Ballistic Impacts on Polymer Matrix Composites, Composite Armor, Personal Armor

  • R. Zaera
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 526)


Throughout recorded history, humans have used various types of materials to protect themselves from injury in combat or other dangerous situations. In recent decades, the appearance of high-performance fibers and ceramics has allowed the development of protection against ballistic impact, with some exceptionally lightweight and protective characteristics. This chapter, divided in two parts, provides a review of the design and use of lightweight composite amours. The first part contains preliminary information of interest for the understanding of the second part, in which the characteristics of the various composite armours are described, as well as the methodologies for analysis and simulation.


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aare M., Kleiven S. (2007). Evaluation of head response to ballistic helmet impacts using the finite element method. Int J Impact Engng 34:596–608.CrossRefGoogle Scholar
  2. Adeli H., Yeh C. (1989). Perceptron learning in engineering design. Microcomp Civil Engng 4:247–256.CrossRefGoogle Scholar
  3. Alekseevskii V.P. (1966). Penetration of a rod into a target at high velocity. In Combustion, Explosion and Shock Waves 2. Faraday Press, New York, USA.Google Scholar
  4. Anderson C.E. Jr., Morris B.L. (1992). The ballistic performance of confined Al2O3 ceramic tiles. Int J Impact Engng 12:167–187.CrossRefGoogle Scholar
  5. Anderson C.E. (1987). An overview of the theory of hydrocodes. Int J Impact Engng 5:33–59.CrossRefGoogle Scholar
  6. Anderson C.E., Cox P.A., Johnson G.R., Maudlin P.J. (1994). A constitutive formulation for anisotropic materials suitable for wave propagation computer programs—II. Comput Mech 15:201–223.zbMATHCrossRefGoogle Scholar
  7. Arias A. (2002). Desarrollo y modelización del comportamiento frente a impacto de materiales compuestos de matriz polimérica y carga cerámica. PhD Thesis, Universidad Carlos III de Madrid.Google Scholar
  8. Arias A., Rodríguez-Martínez J.A., Rusinek A. (2008). Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles. Engineering Fracture Mechanics 75:1635–1656CrossRefGoogle Scholar
  9. Arias A., Zaera R., López-Puente J., Navarro C. (2003). Numerical modeling of the impact behavior of new particulate-loaded composite materials. Composite Structures 61:151–159.CrossRefGoogle Scholar
  10. AS/NZS 2343 1997 (1997). Bullet Resistant Panels and Elements. Australian/New Zealand Joint Technical Committee MS/43.Google Scholar
  11. Belytschko T., Lu Y.Y., Gu L. (1994). Element free galerkin methods. International Journal for Numerical Methods in Engineering 37:229–256.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Ben-Dor G., Dubinsky A., Elperin T. (2008). Improved Florence model and optimization of two-component armor against single impact or two impacts. Composite Structures 88:158–165.CrossRefGoogle Scholar
  13. Ben-Dor G., Dubinsky A., Elperin T. (2005). Optimization of two-component composite armor against ballistic impact. Composite Structures 69:89–94.CrossRefGoogle Scholar
  14. Bhatnagar A., Wagner L., Shahkarami A., Cepus E., Vaziri R., Poursartip A., Hamouda A.M.S., Risby M.S., Dunn D.R., Tam T., Song J.S., Lee B.L., Thomas H.L., Arvidson B., Pataki W., Hannibal A., Weir B., Scott B.R., Lang D., Salamé J.M., Quefelec B. (2006). Lightweight ballistic composites, Military and law-enforcement applications. Woodhead Publishing, CRC Press, Cambridge.CrossRefGoogle Scholar
  15. Billon H.H., Robinson D.J. (2001). Models for the ballistic impact of fabric armour. Int J Impact Engng 25:411–422.CrossRefGoogle Scholar
  16. Bless S.J., Rosenberg Z., Yoon B. (1987). Hypervelocity penetration of ceramics. Int J Impact Engng 5:165–171.CrossRefGoogle Scholar
  17. Bless S.J., Subramanian R., Partom Y., Lynch N. (1995). Effects of radial confinement on the penetration resistance of thick ceramic tiles. In Proceedings on the 15th International Symposium on Ballistics, Jerusalem.Google Scholar
  18. Burkett M.W., Cort G.E., Parker R.B., Rollet A.D., Skaggs S.R. (1992). Ballistic Performance of 90 wt% Al2O3 Against Subscale Kinetic-Energy Long-Rod Penetrator. In Proceedings on the 13th International Symposium on Ballistics, Stockholm, Sweden.Google Scholar
  19. CEN EN 1063 (1999). Glass in Building-Security Glazing-Testing and Classification of Resistance Against Bullet Attack. European Committee for Standardization.Google Scholar
  20. CEN PrEN ISO 14876 (1998). Test method for stab resistance of body armour. International Organization for Standardization/European Committee for Standardization.Google Scholar
  21. Chang F.K., Chang K.Y. (1987). A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21:834–855.CrossRefGoogle Scholar
  22. Chocron S., Pintor A., Gálvez F., Roselló C., Cendón D., Sánchez-Gálvez V. (2008). Lightweight polyethylene non-woven felts for ballistic impact applications: Material characterization. Composites Part B: Engineering 39:1240–1246.CrossRefGoogle Scholar
  23. Chocron-Benloulo I.S., Rodríguez J., Martínez M.A., Sánchez-Gálvez V. (1997). Dynamic tensile testing of aramid and polyethylene fiber composites. International Journal of Impact Engineering 19:135–146.CrossRefGoogle Scholar
  24. Chocron-Benloulo I.S., Sánchez-Gálvez V. (1998). A New Analytical Model to Simulate Impact onto Ceramic/Composite Armors. Int J Impact Engng 21:461–471.CrossRefGoogle Scholar
  25. Cork C.R., Foster P.W. (2007). The ballistic performance of narrow fabrics. Int J Impact Engng 34:495–508CrossRefGoogle Scholar
  26. Cortés R., Navarro C., Martínez M.A., Rodríguez J., Sánchez-Gálvez V. (1992). Numerical modelling of normal impact on ceramic composite armours. Int J Impact Engng 12:639–651.CrossRefGoogle Scholar
  27. Cunniff P.M., Auerbach M.A. (2005). High performance M5 fiber for ballistic/structural composites. Course Mechanical Behavior of Polymers. MIT, D. Roylance.Google Scholar
  28. Cunniff P.M. (1999). Dimensionless parameters for optimization of textile-based armor systems. In Proceedings 18th International Symposium on Ballistics, San Antonio, Texas.Google Scholar
  29. Curran D., Seaman L., Cooper T., Shockey D. (1993). Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets. Int J Impact Engng 13:53–83.CrossRefGoogle Scholar
  30. den Reijer P.C. (1991). Impact on ceramic faced armours. PhD thesis, Delft University of Technology.Google Scholar
  31. Denoual C., Hild F. (2002). Dynamic fragmentation of brittle solids: a multi-scale model. European J Mech A/Solids 21:105–120.zbMATHCrossRefGoogle Scholar
  32. Duan Y., Keefe M., Bogetti T.A., Cheeseman B.A. (2005). Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric. Composite Structures 68:331–337.CrossRefGoogle Scholar
  33. El Kadi H. (2006). Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks a review. Composite Structures 73:1–23.CrossRefGoogle Scholar
  34. Ernst H.J., Hoog K. (1992). Protective power of several ceramics, correlated to some static material properties. In Proceedings on the 13th International Symposium on Ballistics, Stockholm, Sweden.Google Scholar
  35. Ernst H.J., Hoog K., Wiesner V. (1994). Ballistic impact behaviour of some ceramics in different environments. Journal de Physique 3:677–682.Google Scholar
  36. Ernst H.J., Hoog K., Wiesner V. (1995). Continuous measurements of the penetration depth in completely confined ceramic targets. In Proceedings on the 15th International Symposium on Ballistics, Jerusalem, Israel.Google Scholar
  37. Fawaz Z., Behdinan K., Xu Y. (2006). Optimum design of two-component composite amours against high-speed impact. Composite Structures 73:253–262.Google Scholar
  38. Fawaz Z., Zheng W., Behdinan K. (2004). Numerical simulation of normal and oblique ballistic impact on ceramic composite amours. Composite Structures 63:387–395.CrossRefGoogle Scholar
  39. Fellows N.A., Barton P.C. (1999). Development of impact model for ceramic-faced semi-infinite armour. Int J Impact Engng 22:793–811.CrossRefGoogle Scholar
  40. Fernández-Fdz D., Zaera R. (2008). A new tool based on artificial neural networks for the design of lightweight ceramic-metal armours against high-velocity impact of solids. Int J Solids Structures 45:6369–6383.zbMATHCrossRefGoogle Scholar
  41. Florence A.L. (1969). Interaction of projectiles and composite armor, Part II. Stanford Research Institute, Menlo Park, CA, USA, AMRA CR 69–15.Google Scholar
  42. Forquin P., Trana L., Louvigné P-F., Rota L., Hild F. (2003). Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. Int J Impact Engng 28:1061–1076.CrossRefGoogle Scholar
  43. Gama B.A., Bogetti T.A., Fink B.K., Yu C., Claar T.D., Eifert H.H., Gillespie Jr. J.W. (2001). Aluminum foam armor: a new dimension in armor design. Int J Impact Engng 52:381–395.Google Scholar
  44. Gingold R.A., Monaghan J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181:375–389.zbMATHGoogle Scholar
  45. GOST R 50744–95 (1995). Armor clothes. Classification and general technical requirements. Standards Publishing House, Moscow.Google Scholar
  46. Gower H.L., Cronin D.S., Plumtree A. (2008). Ballistic impact response of laminated composite panels. Int J Impact Engng 35:1000–1008.CrossRefGoogle Scholar
  47. Gu B. (2003). Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile. Composites Part B: Engineering 34:361–371.CrossRefGoogle Scholar
  48. Gu B., Xu J. (2004). Finite element calculation of 4-step 3-dimensional braided composite under ballistic perforation. Composites Part B: Engineering 35:291–297.CrossRefGoogle Scholar
  49. Hauver G.E., Netherwood P.H., Benck R.F., Gooch W.A., Perciballi W.J., Burkins M.S. (1992). Variation of target resistance during long rod penetration into ceramics. In Proceedings on the 13th International Symposium on Ballistics, Stockholm.Google Scholar
  50. Hazell P.J.,. Roberson C.J., Moutinho M. (2008). The design of mosaic armour: The influence of tile size on ballistic performance. Materials & Design 29:1497–1503.CrossRefGoogle Scholar
  51. Hetherington J.G., Lemieux P.F. (1994). The effect of obliquity on the ballistic performance of two component composite armours. Int J Impact Engng 15:131–137.CrossRefGoogle Scholar
  52. Hiermaier S., Riedel W., Clegg R., Hayhurst C. (1999). Advanced material models for hypervelocity impact simulations. Technical Report, ESA/ESTEC Contract No. 12400/97/NL/PA(SC).Google Scholar
  53. Hohler V., Stilp A. J., Weber K. (1995-a). Ranking Methods of Ceramics and Experimental Optimisation of a Laminated Target with Ceramics. In Proceedings Lightweight Armour System Symposium, Royal Military College of Science, Cranfield, England.Google Scholar
  54. Hohler V., Stilp A. J., Weber K. (1995-b). Hypervelocity penetration of tungsten sinteralloy rods into alumina. Int J Impact Engng 17:409–418.CrossRefGoogle Scholar
  55. Ince R. (2004). Prediction of fracture parameters of concrete by artificial neural networks. Engng Fract Mech 71:2143–2159.CrossRefGoogle Scholar
  56. Jacobs M.J.N., Van Dingenen, J.L.J. (2001). Ballistic protection mechanisms in personal armour. Journal of Materials Science 36:3137–3142.CrossRefGoogle Scholar
  57. James B. (1995). The influence of the material properties of alumina on ballistic performance. In Proceedings on the 15th International Symposium on Ballistics, Jerusalem.Google Scholar
  58. Jameson J.W., Stewart G.M., Petterson D.R., Odell F.A. (1962). Dynamic Distribution of Strain in Textile Materials under High-Speed Impact: Part III: Strain-Time-Position History in Yarns. Textile Research Journal 32:858–860.CrossRefGoogle Scholar
  59. Jearanaisilawong P. (2004). Investigation of deformation and failure mechanisms in woven and non-woven fabrics under quasi-static loading conditions. Master of Science Thesis, Massachusetts Institute of Technology.Google Scholar
  60. Johnson G., Holmquist T. (1994). An improved computational constitutive brittle material. Technical Report, American Institute of Physics.Google Scholar
  61. Karahan M., Kus A., Erenc R. (2008). An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int J Impact Engng 35:499–510.CrossRefGoogle Scholar
  62. Lee L., Rudov-Clark S., Mouritz A.P., Bannister M.K., Herszberg I. (2002). Effect of weaving damage on the tensile properties of three-dimensional woven composites. Composite Structures 57:405–413.CrossRefGoogle Scholar
  63. Liable R.C., Henry M.C. (1969). A review of the development of ballistic needle-punched felts. Technical Report 70-32-CE, Clothing and Personal Life Support Equipment Laboratory, U.S. Army Natick Laboratories, Massachusetts, October.Google Scholar
  64. Lim C.T., Shim V.P.W., Ng Y.H. (2003). Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Engng 28:13–31.CrossRefGoogle Scholar
  65. Liu S., Huang J., Sung J., Lee C. (2002). Detection of cracks using neural networks and computational mechanics. Comput Meth Appl Mech Engng 191:2831–2845.zbMATHCrossRefGoogle Scholar
  66. López Puente J., Arias A., Zaera R., Navarro C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. Int J Impact Engng 32:321–336.CrossRefGoogle Scholar
  67. Louvigné P-F, Schulz P. (2001). MMC for armour application: new concept. In Proceedings of ICCE8 Conference, Tenerife, Canary Islands, Spain.Google Scholar
  68. Mahfuz H., Zhu Y., Haque A., Abutalib A., Vaidya U., Jeelani S., Gama B., Gillespie J., Fink B. (2000). Investigation of high-velocity impact on integral armor using finite element methods. Int J Impact Engng 24:203–217CrossRefGoogle Scholar
  69. Marshall J. (1994). Composite ballistic armour. In Proceedings of the 1st International Conference on Composites Engineering ICCE/1, 1057–1058.Google Scholar
  70. Matzenmiller A., Lubliner J., Taylor R.L. (1995). A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152.CrossRefGoogle Scholar
  71. Mayseless M., Goldsmith W., Virostek SP., Finnegan SA. (1987). Impact on ceramic targets. J Appl Mech 54:373–378.CrossRefGoogle Scholar
  72. Mellgard I., Holmberg L., Gunnar L. (1989). An experimental method to compare the ballistic efficiencies of different ceramics against long rod projectiles. In Proceedings on the 11th International Symposium on Ballistics, Jerusalem.Google Scholar
  73. MIL-STD-662F (1997). V50 Ballistic Test for Armor, US Department of Defense.Google Scholar
  74. Mines R.A.W. (2004). A one-dimensional stress wave analysis of a lightweight composite armour. Int J Impact Engng 64:55–62.Google Scholar
  75. Morye S.S., Hine P.J., Duckett R.A., Carr D.J., Ward I.M. (2000). Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Science and Technology 60:2631–2642.CrossRefGoogle Scholar
  76. Moss G.M., Leeming D.W., Farrar C.L. (1995). Military Ballistics. A basic manual. Brassey’s, London.Google Scholar
  77. Naik N.K., Shrirao P., Reddy B.C.K. (2006). Ballistic impact behaviour of woven fabric composites: Formulation. Int J Impact Engng 32:1521–1552.CrossRefGoogle Scholar
  78. Nandlall D., Williams K., Vaziri R. (1998). Numerical simulation of the ballistic response of GRP plates. Composites Science and Technology 58:1463–1469.CrossRefGoogle Scholar
  79. NATO STANAG 4569 (2004). Protection Levels for Occupants of Logistic and Light Armoured Vehicles. North Atlantic Treaty Organization.Google Scholar
  80. Navarro C. (1998). Simplified modeling of the ballistic behavior of fabrics and fiber-reinforced polymeric matrix composites. Key Engng Mater 141–143:383–400.CrossRefGoogle Scholar
  81. Navarro C., Zaera R., Cortés R., Martínez-Casanova M.A. (1994). The response of ceramic faced lightweight armours under projectile impact. In Proceedings on Structures under Shock and Impact III Conference, Madrid.Google Scholar
  82. NIJ Standard 0101.04 (2001). Ballistic Resistance of Personal Body Armor. US National Institute of Justice.Google Scholar
  83. NIJ Standard 0106.01 (1981). Standard for Ballistic Helmets. US National Institute of Justice.Google Scholar
  84. NIJ Standard 0108.01 (1985). Ballistic Resistant Protective Materials. US National Institute of Justice.Google Scholar
  85. Novotny W.R., Cepus E., Shahkarami A., Vaziri R., Poursartip A., (2007). Numerical investigation of the ballistic efficiency of multi-ply fabric armours during the early stages of impact. Int J Impact Engng 34:71–88.CrossRefGoogle Scholar
  86. Pettersson A., Magnusson P., Lundberg P., Nygren M. (2005). Titanium-titanium diboride composites as part of a gradient armour material. Int J Impact Engng 32:387–399.CrossRefGoogle Scholar
  87. Phoenix S.L., Porwal P.K. (2003). A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems. Int J Solids Struct 40:6723–6765.zbMATHCrossRefGoogle Scholar
  88. Roberson C.J. (1995). Ceramic materials and their use in lightweight armour systems. In Proceedings on Lightweight Armour System Symposium, Cranfield, England.Google Scholar
  89. Rosenberg Z., Surujon Z., Yeshurun Y., Ashuach Y., Dekel E. (2005). Ricochet of 0.3” AP projectile from inclined polymeric plates. Int J Impact Engng 31:221–233.CrossRefGoogle Scholar
  90. Rosenberg Z., Tsaliah J. (1990). Applying Tate’s model for the interaction of long rod projectiles with ceramic targets. Int J Impact Engng 9:247–251.CrossRefGoogle Scholar
  91. Rosenberg Z., Yeshurun Y. (1988). The relation between ballistic efficiency and compressive strength of ceramic tiles. Int J Impact Engng 7:357–362.CrossRefGoogle Scholar
  92. Roylance D., Wilde A., Tocci G. (1973). Ballistic Impact of Textile Structures. Textile Research Journal 43:34–41.CrossRefGoogle Scholar
  93. Rumelhart D., McCleland J. (1988). Parallel Distributed Processing VI: Foundations.Google Scholar
  94. Sadanandan S., Hetherington J.G. (1997). Characterisation of ceramic/steel and ceramic/aluminium amours subjected to oblique impact. Int J Impact Engng 19:811–819.CrossRefGoogle Scholar
  95. Sarva S., Nemat-Nasser S., McGee J., Isaacs J. (2007). The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles. Int J Impact Engng 34:277–302.CrossRefGoogle Scholar
  96. Senf H., Strassburger E., Rothenhäusler H., Gooch W.A., Burkins M.S. (1995). Ballistic resistance of AD995 Al2O3 ceramics against short projectiles at impact velocities between 1000 and 2000 m/s. In Proceedings on the 15th International Symposium on Ballistics, Jerusalem.Google Scholar
  97. Senf H., Strassburger E., Rothenhäusler H. (1994). Stress wave induced damage and fracture in impacted glasses. J Phys IV 3:741–746.Google Scholar
  98. Shahkarami A., Vaziri R. (2007). A continuum shell finite element model for impact simulation of woven fabrics. Int J Impact Engng 34:104–119.CrossRefGoogle Scholar
  99. Shi J., Grow D. (2007). Effect of double constraints on the optimization of two-component armor systems. Int J Impact Engng 79:445–453.Google Scholar
  100. Shokrieh M., Javadpour G.H. (2008). Penetration analysis of a projectile in ceramic composite armor. Composites Structures 82:269–276.CrossRefGoogle Scholar
  101. Silva M.A.G., Cismaiu C., Chiorean C.G. (2005). Numerical simulation of ballistic impact on composite laminates. Int J Impact Engng 31:289–306.CrossRefGoogle Scholar
  102. Smith J.C., McCracken F.L., Schiefer H.F. (1965). Stress-strain relationships in Yarns subjected to rapid impact loading. Part V: wave propagation in long textile Yarns impacted transversally. Textile Research Journal 28:288–302.CrossRefGoogle Scholar
  103. Song J.W., Geshury A., Ko F.K. (1997). Behavior of gradient designed composites under ballistic impact. In Proceedings of the 11th International Conference on Composite Materials, Gold Coast, Australia.Google Scholar
  104. Song J.W., Egglestone G.T. (1987). Investigation of the PVB/PF ratios on the crosslinking and ballistic properties in glass and aramid fiber laminate systems. In Proceedings of the 19th SAMPE International Tech Conference, 108–119.Google Scholar
  105. Sternberg J. (1989). Material properties determining the resistance of ceramics to high velocity penetration. J Appl Phys 65:3417–3424.CrossRefGoogle Scholar
  106. Strassburger E., Senf H., Rothenhäusler H. (1994). Fracture propagation during impact in three types of ceramics. J Phys IV 3:653–658.Google Scholar
  107. Tan V.B.C., Ching T.W. (2006). Computational simulation of fabric armour subjected to ballistic impacts. Int J Impact Engng 32:1737–1751.CrossRefGoogle Scholar
  108. Tan V.B.C., Shim V.P.W., Zeng X. (2005). Modelling crimp in woven fabrics subjected to ballistic impact. Int J Impact Engng, 32:561–574.CrossRefGoogle Scholar
  109. Tan V.B.C., Zeng X.S., Shim V.P.W. (2008). Characterization and constitutive modeling of aramid fibers at high strain rates. Int J Impact Engng 35:1303–1313.CrossRefGoogle Scholar
  110. Tate A. (1967). A theory for the deceleration of long rods after impact. J Mech Phys Solids 15:387–399.CrossRefGoogle Scholar
  111. Tham C.Y., Tan V.B.C., Lee H.P. (2008). Ballistic impact of a KEVLAR helmet: Experiment and simulations. Int J Impact Engng 35:304–318.CrossRefGoogle Scholar
  112. The Hague Convention (1899). Declaration III, Laws of War: Declaration on the Use of Bullets Which Expand or Flatten Easily in the Human Body. The Hague.Google Scholar
  113. Tobin L., Iremonger M. (2006). Modern body armour and helmets: an introduction. Argos press, Canberra.Google Scholar
  114. Van Hoof J., Deutekom M.J., Worswick M.J., Bolduc M. (1999). Experimental and numerical analysis of the ballistic response of composite helmet materials. In Proceedings of 18th International Symposium on Ballistics, San Antonio, Texas, USA.Google Scholar
  115. Waszczyszyn Z., Ziemianski L. (2001). Neural networks in mechanics of structures and materials — new results and prospects of applications. Comput Struct 79:2261–2276.CrossRefGoogle Scholar
  116. Wilkins M.L., Cline C.F., Honodel C.A. (1969). Fourth progress report on light armor program UCRL-50694. Lawrence Radiation Laboratory, University of California, Livermore, CA, USACrossRefGoogle Scholar
  117. Wilkins M.L., Cline C.F., Honodel C.A. (1967). Fourth progress report on light armor program UCRL-50284. Lawrence Radiation Laboratory, University of California, Livermore, CA, USAGoogle Scholar
  118. Wilkins M.L., Cline C.F., Honodel C.A. (1967). Fourth progress report on light armor program UCRL-50349. Lawrence Radiation Laboratory, University of California, Livermore, CA, USAGoogle Scholar
  119. Wilkins M.L., Cline C.F., Honodel C.A. (1968). Fourth progress report on light armor program UCRL-50460. Lawrence Radiation Laboratory, University of California, Livermore, CA, USA.Google Scholar
  120. Wilkins M.L. (1978). Mechanics of penetration and perforation. Int J Engng Sci 16:793–807.CrossRefGoogle Scholar
  121. Woodward R.L. (1990). A simple one-dimensional approach to modelling ceramic composite armour defeat. Int J Impact Engng 9:455–474.CrossRefGoogle Scholar
  122. Woodward R.L., Baxter B.J. (1994). Ballistic evaluation of ceramics: influence of test conditions. Int J Impact Engng 15:119–124.CrossRefGoogle Scholar
  123. Woolsey P. (1992). Ceramic Materials Screening by Residual Penetration Ballistic Testing. In Proceedings on the 13th International Symposium on Ballistics, Stockholm.Google Scholar
  124. Yaziv D., Rosenberg Z., Partom Y. (1986). Differential ballistic efficiency of appliqué armor. In Proceedings on the 9th International Symposium on Ballistics, Shrivenham, UK.Google Scholar
  125. Zaera R. (1997). Modelo analítico para el diseño de sistemas de protección frente a impacto formados por paneles de cerámica/metal. PhD Thesis, Universidad Politécnica de Madrid.Google Scholar
  126. Zaera R., Sánchez-Gálvez V. (1998-a). Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. Int J Impact Engng 21:133–148.CrossRefGoogle Scholar
  127. Zaera R., Sánchez-Gálvez V. (1998-b). Using an analytical model of simulation in the design of light-weight amours. Simulation 70:175–181.CrossRefGoogle Scholar
  128. Zaera R., Sánchez-Sáez S., Pérez-Castellanos J.L., Navarro C. (2000). Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Composites: Part A 31:823–833.CrossRefGoogle Scholar
  129. Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curran D.R. (1982). Impact Dynamics. John Wiley & Sons, New York.Google Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • R. Zaera
    • 1
  1. 1.Department of Continuum Mechanics and Structural AnalysisUniversity Carlos III of MadridSpain

Personalised recommendations