Skip to main content

Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor

  • Chapter
Emergence and Control of Zoonotic Viral Encephalitides

Part of the book series: Archives of Virology. Supplementa ((ARCHIVES SUPPL,volume 18))

Summary

Hendra virus (HENV) and Nipah virus (NIPV) are classified in the new genus Henipavirus , within the subfamily Paramyxovirinae, family Paramyxoviridae . The genetic and biological characteristics that differentiate henipaviruses from other members of the subfamily are summarized. Although they do not display neuraminidase and hemagglutination activities and in that regard resemble viruses in the genus Morbillivirus, several recent observations highlight similarities between henipaviruses and respiroviruses (genus Respirovirus in structure and replication strategy. First , three-dimensional modeling studies suggest that the external globular head domain of the HENV G protein resembles that of respiroviruses rather than morbilliviruses. Second, the pattern of transcriptional attenuation in HENV-infected cells resembles that observed with Sendai virus, a respirovirus, and differs from that found in cells infected with measles virus, a morbillivirus. Henipaviruses have a broad host range in vitro and in vivo, indicating wide distribution of cellular receptor molecules. The extensive host range has been confirmed in a quantitative in vitro cell-fusion assay using recombinant vaccinia viruses expressing the attachment and fusion proteins of HENV and NIPV. Cell lines of diverse origin and which are permissive in the in vitro cell fusion assay have been identified and the pattern of relative susceptibilities is the same for both HENV and NIPV, implying that both viruses use the same cell receptor. Protease treatment of permi ssive cells destroys their ability to fuse with cells expressing viral envelope glycoproteins. Virus overlay protein binding assay (VOPBA) and radio-immune precipitation assays confirm that both HENV and NIPV bind to membrane proteins in the 35&3x2013;50 kD range . Treatment of cell membrane proteins with N-glycosidase eliminates HeV binding activity in VOPBA whereas treatment with neuraminidase has no effect on binding. Thus preliminary evidence suggests that NIPV and HENV bind to the same glycoprotein receptor via a non-sialic acid-dependant mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkhatib G, Broder CC, Berger EA (1996) Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages. J Virol 70: 5487–5494

    PubMed  CAS  Google Scholar 

  2. Bagai SL, Lamb RA (1995) Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus. J Virol 69: 6712–6719

    PubMed  CAS  Google Scholar 

  3. Bossart KN, Wang LF, Eaton BT, Broder CC (2001) Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290: 121–135

    Article  PubMed  CAS  Google Scholar 

  4. Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC (2002) Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 76: 11186–11198

    Article  PubMed  CAS  Google Scholar 

  5. Bowden TR, Westenberg M, Wang LF, Eaton BT, Boyle DB (2001) Molecular characterization of Menangle virus, a novel paramyxovirus which infects pigs, fruit bats, and humans. Virology 283: 358–373

    Google Scholar 

  6. Cattaneo R, Rebmann G, Baczko K, ter Meulen V, Billeter MA (1987) Altered ratios of measles virus transcripts in diseased human brains. Virology 160: 523–526

    Article  PubMed  CAS  Google Scholar 

  7. Chant K, Chan R, Smith M, Dwyer DE, Kirkland P (1998) Probable human infection with a newly described virus in the family Paramyxoviridae. Emerg Infect Dis 4: 273–275

    Article  PubMed  CAS  Google Scholar 

  8. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh WJ, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton BT, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BWJ (2000) Nipah virus: A recently emergent deadly paramyxovirus. Science 288: 1432–1435

    Article  PubMed  CAS  Google Scholar 

  9. Chua KB, Wang LF, Lam SK, Eaton BT (2002) Full length genome sequence of Tioman virus, a novel paramyxovirus in the genus Ruhulavirus isolated from fruit bats in Malaysia. Arch Virol 147: 1323–1348

    Article  PubMed  CAS  Google Scholar 

  10. Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA (2000) Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271: 334–349

    Article  PubMed  CAS  Google Scholar 

  11. Homann HE, Hofschneider PH, Neubert WJ (1990) Sendai virus gene expression in Iytically and persistently infected cells. Virology 177: 131–140

    Article  PubMed  CAS  Google Scholar 

  12. Jorgensen ED, Collins PL, Lomedico PT (1987) Cloning and nucleotide sequence of Newcastle disease virus hemagglutinin-neuraminidase mRNA: identification ofa putative sialic acid binding site. Virology 156: 12–24

    Article  PubMed  CAS  Google Scholar 

  13. Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 73: 9237–9246

    PubMed  CAS  Google Scholar 

  14. Lamb RA, Kolakofsky D (2001) Paramyxoviridae: The viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology vol 1. Lippincott, Williams & Wilkins, Philadelphia, pp 1305–1340

    Google Scholar 

  15. Lamb RA, Mahy BW, Choppin PW (1976) The synthesis of Sendai virus polypeptides in infected cells. Virology 69: 116–131

    Article  PubMed  CAS  Google Scholar 

  16. Langedijk JP, Daus FJ, van Oirschot JT (1997) Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71: 6155–6167

    PubMed  CAS  Google Scholar 

  17. Loffler S, Lottspeich F, Lanza F, Azorsa DO, ter Meulen V, Schneider-Schaulies J (1997) CD9, a tetraspan transmembrane protein, render s cell s susceptible to canine distemper virus. J Virol 71: 42–49

    PubMed  CAS  Google Scholar 

  18. Maisner A, Schneider-Schaulies J, Liszewski MK, Atkinson JP, Herrler G (1994) Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glyc ans for the receptor function. J Virol 68: 6299–6304

    PubMed  CAS  Google Scholar 

  19. Markwell MA, Paulson JC (1980) Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. PNAS 77: 5693–5697

    Article  PubMed  CAS  Google Scholar 

  20. Mirza AM, Deng R, Iorio RM (1994) Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hernagglutinin-neuraminidase glycoprotein: effects on antigenic structure and function. J Virol 68: 5093–5099

    PubMed  CAS  Google Scholar 

  21. Murray K, Selleck P, Hooper P, Selleck P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L, Selvey L, Rodwell B (1995) A morbilli virus that caused fatal disease in horses and humans. Science 268: 94–97

    Article  PubMed  CAS  Google Scholar 

  22. Naniche D, Varior-Krishnan G, Cervoni F, Wild F, Rossi B, Rabourdin-Cornbe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67: 6025–6032

    PubMed  CAS  Google Scholar 

  23. Nussbaum O, Broder CC, Moss B, Stern LB, Rozenblatt S, Berger EA (1995) Functional and structural interactions between measles virus hemagglutinin and CD46. J Virol 69: 3341–3349

    PubMed  CAS  Google Scholar 

  24. Reyes-Leyva J, Hernandez-Jauregui P, Montafio LF, Zenteno E (1993) The porcine paramyxovirus LPM specifically recognizes sialyl (alpha 2,3) lactose-containing structures. Arch Virol 133: 195–200

    Article  PubMed  CAS  Google Scholar 

  25. Tatsuo H, Ono N, Yanagi Y (2001) Morbilli viruses use signaling Iymphocyte activation molecules (CD150) as cellular receptors. J Virol 75: 5842–5850

    Article  PubMed  CAS  Google Scholar 

  26. Thomas SM, Lamb RA, Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54: 891–902

    Article  PubMed  CAS  Google Scholar 

  27. Wang L-F, Chua KB, Yu M, Eaton BT (2003) Genome diversity of emerging paramyxoviruses. Curr Genom 4: 263–273

    Article  CAS  Google Scholar 

  28. Wang LF, Eaton BT (2001) Emerging paramyxoviruses. Infect Dis Rev 3: 52–69

    Google Scholar 

  29. Wang LF, Eaton BT (2002) Henipavirus (Paramyxoviridae, Paramyxovirinae). In: Tidona CA, Darai G (eds) The Springer index of viruses. Springer, Berlin Heidelberg New York Tokyo, pp 641–644

    Chapter  Google Scholar 

  30. Wang LF, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, Eaton BT (2001) Molecular biology of Hendra and Nipah viruses. Microb Infect 3: 279–287

    Article  CAS  Google Scholar 

  31. Westbury HA (2000) Hendra virus disease in horses. Rev Sci Tech Office Int Epizoot 19: 151–159

    CAS  Google Scholar 

  32. Yu M, Hansson E, Langedijk JP, Eaton BT, Wang LF (1998) The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxo virus. Virology 251: 227–233

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Eaton, B.T. et al. (2004). Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor. In: Calisher, C.H., Griffin, D.E. (eds) Emergence and Control of Zoonotic Viral Encephalitides. Archives of Virology. Supplementa, vol 18. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0572-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0572-6_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-20454-2

  • Online ISBN: 978-3-7091-0572-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics