon Interstitial-Carbon Substitutional Pair,” Appl. Phys. Lett., vol. 51, no. 15, 1155–1157 (1987).

    Article  Google Scholar 

  224. Z. Su, P. G. Wald, and J. W. Farmer, “Role of Boron in the Multistable Carbon-Related Defect in Silicon,” J. Appl. Phys., vol. 67, no. 9, 4249–4252 (1990).

    Article  Google Scholar 

  225. E. Giirer, B. W. Benson, and G. D. Watkins, “Configurational Metastability of Carbon-Phosphorus Pair Defects in Silicon,” in: Defects in Semiconductors 16, edited by G. Davies, G. G. DeLeo, and M. Stavola, Materials Science Forum, vol. 83-87, 339–344 (1992).

    Google Scholar 

  226. Y. Kamiura, T. Maeda, Y. Yamashita, and M. Nakamura, “Formation of Carbon-Related Defects during the Carbon-Enhanced Annihilation of Thermal Donors in Silicon,” Jpn. J. Appl. Phys., Part 2, vol. 37, no. 2A, L101–L104 (1998).

    Article  Google Scholar 

  227. X. D. Zhan and G. D. Watkins, “Electron Paramagnetic Resonance of a Multistable Interstitial-Carbon-Substitutional-Phosphorus Pair in Silicon,” Appl. Phys. Lett., vol. 58, no. 19, 2144–2146 (1991).

    Article  Google Scholar 

  228. X. D. Zhan and G. D. Watkins, “Electron Paramagnetic Resonance of Multistable Interstitial-Carbon-Substitutional-Group-V-Atom Pairs in Silicon,” Phys. Rev. B, vol. 47, no. 11, 6363–6380 (1993).

    Article  Google Scholar 

  229. E. Giirer and B. W. Benson, “Multiconfigurational Carbon-Group V Pair Defect in Silicon,” in: Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by D. J. Wolford, J. Bernholc, and E. E. Haller, Mat. Res. Soc. Symp. Proc, vol. 163, 295–298 (1990).

    Google Scholar 

  230. B. W. Benson, E. Gurer, and G. D. Watkins, “The Multiconfigurational Carbon-Antimony Pair in Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 391–395 (1989).

    Google Scholar 

  231. M. Y. Pines and R. Baron, “Characteristics of Indium Doped Silicon Infrared Detectors,” in: Technical Digest of the 1974 International Electron Devices Meeting (IEDM), New York: IEEE, 446–50 (1974).

    Chapter  Google Scholar 

  232. E. L. Kern, R. Baron, R. H. Walker, D. J. O’Connor, and O. J. Marsh, “Growth Characteristics of Si:In Crystals,” J. Electronic Materials, vol. 4, no. 6, 1249 (1975).

    Article  Google Scholar 

  233. R. Baron, M. H. Young, J. K. Neeland, and O. J. Marsh, “A New Acceptor Level in Indium-Doped Silicon,” Appl. Phys. Lett., vol. 30, no. 11, 594–596 (1977).

    Article  Google Scholar 

  234. W. Scott, “Infrared Spectra of New Acceptor Levels in Indium-or Aluminum-Doped Silicon,” Appl. Phys. Lett., vol. 32, no. 9, 540–542 (1978).

    Article  Google Scholar 

  235. R. D. Larrabee, “Interpretation of Hall Measurements,” in: Semiconductor Characterization Techniques, edited by P. A. Barnes and G. A. Rozgonyi, Electrochem. Soc. Proc, vol. 78-3, 71–80 (1978).

    Google Scholar 

  236. R. N. Thomas, T. T. Braggins, H. M. Hobgood, and W J. Takei, “Compensation of Residual Boron Impurities in Extrinsic Indium-Doped Silicon by Neutron Transmutation of Silicon,” J. Appl. Phys., vol. 49, no. 5, 2811–2820 (1978).

    Google Scholar 

  237. W. Scott and R. J. Hager, “Solution Growth of Indium-Doped Silicon,” J. Electronic Materials, vol. 8, 581–602 (1979).

    Article  Google Scholar 

  238. C. E. Jones and G. E. Johnson, “Deep Level Transient Spectroscopy Studies of Trapping Parameters for Centers in Indium-Doped Silicon,” J. Appl. Phys., vol. 52, no. 8, 5159–5163 (1981).

    Article  Google Scholar 

  239. H. Boudinov, J. P. de Souza, and C. K. Saul, “Enhanced Electrical Activation of Indium Coimplanted with Carbon in a Silicon Substrate,” J. Appl. Phys., vol. 86, no. 10, 5909–5911 (1999).

    Article  Google Scholar 

  240. S. Scalese, M. Italia, A. La Magna, V. Privitera, M. Bersani, D. Giubertoni, M. Barozzi, S. Solmi, and P. Pichler, “Diffusion and Electrical Activation of Indium in Silicon,” J. Appl. Phys., vol. 93, no. 12, 9773–9782 (2003).

    Article  Google Scholar 

  241. R. Baron, J. P. Baukus, S. D. Allen, T. C. McGill, M. H. Young, H. Kimura, H. V. Winston, and O. J. Marsh, “Nature of the 0.111-eV Acceptor Level in Indium-Doped Silicon,” Appl. Phys. Lett., vol. 34, no. 4, 257–259 (1979).

    Article  Google Scholar 

  242. V. Swaminathan, J. E. Lang, P. M. Hemenger, and S. R. Smith, “The Effect of Electron Irradiation on the In-X Acceptor in In-Doped Silicon,” Appl. Phys. Lett., vol. 35, no. 2, 184–187 (1979).

    Article  Google Scholar 

  243. C. E. Jones, D. Schäfer, W. Scott, and R. J. Hager, “Carbon-Acceptor Pair Centers (X Centers) in Silicon,” J. Appl. Phys., vol. 52, no. 8, 5148–5158 (1981).

    Article  Google Scholar 

  244. A. C. T. Drakeford and E. C. Lightowlers, “Complex Defect Formation in Heat Treated Aluminium Doped CZ Silicon,” in: Defects in Electronic Materials, edited by M. Stavola, S. J. Pearton, and G. Davies, Mat. Res. Soc. Symp. Proc, vol. 104, 209–213 (1988).

    Google Scholar 

  245. N. Yarykin, O. V. Feklisova, and J. Weber, “Dominant Boron-Related Radiation Defect in Silicon Revealed by Hydrogénation,” in: Proceedings of the 22 nd International Conference on Defects in Semiconductors, edited by K. Bonde Nielsen, A. Nylandsted Larsen, and G. Weyer, Physica B, vol. 340-342, 528–531 (2003).

    Google Scholar 

  246. P. J. Drevinsky, C. E. Caefer, S. P. Tobin, J. C. Mikkelsen, Jr., and L. C. Kimerling, “Influence of Oxygen and Boron on Defect Production in Irradiated Silicon,” in: Defects in Electronic Materials, edited by M. Stavola, S. J. Pearton, and G. Davies, Mat. Res. Soc. Symp. Proc, vol. 104, 167–172 (1988).

    Google Scholar 

  247. J. Adey, R. Jones, and P. R. Briddon, “Formation of BiOi, BiCs, and BiBsHi Defects in e- Irradiated or Ion-Implanted Silicon Containing Boron,” Appl. Phys. Lett., vol. 83, no. 4, 665–667 (2003).

    Article  Google Scholar 

  248. J. P. de Souza and H. Boudinov, “Electrical Activation of Boron Coimplanted with Carbon in a Silicon Substrate,” J. Appl. Phys., vol. 74, no. 11, 6599–6602 (1993).

    Article  Google Scholar 

  249. I. Ban, M. C. Öztürk, and E. K. Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans. Electron Devices, vol. 44, no. 9, 1544–1551 (1997).

    Article  Google Scholar 

  250. E. Irion, N. Bürger, K. Thonke, and R. Sauer, “The Defect Luminescence Spectrum at 0.9351 eV in Carbon-Doped Heat-Treated or Irradiated Silicon,” J. Phys. C, vol. 18, 5069–5082 (1985).

    Article  Google Scholar 

  251. J. Peters, T. Markvart, and A. Willoughby, “A Study of Radiation Induced Defects in Silicon Solar Cells Showing Improved Radiation Resistance,” in: Defects in Semiconductors 16, edited by G. Davies, G. G. DeLeo, and M. Stavola, Materials Science Forum, vol. 83-87, 1539–1544 (1992).

    Google Scholar 

  252. L. D. Lanzerotti, J. C. Sturm, E. Stach, R. Hull, T. Buyuklimanli, and C. Magee, “Suppression of Boron Transient Enhanced Diffusion in SiGe HBTs by Carbon Incorporation,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 297–302 (1997).

    Google Scholar 

  253. H. Rücker, B. Heinemann, and R. Kurps, “Nonequilibrium Point Defects and Dopant Diffusion in Carbon-Rich Silicon,” Phys. Rev. B, vol. 64, 073202 (2001).

    Article  Google Scholar 

  254. P. Zaumseil and H. Rücker, “X-Ray Diffraction Studies of the Influence of Substitutional Carbon on Si/Ge Interdiffusion in SiGe/Si Superlattices,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST99, edited by H. G. Grimmeiss, L. Ask, M. Kleverman, M. Kittler, and H. Richter, Solid State Phenomena, vol. 69-70, 203–208 (1999).

    Google Scholar 

  255. R. Scholz, U. Gösele, J.-Y. Huh, and T. Y Tan, “Carbon-Induced Undersaturation of Silicon Self-Interstitials,” Appl. Phys. Lett., vol. 72, no. 2, 200–202 (1998).

    Article  Google Scholar 

  256. P. Lavéant, P. Werner, N. Engler, and U. Gösele, “Engineering the Diffusion Behavior of Dopants (B, Sb) in Silicon by Incorporation of Carbon,” Nuclear Instruments and Methods in Physics Research B, vol. 186, 292–297 (2002).

    Article  Google Scholar 

  257. D. K. Sadana, W. Maszara, J. J. Wortmann, G. A. Rozgonyi, and W. K. Chu, “Germanium Implantation into Silicon,” J. Electrochem. Soc, vol. 131, no. 4, 943–945 (1984).

    Article  Google Scholar 

  258. T. E. Seidel, D. M. Maher, and R. Knoell, “Defect and Impurity Behavior from the Recrystal-lization of Amorphous Silicon Layers,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., New York: The Metallurgical Society of AIME, 523–529 (1985).

    Google Scholar 

  259. T. Sands, J. Washburn, R. Gronsky, W Maszara, D. K. Sadana, and G. A. Rozgonyi, “Influence of the Amorphous-Crystalline Interface Morphology on Dislocation Nucleation in Pre-Amorphized Silicon,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 531–537 (1985).

    Google Scholar 

  260. E. Kasper, “Silicon Germanium-Heterostructures on Silicon Substrates,” Festkörperprobleme, vol. 27, 265–277 (1987).

    Google Scholar 

  261. B. S. Meyerson, “Silicon and Silicon:Germanium Alloy Growth; Means and Applications,” in: Crucial Issues in Semiconductor Materials and Processing Technologies, edited by S. Coffa, F. Priolo, E. Rimini, and J. M. Poate, Nato ASI Series E: Applied Sciences, vol. 222, Dordrecht: Kluwer, 33–47 (1991).

    Google Scholar 

  262. F. Schäffler, “High-Mobility Si and Ge Structures,” Semicond. Sci. Technol, vol. 12, 1515–1549 (1997).

    Article  Google Scholar 

  263. D. J. Paul, “Silicon Germanium Heterostructures in Electronics: The Present and the Future,” Thin Solid Films, vol. 321, 172–180 (1998).

    Article  Google Scholar 

  264. D. J. Paul, “Silicon-Germanium Strained Layer Materials in Microelectronics,” Advanced Materials, vol. 11, no. 3, 191–204 (1999).

    Article  Google Scholar 

  265. M. C. Öztürk, N. Pesovic, J. Liu, H. Mo, I. Kang, and S. Gannavaram, “Selective Silicon-Germanium Source/Drain Technology for Nanoscale CMOS,” in: Silicon Front-End Junction Formation Technologies, edited by D. F. Downey, M. E. Law, A. P. Claverie, and M. J. Rendon, Mat. Res. Soc. Symp. Proc, vol. 717, C4.1.1–C4.1.12 (2002).

    Google Scholar 

  266. J. L. Martins and A. Zunger, “Bond Lengths around Isovalent Impurities and in Semiconductor Solid Solutions,” Phys. Rev. B, vol. 30, no. 10, 6217–6220 (1984).

    Article  Google Scholar 

  267. E. A. Kraut and W. A. Harrison, “Lattice Distortions and Energies of Atomic Substitution,” J. Vac. Sci. Technol. B, vol. 3, no. 4, 1267–1273 (1985).

    Article  Google Scholar 

  268. R. A. Logan, J. M. Rowell, and F. A. Trumbore, “Phonon Spectra of Ge-Si Alloys,” Phys. Rev., vol. 136, no. 6A, A1751–A1755 (1964).

    Article  Google Scholar 

  269. G. D. Watkins, “A Microscopic View of Radiation Damage in Semiconductors Using EPR As a Probe,” IEEE Trans. Nuclear Science, vol. NS-16, no. 6, 13–18 (1969).

    Article  Google Scholar 

  270. G. D. Watkins, “EPR Studies of the Lattice Vacancy and Low-Temperature Damage Processes in Silicon,” in: Lattice Defects in Semiconductors, 1974, Inst. Phys. Conf. Sen, no. 23, 1–22 (1975).

    Google Scholar 

  271. V. V Emtsev, P. M. Klinger, V. I. Fistul’, and Y. V. Shmartsev, “Characteristics of the Interaction of Isovalent Germanium Impurities with Intrinsic Defects in Silicon,” Sov. Phys. Semicond., vol. 25, no. 6, 602–606 (1991).

    Google Scholar 

  272. C. V. Budtz-Jørgensen, P Kringhøj, A. Nylandsted Larsen, and N. V Abrosimov, “Deep-Level Transient Spectroscopy of the Ge-Vacancy Pair in Ge-Doped n-Type Silicon,” Phys. Rev. B, vol. 58, no. 3, 1110–1113 (1998).

    Article  Google Scholar 

  273. A. Brelot and J. Charlemagne, “Infrared Studies of Low Temperature Electron Irradiated Silicon Containing Germanium Oxygen and Carbon,” Radiation Effects, vol. 9, 65–73 (1971).

    Article  Google Scholar 

  274. A. Brelot, “Selective Trapping of Vacancies,” in: Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Ser., no. 16, 191–201 (1973).

    Google Scholar 

  275. L. I. Khirunenko, V. I. Shakhovtsov, V. K. Shinkarenko, L. I. Shpinar, and I. I. Yaskovets, “Characteristics of Radiation Defect Formation Processes in Si:Ge Crystals,” Sov. Phys. Semicond., vol. 21, no. 3, 345–347 (1987).

    Google Scholar 

  276. N. A. Sobolev and M. H. Nazaré, “Defects Incorporating Ge Atoms in Irradiated Si:Ge,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 273-274, 271–274 (1999).

    Google Scholar 

  277. R. W. Olesinski and G. J. Abbaschian, “The Ge-Si (Germanium-Silicon) System,” Bull. Alloy Phase Diagrams, vol. 5, no. 2, 180–183 (1984).

    Article  Google Scholar 

  278. G. L. McVay and A. R. DuCharme, “The Diffusion of Germanium in Silicon,” J. Appl. Phys., vol. 44, no. 3, 1409–1410 (1973).

    Article  Google Scholar 

  279. G. Hettich, H. Mehrer, and K. Maier, “Tracer Diffusion of 71Ge and 31Si in Intrinsic and Doped Silicon,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Ser, no. 46, 500–507 (1979).

    Google Scholar 

  280. P. Dorner, W. Gust, B. Predel, and U. Roll, “Investigations by SIMS of the Bulk Impurity Diffusion of Ge in Si,” Phil. Mag. A, vol. 49, no. 4, 557–571 (1984).

    Article  Google Scholar 

  281. A. L. Bouchetout, N. Tabet, and C. Monty, “Germanium Impurity Diffusion in Boron Doped Silicon,” in: Defects in Semiconductors 14, edited by H. J. von Bardeleben, Materials Science Forum, vol. 10-12, 127–132 (1986).

    Google Scholar 

  282. U. Sodervall, A. Lodding, and W. Gust, “Activation Volumes of Impurity Diffusion in Silicon,” in: Diffusion in Metals and Alloys DIMETA 88, edited by F. J. Kedves and D. L. Beke, Defect and Diffusion Forum, vol. 66-69, 415–420 (1989).

    Google Scholar 

  283. P. Fahey, S. S. Iyer, and G. J. Scilla, “Experimental Evidence of Both Interstitial-and Vacancy-Assisted Diffusion of Ge in Si,” Appl. Phys. Lett, vol. 54, no. 9, 843 (1989).

    Article  Google Scholar 

  284. G. F. A. Van de Walle, L. J. Van Ijzendoorn, A. A. Van Gorkum, R. A. Van den Heuvel, A. M. L. Theunissen, and D. J. Gravesteijn, “Germanium Diffusion and Strain Relaxation in Si/Si1-xGex/Si Structures,” Thin Solid Films, vol. 183, 183–190 (1989).

    Article  Google Scholar 

  285. P. Fahey, S. Iyer, and G. Scilla, “Diffusion in Silicon,” in: 74th Nordic Semiconductor Meeting, edited by O. Hansen, Stockholm: Royal Swedish Academy of Sciences, 55–59 (1990).

    Google Scholar 

  286. N. R. Zangenberg, J. Lundsgaard Hansen, J. Fage-Pedersen, and A. Nylandsted Larsen, “Ge Self-Diffusion in Epitaxial Si1-xGex Layers,” Phys. Rev. Lett., vol. 87, 125901 (2001).

    Article  Google Scholar 

  287. M. Ogino, Y. Oana, and M. Watanabe, “The Diffusion Coefficient of Germanium in Silicon,” phys. stat. sol. (a), vol. 72, 535–541 (1982).

    Article  Google Scholar 

  288. A. Strohm, T. Voss, W. Frank, P. Laitinen, and J. Räisänen, “Self-Diffusion of 71Ge and 31Si in Si-Ge Alloys,” Z. Metallkd., vol. 93, no. 7, 737–744 (2002).

    Google Scholar 

  289. N. E. B. Cowern, W J. Kersten, R. C. M. de Kruif, J. G. M. v. B. W. B. de Boer, D. J. Gravesteijn, and C. W. T. Bulle-Liewma, “Interdiffusion Mechanisms in Coherently Strained SiGe Multilayers,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Dunham, Electrochem. Soc. Proc, vol. 96-4, 195–209 (1996).

    Google Scholar 

  290. E. A. Perozziello, P. B. Griffin, and J. D. Plummer, “Evidence for a Kickout Mechanism for Ge Diffusion in Si,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, K. Taniguchi, and C. S. Murthy, Electrochem. Soc. Proc, vol. 93-6, 167–175 (1993).

    Google Scholar 

  291. N. E. B. Cowern, P. C. Zalm, P. van der Sluis, D. J. Gravesteijn, and W B. de Boer, “Diffusion in Strained Si(Ge),” Phys. Rev. Lett., vol. 72, no. 16, 2585–2588 (1994).

    Article  Google Scholar 

  292. G. L. McVay and A. R. DuCharme, “The Diffusion of 71Ge in Si and Si-Ge Alloys: A Study of Self-Diffusion Mechanisms,” in: Lattice Defects in Semiconductors, 1974, Inst. Phys. Conf Sen, no. 23, 91–102 (1975).

    Google Scholar 

  293. A. Nylandsted Larsen, K. Kyllesbech Larsen, P. E. Andersen, and B. G. Svensson, “Heavy Doping Effects in the Diffusion of Group IV and V Impurities in Silicon,” J. Appl. Phys., vol. 73, no. 2, 691–698 (1993).

    Article  Google Scholar 

  294. K. Kyllesbech Larsen, P. Gaiduk, and A. Nylandsted Larsen, “A Comparison of the Diffusivity of As and Ge in Si at High Donor Concentrations,” in: Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by D. J. Wolford, J. Bernholc, and E. E. Haller, Mat. Res. Soc. Symp. Proc, vol. 163, 601–604 (1990).

    Google Scholar 

  295. A. Strohm, T. Voss, W. Frank, J. Räisänen, and M. Dietrich, “Self-Diffusion of 71Ge in Si-Ge,” Physica B, vol. 308-310, 542–545 (2001).

    Article  Google Scholar 

  296. J. Hattendorf, W.-D. Zeitz, N. V. Abrosimov, and W. Schröder, “The Interstitial Boron and the Boron-Germanium Complex in Silicon-Germanium Crystals,” Physica B, vol. 308-310, 535–538 (2001).

    Article  Google Scholar 

  297. N. Moriya, L. C. Feldman, H. S. Luftman, C. A. King, J. Bevk, and B. Freer, “Boron Diffusion in Strained Si1-xGex Epitaxial Layers,” Phys. Rev. Lett., vol. 71, no. 6, 883–886 (1993).

    Article  Google Scholar 

  298. G. H. Loechelt, G. Tarn, J. W. Steele, L. K. Knoch, K. M. Klein, J. K. Watanabe, and J. W. Christiansen, “Measurement and Modeling of Boron Diffusion in Si and Strained Si1-xGex Epitaxial Layers during Rapid Thermal Annealing,” J. Appl. Phys., vol. 74, no. 9, 5520–5526 (1993).

    Article  Google Scholar 

  299. P. Kuo, J. L. Hoyt, J. F. Gibons, J. E. Turner, and D. Lefforge, “Boron Diffusion in Si and Si1-xGex,” in: Strained Layer EpitaxyMaterials, Processing, and Device Applications, edited by E. A. Fitzgerald, J. Hoyt, K.-Y. Cheng, and J. Bean, Mat. Res. Soc. Symp. Proc, vol. 379, 373–378 (1995).

    Google Scholar 

  300. W. T. C. Fang, P. B. Griffin, and J. D. Plummer, “Implant Enhanced Diffusion of Boron in Silicon Germanium,” in: Strained Layer EpitaxyMaterials, Processing, and Device Applications, edited by E. A. Fitzgerald, J. Hoyt, K.-Y. Cheng, and J. Bean, Mat. Res. Soc. Symp. Proc, vol. 379, 379–384 (1995).

    Google Scholar 

  301. T. T. Fang, W. T. C. Fang, P. B. Griffin, and J. D. Plummer, “Calculation of the Fractional Interstitial Component of Boron Diffusion and Segregation Coefficient of Boron in Si(0.8)Ge(0.2),” Appl. Phys. Lett., vol. 68, no. 6, 791–793 (1996).

    Article  Google Scholar 

  302. R. F. Lever, J. M. Bonar, and A. F. W. Willoughby, “Boron Diffusion across Silicon-Silicon Germanium Boundaries,” J. Appl. Phys., vol. 83, no. 4, 1988–1994 (1998).

    Article  Google Scholar 

  303. N. R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen, and A. Nylandsted Larsen, “Boron Diffusion in Strained and Relaxed Si1-xGex,” in: Diffusion in Materials DIMAT-2000, edited by Y Limoge and J. L. Bocquet, Defect and Diffusion Forum, vol. 194-199, 703–708 (2001).

    Google Scholar 

  304. N. R. Zangenberg, J. Fage-Pedersen, J. Lundgaard Hansen, and A. Nylandsted Larsen, “Boron and Phosphorus Diffusion in Strained and Relaxed Si and SiGe,” J. Appl. Phys., vol. 94, no. 6, 3883–3890 (2003).

    Article  Google Scholar 

  305. K. Rajendran, D. Villaneuve, P. Moens, and W. Schoenmaker, “Modeling of Clustering Reaction and Diffusion of Boron in Strained Si1-xGex Epitaxial Layers,” Solid-State Electronics, vol. 47, 835–839 (2003).

    Article  Google Scholar 

  306. T. H. Yeh and M. L. Joshi, “Strain Compensation in Silicon by Diffused Impurities,” J. Electrochem. Soc, vol. 116, no. 1, 73–77 (1969).

    Article  Google Scholar 

  307. K. Yagi, N. Miyamoto, and J.-i. Nishizawa, “Anomalous Diffusion of Phosphorus into Silicon,” Jpn. J. Appl. Phys., vol. 9, no. 3, 246–254 (1970).

    Article  Google Scholar 

  308. Y. Yukimoto, G. Nakamura, Y. Watari, K. Horie, and Y Akasaka, “Effect of Tin on the Diffusion of Impurities in Transistor Structure,” in: Semiconductor Silicon 1973, edited by H. R. Huff and R. R. Burgess, Electrochem. Soc. Proc, vol. 73-1, 692–700 (1973).

    Google Scholar 

  309. A. Brelot, “Tin As a Vacancy Trap in Silicon at Room Temperature,” IEEE Trans. Nuclear Science, vol. 19, no. 6, 220–223 (1972).

    Article  Google Scholar 

  310. F. Lemeilleur, G. Lindström, and S. Watts, “2nd RD48 Status Report,” CERN/LHCC Reports, vol. 98-39, 1–20 (1998).

    Google Scholar 

  311. A. Ruzin, G. Casse, M. Glaser, F. Lemeilleur, R. Talamonti, S. Watts, and A. Zanet, “Radiation Hardness of Silicon Detectors Manufactured on Epitaxial Material and FZ Bulk Enriched with Oxygen, Carbon, Tin and Platinum,” Nuclear Physics B (Proc. Suppl.), vol. 78, 645–649 (1999).

    Article  Google Scholar 

  312. G. Lindström, M. Moll, and E. Fretwurst, “Radiation Hardness of Silicon Detectors — A Challenge from High-Energy Physics,” Nuclear Instruments and Methods in Physics Research A, vol. 426, 1–15 (1999).

    Article  Google Scholar 

  313. E. Simoen and C. Claeys, “Tin Doping Effects in Silicon,” in: High Purity Silicon VI, edited by C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and H. J. Dawson, Electrochem. Soc. Proc, vol. 2000-17, 223–235 (2000).

    Google Scholar 

  314. M. Delfino, D. K. Sadana, and A. E. Morgan, “Shallow Junction Formation by Preamorphization with Tin Implantation,” Appl. Phys. Lett., vol. 49, no. 10, 575–577 (1986).

    Article  Google Scholar 

  315. F. A. Trumbore, C. R. Isenberg, and E. M. Porbansky, “On the Temperature-Dependence of the Distribution Coefficient,” J. Phys. Chem. Solids, vol. 9, 60–69 (1958).

    Article  Google Scholar 

  316. Y. Akasaka, K. Horie, G. Nakamura, K. Tsukamoto, and Y. Yukimoto, “Study of Tin Diffusion into Silicon by Backscattering Analysis,” Jpn. J. Appl. Phys., vol. 13, no. 10, 1533–1540 (1974).

    Article  Google Scholar 

  317. G. Weyer, B. I. Deutch, A. Nylandsted-Larsen, J. U. Andersen, and H. L. Nielsen, “Mössbauer and Channeling Studies on 119Te, 119Sb and 119Sn Implants in Group-IV Elements,” in: Exposés et communications présentés à la Conférence Internationale sur les Applications de l’Effet Mössbauer, Colloque C6 in Journal de Physique, vol. 35, no. 12, 297 (1974).

    Google Scholar 

  318. I. V. Nistiryuk and P. P. Seregin, “State of Tin Impurity Atoms in Silicon,” Sov. Phys. Solid State, vol. 17, no. 4, 768–769 (1975).

    Google Scholar 

  319. P. P. Seregin, I. V. Nistiryuk, and F. S. Nasredinov, “Tin As an Isotopic Impurity in Silicon and Germanium,” Sov. Phys. Solid State, vol. 17, no. 8, 1540–1542 (1975).

    Google Scholar 

  320. S. R. Bakhchieva, M. G. Kekua, and P. P. Seregin, “A Study of Tin Impurity Atoms in Silicon, Germanium, and Silicon-Germanium Solid Solutions by Means of Mössbauer Spectroscopy,” phys. stat. sol. (a), vol. 63, 23–30 (1981).

    Article  Google Scholar 

  321. H. de Waard and G. J. Kemerink, “Hyperfine Interaction and Channeling Studies of Impurities Implanted in Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 210–218 (1983).

    Google Scholar 

  322. V. B. Neimash, M. G. Sosnin, B. M. Turovskii, V. I. Shakhovtsov, and V. L. Shindich, “Formation of Defects As a Result of Electron Irradiation of Tin-Doped p-Type Silicon,” Semiconductors, vol. 16, no. 5, 577–579 (1982).

    Google Scholar 

  323. B. G. Svensson, J. Svensson, J. L. Lindström, G. Davies, and J. W. Corbett, “Generation of Divacancies in Tin-Doped Silicon,” Appl. Phys. Lett., vol. 51, no. 26, 2257–2259 (1987).

    Article  Google Scholar 

  324. Y. M. Dobrovinskii, M. G. Sosnin, V. M. Tsmots’, V. I. Shakhovtsov, and V. L. Shindich, “Influence of the Tin Impurity on the Accumulation of Radiation Defects in n-Type Si,” Sov. Phys. Semicond., vol. 22, no. 6, 727–728 (1988).

    Google Scholar 

  325. B. G. Svensson and J. L. Lindström, “Generation of Divacancies in Silicon by MeV Electrons: Dose Rate Dependence and Influence of Sn and P,” J. Appl. Phys., vol. 72, no. 12, 5616–5621 (1992).

    Article  Google Scholar 

  326. K. Matsui, R. R. Hasiguti, T. Shoji, and A. Ohkawa, “Tin-Vacancy Interaction in Silicon Monitored by 119Sn Mössbauer Probe,” in: Lattice Defects in Semiconductors, 1974, Inst. Phys. Conf. Ser., no. 23, 572–578 (1975).

    Google Scholar 

  327. G. D. Watkins, “Defects in Irradiated Silicon: EPR of the Tin-Vacancy Pair,” Phys. Rev. B, vol. 12, no. 10, 4383–4390 (1975).

    Article  MathSciNet  Google Scholar 

  328. M. Fanciulli and J. R. Byberg, “Tin-Vacancy Complexes in e-Irradiated n-Type Silicon,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 273-274, 524–527 (1999).

    Google Scholar 

  329. S. Damgaard, J. W. Petersen, and G. Weyer, “The Tin-Vacancy Pair Defect in Silicon,” Hyperfine Interactions, vol. 10, 751–758 (1981).

    Article  Google Scholar 

  330. E. Müller, A. Nylandsted Larsen, and G. Weyer, “Evidence for Vacancy Percolation in Highly-Doped Silicon,” Hyperfine Interactions, vol. 93, 1395–1400 (1994).

    Article  Google Scholar 

  331. A. Nylandsted Larsen, J. J. Goubet, P. Mejlholm, J. Sherman Christensen, M. Fanciulli, H. P. Gunnlaughsson, G. Weyer, J. Wulff Petersen, A. Resende, M. Kaukonen, R. Jones, S. Öberg, P. R. Briddon, B. G. Svensson, J. L. Lindström, and S. Dannefaer, “Tin-Vacancy Acceptor Levels in Electron-Irradiated n-Type Silicon,” Phys. Rev. B, vol. 62, no. 7, 4535–544 (2000).

    Article  Google Scholar 

  332. M. Kaukonen, R. Jones, S. Öberg, and P. R. Briddon, “Tin-Vacancy Complexes in Silicon,” Phys. Rev. B, vol. 64, 245213 (2001).

    Article  Google Scholar 

  333. G. D. Watkins and J. R. Troxell, “Negative-U Properties for Point Defects in Silicon,” Phys. Rev. Lett., vol. 44, no. 9, 593–596 (1980).

    Article  Google Scholar 

  334. R. W. Olesinski and G. J. Abbaschian, “The Si-Sn (Silicon-Tin) System,” Bull. Alloy Phase Diagrams, vol. 5, no. 3, 273–276 (1984).

    Article  Google Scholar 

  335. T. H. Yeh, S. M. Hu, and R. H. Kastl, “Diffusion of Tin into Silicon,” J. Appl. Phys., vol. 39, no. 9, 4266–1271 (1968).

    Article  Google Scholar 

  336. M. F. Millea, “The Effect of Heavy Doping on the Diffusion of Impurities in Silicon,” J. Phys. Chem. Solids, vol. 27, 315–325 (1966).

    Article  Google Scholar 

  337. P. Kringhøj and A. Nylandsted Larsen, “Anomalous Diffusion of Tin in Silicon,” Phys. Rev. B, vol. 56, no. 11, 6396–6399 (1997).

    Article  Google Scholar 

  338. P. Kringhoj and R. G. Elliman, “Diffusion of Ion Implanted Sn in Si, Si1-xGex, and Ge,” Appl. Phys. Lett., vol. 65, no. 3, 324–326 (1994).

    Article  Google Scholar 

  339. A. Nylandsted Larsen, P. E. Andersen, P. Gaiduk, and K. Kyllesbech Larsen, “The Effect of Phosphorus Background Concentration on the Diffusion of Tin, Arsenic and Antimony in Silicon,” Materials Science and Engineering B, vol. 4, 107–112 (1989).

    Article  Google Scholar 

  340. M. Fanciulli and J. R. Byberg, “Divacancy-Tin Complexes in Electron-Irradiated Silicon Studied by EPR,” Phys. Rev. B, vol. 61, no. 4, 2657–2671 (2000).

    Article  Google Scholar 

  341. L. I. Khirunenko, O. O. Kobzar, Y. V Pomozov, M. G. Sosnin, and M. O. Tripachko, “Peculiarities of Vacancy-Related Defects Formation in Si Doped with Tin,” in: Proceedings of the 22 nd International Conference on Defects in Semiconductors, edited by K. Bonde Nielsen, A. Nylandsted Larsen, and G. Weyer, Physica B, vol. 340-342, 541–545 (2003).

    Google Scholar 

  342. E. V Lavrov, M. Fanciulli, M. Kaukonen, R. Jones, and P. R. Briddon, “Carbon-Tin Defects in Silicon,” Phys. Rev. B, vol. 64, 125212 (2001).

    Article  Google Scholar 

  343. L. I. Khirunenko, O. O. Kobzar, Y.V. Pomozov, M. G. Sosnin, M. O. Tripachko, N. V. Abrosimov, and H. Riemann, “Interstitial-Related Reactions in Silicon Doped with Isovalent Impurities,” in: Proceedings of the 22 nd International Conference on Defects in Semiconductors, edited by K. Bonde Nielsen, A. Nylandsted Larsen, and G. Weyer, Physica B, vol. 340-342, 546–550 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Pichler, P. (2004). Isovalent Impurities. In: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0597-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0597-9_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7204-9

  • Online ISBN: 978-3-7091-0597-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics